DOE Genomes
Human Genome Project Information  Genomics:GTL  DOE Microbial Genomics  home
-
HGP Home
Human Genome News Archive Edition

  Vol.10, No.1-2   February 1999
Available in PDF 
 
In this issue... 

Genome Project 
U.S. HGP on Fast Track 
DOE Joint Genome Institute Exceeds Goal 
New 5-Year Goals 
Faster Sequencing with BACs 
Mapping with STCs and STSs 
Availability of BAC Clones and STC Data 
BAC Related Websites 
BAC Resource Success Story 
Scientists Hunt SNPs for Variation, Disease 
Who's Sequencing the Human Genome? 
Genomics Progress in Science 
EMSL Promotes Remote Access to Instrumentation 
Second Private-Sector Sequencing Project 
GeneMap'98 

In the News 
Team Delivers C. elegans Sequence 
Why Sequence Entire Genomes? Worm's Eye View 
Embnet.news on Web 
European Biotech Program 
DOE BER Research Update 
Hollaender Fellows Named 
SBIR 1998 Human Genome Awards Announced 
Mouse Resources 
Mouse Consortium for Functional Genomics 
Chlamydia Genome Analysis 
HUGO Merges Offices, Web Sites 

Microbial Genomics 
Superbug Deinococcus radiodurans 
Unfinished Microbial Genomes Searchable 
TIGR Releases Chlorobium tepidum Sequence 
DOE MGP Abstracts Online 
Microbial TV Series 
 
Ethical, Legal, and Social Issues and Educational Resources 
Cambridge ELSI Symposium 
Eric Lander, Genetics in the 21st Century 
Mark Rothstein, Genetic Privacy 
James Wilson, Gene Therapy Present & Future 
LeRoy Walters, Ethical Issues in Gene Therapy 
DNA Files on NPR, Internet 
Innovative Biotechnology Curriculum 
Short Course for Biology Teachers 
Microbial TV Series 

Proteomics 
Looking at Proteins to Understand Expression 
2-DGE:  Protein Visualization, Modification 
Tool for Protein Analysis 
TREMBL Release 6 
R&D 100 Award Goes to LANL's SOLVE 
NIH Awards Proteomics Grant to Axys 
E. coli Proteome Database 

Genetics in Medicine 
National Organization for Rare Disorders 
Translation of Genetics to Medicine: New Website 
Cancer Genetics Web Site 
HuGem Website Offers Education in New Genetics 
Calculation of Genetic Risks 2nd Edition 
New Genetics Manual Offered 
Mutation Research Genomics Online 
 
Informatics 
GDB Database Operations Restored 
In Silico Biology: Bioinformatics Journal 
Computational Methods Book Available 
Bioinformatics Guide
BioToolKit
Gene-Finding Programs at Sanger
New Sequin Version
Tandem Repeat Tool
Sequence Viewer
SmithKline Licenses Gene Logic Software 
Influenza Database at LANL 
TRANSFAC Database 
p53 Mutation Database 
TBASE at Jackson Laboratory 
Intein Database on Web 
System Identifies Polymorphisms 

Web, Other Resources, Publications 
1999 Oakland Workshop Website 
Launchpad to Human Chromosomes 
Nature Genetics Supplement 

Funding 
DOE Office of Science Grants and Contracts 
NHGRI National Service Award Fellowships 
NCI Technologies for Molecular Analysis 
NIH: Netork for Large-Scale Mouse Sequencing 
NHGRI: Genomic Technology Development 
US Genome Research Funding 

Meeting Calendars & Acronyms 
Genome and Biotechnology Meetings 
Training Courses and Workshops 
Acronyms 


HGN archives and subscriptions 
HGP Information home

Superbug Survives Radiation, Eats Waste

Conan the Bacterium

A can of spoiled meat and nuclear waste may appear to have little in common, but the microbe Deinococcus radiodurans finds both environments rather cozy. Scientists hope this organism's ability to withstand massive doses of radiation will make it a useful tool for toxic-site remediation.

Although scientists now find it in many different soil and water sites around the world, D. radiodurans was not identified until 1956. It was isolated from a can of ground beef that had been radiation sterilized but had spoiled nonetheless. Perhaps because it can efficiently repair radiation breakage of its own DNA, D. radiodurans can endure 1.5 million rads of radiation, a dose 3000 times higher than would kill organisms from microbes to humans. Scientists are unsure how this resistance evolved, although they suspect it may be a side effect of the microbe's ability to survive periods of severe dehydration, which also fragments DNA.

Recognition of D. radiodurans' resistance to radiation led DOE Microbial Genome Program (MGP) managers to believe the microbe could be useful in cleaning up mixed-waste sites contaminated with toxic chemicals as well as radiation. They began to fund projects to decipher the microbe's genome and alter it to detoxify the most common chemical contaminants at these sites. Such detoxification functions might include concentrating heavy metals and breaking down organic solvents such as trichlorethylene.

Some results are reported below.

Complete Genome Sequence
The complete sequence of the 3-Mb D. radiodurans genome is now in hand, and researchers led by Owen White at The Institute for Genomic Research (TIGR) in Rockville, Maryland, expect to publish their findings shortly. The genome consists of three chromosomes and a single extrachromosomal plasmid, with repeats highly abundant on each chromosome. Circularization of chromosomal regions, occurring across repeats distributed at least every 50 kb, may be part of the homologous recombination system that is the major form of repair for DNA double-strand breaks. Researchers have not yet determined if circularization occurs more frequently after irradiation. No evidence, however, exists for a causal link between circularization and radiation resistance; the bacterium Escherichia coli's genome, in fact, also circularizes and yet is radiation sensitive. Plausible explanations for the extraordinary DNA-repair capability of D. radiodurans remain elusive in the early analyses of DNA repair genes.

In the sequencing effort, assembly problems were encountered in repeated regions over 500 bases long and more than 95% identical. To help verify the assemblies, TIGR scientists turned to a special type of "optical" chromosome map of D. radiodurans constructed by David Schwartz and colleagues [New York University (NYU)].

To create this type of map, the NYU team uses optical light microscopy to directly image individual DNA molecules bound to specially coated surfaces, which are then cut with restriction enzymes. When a cut is made, the linear DNA contracts and reveals a break. Scientists create a landmark map of the DNA sequence by determining where the cut sites lie and then measuring the distances between them. This type of high-resolution restriction enzyme map provides a useful scaffold for aligning and verifying the maps predicted by standard shotgun-sequencing procedures.

Optical mapping of D. radiodurans, which is providing insight into this organism's biology with a picture of the entire genome's basic organization, also may help scientists understand aspects of the microbe's radiation-resistant nature.

Genetic Enhancements
Cleanup of toxic sites created by improper disposal of nuclear wastes presents a massive global challenge requiring innovative remediation approaches. In Nature Biotechnology (Vol. 16, October 1998), DOE grantees Michael Daly and Kenneth Minton (Uniformed Services University for the Health Sciences in Bethesda, Maryland) described a first step toward enhancing the D. radiodurans genome to make it valuable for toxic-site cleanup. The work also was featured in a four-page "Conan the Bacterium" article in the July-August, 1998, issue of The Sciences, the magazine of the New York Academy of Sciences.

In the Nature Biotechnology article, Daly and Minton reported sucessfully altering the microbe's genome. This was accomplished by first fusing a gene encoding toluene dioxygenase (an enzyme that degrades the organic contaminant toluene) to a D. radiodurans promoter (a site that activates the gene). This DNA was then inserted into one of the bacterium's chromosomes. The resulting recombinant bacterium is capable of degrading toluene and other organic compounds in a high-radiation environment. It also is tolerant of toluene and trichloroethylene's solvent effects at levels exceeding those of many radioactive waste sites. [Denise Casey, HGMIS]


The electronic form of the newsletter may be cited in the following style:
Human Genome Program, U.S. Department of Energy, Human Genome News (v10n1-2).

Return to Top of Page

Acronym List

Send the url of this page to a friend


Last modified: Wednesday, October 29, 2003

Home * Contacts * Disclaimer

Base URL: www.ornl.gov/hgmis

Office of Science Site sponsored by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research, Human Genome Program