

Curie Family (Jacques and Pierre in back, discoverers of the piezoelectric effect)

Paris, France, circa 1880

Piezoelectric Nozzle Technology

Trace Explosive Standards Using InkJet Printing Technology

Fluorescein + TNT

NIST JetLab II Printer System

RDX Fingerprint

2.5 cm

Standard Reference Materials Program

Vaporjet Calibrator for IMS-Based Trace Explosive_Detectors

<u>Mike Verkouteren,</u> Greg Gillen Surface and Microanalysis Science Division National Institute of Standards and Technology Gaithersburg, Maryland, USA and David Taylor MicroFab Technologies Austin, Texas, USA

Why a Calibrator?

- Tens of thousands trace detectors deployed
- Multiple venues (e.g. airports, embassies, consulates, check-points, sports stadiums, courthouses, federal buildings, ports/harbors)
- Given improvements in sensitivity, vapor detection more practical and preferable
- Vapor processing important in particle detection
- Reliable standards needed to maintain and improve throughput, accuracy, and sensitivity

Outline

Vaporjet Calibrator Description Design Droplet formation **Droplet vaporization** Application **Testing IMS detectors** Testing portal filters Summary

NIST Vaporjet Calibrator

Objectives

- Reliable and dynamic, on-demand trace compound delivery
- Pulsed or steady-state
- Programmable concentration-time profiles (6 independent jet nozzles)
- Transfer standard, traceable to primary standards
- Basis for future
 improvement of vapor
 detection technology

ISIMS

2005

Vaporjet Components

Vaporjet System

Projected Range in Delivered Trace Vapor Concentrations

- Compound concentration in solvent (5 to 10000 pg/μL)
- Droplet jetting rate (40 to 4000 Hz)
- Number of nozzles (1 to 6)
- Flow rate of air (1 to 80 LPM)

ISIMS

2005

Droplet Emergence

40 µs Intervals

Droplet Diameter Measurement

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Droplet Formation

Nozzle

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

reservoir

Surface-to-Droplet **Heat Transfer** Regimes Avoiding "the Bounce" during Vaporization 130 °C

Isobutanol droplets (bp 108 °C)

Bernardin et al. 1997 Int J. Heat Transfer 40, 247

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

IMS Detector Response to Vapors

VaporJet + IMS Detectors Continuous Jet Mode

Conditions

- Air flowrate: 10 LPM
- Rel. humidity < 10 %
- Sheath: 80 to 150 °C
- Sampled air: 116 °C
- PETN: 500-2000 Hz
- RDX: 200-1000 Hz
- TNT: 500-3000 Hz

Vaporjet RDX – IMS Response

Technology Administration, U.S. Department of Commerce

Vaporjet PETN - IMS Response

Technology Administration, U.S. Department of Commerce

Vaporjet TNT - IMS Response

Technology Administration, U.S. Department of Commerce

Portal Vapor Collection Efficiency

"Heat Tint" on Portal Collector Filters

- During heating, oxide coating forms on stainless steel
- Does this affect collection performance of vapor stage?

Bekaert Bekipor 316L Stainless Steel

Vapor Collector System

SS 316L Fiber Mesh Bekaert Bekipor ST 60 AL3

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Heat-Sink Block, Thermo-Electric Cooler, Collector Filter, and PTFE

Explosive Vapor Collection System Pulsed Jet Mode

Conditions

- Air flowrate: 5 LPM
- RH: <10 % to >80%
- RTD: 130 °C
- Sheath: 80 to 220 °C
- Collector: 50 °C
- RDX: 2000 droplets
- TNT: 10000 droplets

TNT Vapor Collection

Filter Collection Efficiency

	Vaporjet Conditions
4.6 % ± 4.5 %	Nozzle 1: TNT Voltage: 41 v Dwell: 41 μs
5.1 % ± 3.4 %	Sheath: 80 °C to 220 °C Collection: 50 °C Air flow: 5 LPM Rel. humidity < 10%
4.7 % ± 3.3 %	Instrument: Barringer IonScan 400B Desorber: 220 °C Drift Tube: 168 °C

RDX Vapor Collection

Technology Administration, U.S. Department of Commerce

★: 2 ng RDX introduced

Summary & Challenges

- Promising approach to generating trace vapor airstream standards
 - Reliability...
 - Reproducibility...
 - Solvent effects...
- Memory issues
 - Temperature/solvent optimization...
- Calibrating the Calibrator
 Orthogonal methods

– Orthogonal methods...

