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Abstract

A novel, reusable, Vertical-Takeoff-and-
Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit
(VTOL/SSTO) launch system concept, named
AUGMENT-SSTO, is presented in this paper to help
quantify the advantages of employing gelled and
hybrid propellant propulsion system options for such
applications.  The launch vehicle system concept
considered uses a highly coupled, main high
performance liquid oxygen/liquid hydrogen
(LO2/LH2) propulsion system, that is used only for
launch, while a gelled or hybrid propellant propulsion
system auxiliary propulsion system is used during
final orbit insertion, major orbit maneuvering, and
landing propulsive burn phases of flight.  Using a
gelled or hybrid propellant propulsion system for
major orbit maneuver burns and landing has many
advantages over conventional VTOL/SSTO concepts
that use LO2/LH2 propulsion system(s) burns for all
phases of flight.  The applicability of three gelled
propellant systems, O2/H2/Al, O2/RP-1/Al, and
NTO/MMH/Al, and a state-of-the-art (SOA) hybrid
propulsion system are examined in this study.
Additionally, this paper addresses the applicability of
a high performance gelled O2/H2 propulsion system
to perform the primary, as well as the auxiliary
propulsion system functions of the vehicle.

I.  Introduction

Almost all U.S. launch systems, except for the
Space Shuttle, are descendants of first generation
intercontinental ballistic missiles of the early 1960's.
__________________________________________

*   President and Chief Engineer; Senior Member
     AIAA
** Program Manager; Associate Fellow AIAA
+   Senior Engineer, Member AIAA

They are costly and require weeks and even months
of preparation for launch, and have little resilience to
major subsystem operational failures.  All of the
modifications and upgrades incorporated since then
are not able to overcome their limitations.  None have
an engine-out capability; that is, any engine failure
occurring any time other than just before reaching
orbit, even if not directly destructive, will cause loss
of the payload, or place it in an unsuitable and
probably useless orbit.  All are expendable, except for
the Space Shuttle, requiring not only replacement of
all of the flight hardware and software for every
mission, but also preventing any evolutionary
improvement in reliability. Launch systems are
unlike an aircraft, that can return and land with a bad
engine, or faulty navigation system, and have a
replacement installed.  Additionally, all these launch
systems require lengthy, labor-intensive, complex
preparations for flight, involving many highly skilled
workers, as well as needing extensive Ground
Support Equipment (GSE).  The limited margin
associated with the Space Shuttle design requires that
lengthy, pre-flight preparations be followed for each
flight to ensure safe operation of the system.   Present
day launch systems require special efforts to
accommodate all but the simplest payloads, and
lengthy testing and checkout to assure proper cargo
integration.  This is in contrast to an air transport
where operational availability and efficiency is
inherently supported in its design.

Examining the air transport example can teach us
what are the important characteristics of a truly
economical space launch system.  A launch vehicle
should have an engine out survival capability with
mission completion or safe return to the ground
possible from anywhere in its flight trajectory, from
launch to landing.  It should be fully reusable, with
turnaround between missions requiring a minimum of
routine hardware and software servicing and
checkout, followed by cargo loading, rapid refueling,
crew checks (if manned) and launch.  Such a system
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will achieve cost reductions as a consequence of the
absence of most of the procedures which are costly in
our present launch systems, including the Space
Shuttle.  It must also be equipped with a generic
cargo hold with standard hold down fixtures, and
have fully characterized launch and recovery
environments published for users.  The cargo will
have to be designed and built to accept these
environments, thereby obviating the need for any
special analysis or provisions to allow it to fly on the
launch vehicle.  The preparations should not be
anymore extensive than such preparations used for an
air transport freighter.  A VTOL/SSTO launch
vehicle offers the possibility of having all of the
characteristics described above.  By its nature, such a
system does not throw anything away, requires no
elaborate prelaunch system integration, can be
designed to require a small launch crew (if required),
and have no gantry.  It should also have the capability
to be launched out of minimal inland launch facilities
and be recovered at almost any large air field, such as
a military air base.

VTOL/SSTO launch systems have been under
study for many years.  Past VTOL/SSTO concepts
studied include the German MBB BETA vehicle,
General Dynamic's NEXUS, the Boeing Big Orion,
and the Douglas Pegasus, Romulus and Hyperion
vehicles.1 Current activities in this area include the
recent DC-X (also known as Delta Clipper, Clipper
Graham or DC-XA) flight demonstration program
and the current X-33 program, as well as advanced
launch vehicle technology demonstration programs
under NASA and/or Air Force sponsorship.2,3 Past
studies characterized promising VTOL/SSTO vehicle
concepts, which were all highly sensitive to
propulsion performance and dry weight.
Additionally, these vehicle concepts required designs
that where highly integrated, when compared to
present day launch systems that presented numerous
engineering challenges.  Recent technical
advancements arising out of the National AeroSpace
Plane (NASP), Air Force, Strategic Defense Initiative
(SDI) and Ballistic Missile Defense Organization
(BMDO) programs developments, the Advanced
Launch System (ALS), the Space Shuttle and
experimental aircraft programs such as the X-29 have
addressed these technical issues and opened new
opportunities.3,4 Application of this technology base
makes a low cost, responsive, reliable VTOL/SSTO
launch vehicle a more viable option.

A preliminary design assessment study was
undertaken recently to investigate a novel, fully-

reusable VTOL/SSTO launch vehicle design and
system approach with the potential to reduce payload
to orbit costs, increase responsiveness through short
turnaround time, and be economical to develop.5

This vehicle design concept combined the use of a
highly coupled, high performance LO2/LH2 main
propulsion system with a hybrid system for auxiliary
propulsion. SOA hybrid propulsion system
technology was considered in this assessment.5 In
addition, high temperature, high strength-to-weight
materials and thermal management techniques from
the NASP program, and where possible, lightweight,
highly robust, miniaturized subsystem technologies,
such as for guidance, sensor, power, and computer
subsystems, that were examined in past and present
SDI/BMDO programs, were used in the design
concept.  It should be noted that this launch vehicle
concept was originally conceived by Mr. William
Haynes, and the authors wish to acknowledge him.6

This launch system, named HYbrid Propulsion-
Single-Stage-to-Orbit (HYP-SSTO), successfully
addressed many of the propulsion performance,
structural weight, and design integration issues,
typical of such systems, in a much different way than
they have been considered in past and present design
approaches.7

The work reported in this paper expands on the
past HYP-SSTO concept assessment work.7 This
work reassessed the applicability of employing a
SOA hybrid propulsion as a VTOL/SSTO
augmentation (or auxiliary) propulsion system (APS).
Additionally, much of this study effort also focused
on assessing the feasibility of candidate O2/H2/Al,
O2/RP-1/Al, and NTO/MMH/Al gelled propellant
propulsion systems to perform the VTOL/SSTO APS
function.  This new VTOL/SSTO system concept,
which can include a hybrid or gelled propellant APS,
is named AUGMENTed- propulsion-Single-Stage-to-
Orbit, AUGMENT-SSTO.  Gelled propellant
propulsion systems exhibit many of the system design
and operational integration features that are typical of
a hybrid-propellant VTOL/SSTO APS, while
operating at a higher specific impulse (Isp).  Thus, a
gelled VTOL/SSTO APS has the potential to display
payload vehicle system performance approaching that
characteristic of classic VTOL/SSTO launch systems
which use SOA LO2/LH2 propulsion systems to
perform all the required major propulsion firing
functions.  Because gelled and hybrid propellant
propulsion systems are inert by their nature, such
launch system concepts also have the potential to
support short turnaround times between launches and
reduce (or provide a competitive) overall system life-
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cycle cost.  This work also examined the applicability
of a high performance gelled O2/H2/Al propulsion
system to perform the main propulsion system (MPS)
function, as well as the auxiliary propulsion system
functions of the vehicle.  In addition to considering
performance issues associated with a VTOL/SSTO
that uses a gelled O2/H2/Al propulsion system for all
of its propulsion functions, using such a system has
the potential to address many of the propellant/tank
management issues that are inherit with classic
VTOL/SSTO launch systems (acquiring propellant in
the large LO2 and LH2 propellant tanks during all
phases of flight and the typical dry weight penalty,
and design complexity to meet such a vehicle
requirement, demanding vehicle control requirements,
and boil-off).  Gelled O2/H2/Al and NTO/MMH/Al,
upper stage based systems are also examined in this
work and compared in terms of payload performance
to a SOA O2/H2 upper stage system to provide the
demanding payload orbit insertion function for
typical VTOL/SSTO type launch vehicles.  High-
performance gelled propellant upper stage systems
have the potential to provide many ground processing
and system safety advantages, with improved or equal
payload performance, over current SOA upper stage
options.

The following discussion first provides insight
into the technology status of gelled propulsion and its
potential to support future SSTO applications, and
then summarizes the AUGMENT-SSTO launch
system operational concept,.  A top-level description
of the AUGMENT-SSTO launch vehicle designs
considered are then given, and highlights of their key
attributes (novel features) are provided, Payload
performance of these systems are also discussed in
detail.  Additionally, this discussion also addresses
the gelled propellant upper stage design assessment
analysis and its corresponding payload performance
results.  Major design and operational attributes
associated with these systems are identified
throughout the paper.

II.  Gelled Propellant Propulsion Technology
Status

Gelled rocket propellants have been considered
for many different applications.8-26 While operational
usage has not yet come to fruition, there are many
technology programs that are underway to eliminate
the unknowns with gelled propellants and the
propulsion systems that will use them. Numerous
studies have shown the potential benefits of gelled
fuels and oxidizers.  Technology programs to prove

the combustion performance of gelled propellants
have been conducted most recently by the U.S. Army
Missile Command, with their industry and university
partners, for tactical missile applications.  The NASA
Lewis Research Center and its partners have
investigated O2/H2/Al and O2/RP-1/Al for NASA
missions and conducted experimental programs to
validate elements of the combustion and fuel
technology.  Gelled and metallized gelled hydrogen
and RP-1 have been emphasized because hydrogen
and RP-1 are typical propellants for NASA launch
vehicles and upper stages.  Derivatives of these
propellants are therefore preferred to minimize the
incremental risk for a newly introduced propulsion
concept.

The benefits of gelled hydrogen and other
propellants have been known for many years and
experimentally proven in the past.8-12,27-32 For gelled
hydrogen there are five major benefits: safety
increases, boil-off reductions, density increases with
the attendant area and volume related mass reductions
for related subsystems (thermal protection system,
structure, insulation, etc.), slosh reductions, and Isp
increases in some cases.

Safety can be significantly increased with gelled
fuels.  A higher viscosity reduces the spill radius of
the gelled hydrogen and limits the potential damage
and hazard from a fuel spill.  Another important
advantage is the potential for leak reduction or
elimination.  The leak paths from the feed systems
would be minimized and the possible explosion
potential would be reduced.

Boil-off reduction is another feature of gelled
hydrogen.  The boil-off reductions are up to a factor
of 2 to 3 over ungelled liquid hydrogen.8,11,12 This
feature will assist in long term storage of hydrogen
for upper stages that must sustain on-orbit storage or
long coast times.  Additionally, lunar flight and
interplanetary missions with large hydrogen fuel
loads will derive a benefit.

Significant density increases are possible with
gelled hydrogen. A 10% density increase is possible
with 10% added ethane or methane.  These gellants
are introduced into the hydrogen as frozen particles
that form a gel structure in the hydrogen.11,12

Specific analyses of the performance gains for
various missions are dependent on the vehicle and
mission design.18, 19, 33 Systems analyses performed
for higher density hydrogen vehicles have shown that
the reductions of the gross lift off weight (GLOW) for
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increased density hydrogen are very significant.  In
cases where another high density hydrogen, slush
hydrogen was used, the density increased by 16%, the
GLOW was reduced by 10.2%, or 102,000 lbm.25,26

For airbreathing vehicles, such as the NASP the
estimated reduction in GLOW for slush hydrogen was
from 20 to 50%.  Thus, a gelled hydrogen with a 10%
density increase may deliver a significant fraction of
these GLOW reductions and other subsystem mass
savings.25, 26

The Isp of a gelled hydrogen powered vehicle
may also increase over a liquid hydrogen powered
vehicle, in some cases.  Figure 1 shows the Isp
variations for gelled hydrogen over an methane
(CH4) percentage range of 0% to 70%.  This range
was selected to cover the typical values of added
gellant percentages investigated in past experimental
work. In addition, these gellant percentages many
offer attractive density increases for future vehicles.
Table 1 provides the mixture ratios for the different
methane loadings.  Oxygen is the oxidizer, the
expansion ratio is 40:1 and the chamber pressure is
2250 psia.  A 94% Isp efficiency is used to compute
the delivered Isp.  The maximum Isp occurs at a 5%
CH4 loading and this performance level is 4 seconds
higher than ungelled O2/H2.

For rocket and/or airbreathing propulsion, the
largest volume of the vehicle is the hydrogen tank.
Therefore, the volume reductions enabled by gelled
hydrogen may be significant and this effect cascades
into other subsystems for significant further mass and
volume reductions.  The subsystems that are affected
are the aerodynamic thermal protection systems,
cryogenic insulation, structural masses, and all of the
other subsystems influenced by the hydrogen fuel
tankage.  A higher viscosity for the gel will also
reduce the slosh modes in a propellant tank.  Slosh
baffle size and mass reductions are therefore possible
by using gelled propellants. These masses can be
very significant for a launch vehicle application.

Another option with gelled propellants is adding
metal particles.  Metallized gelled propellants may
have modestly higher specific impulses (Isp increases
of 5 to 6 lbf-s/lbm for O2/H2/Al system, 60 wt % Al
in the H2/Al fuel) compared to nonmetallized
hydrogen fuels.  For proposed NASA Mars evolution
and expedition missions, it has been estimated that
metallized gelled O2/H2/Al propellants can result in a
20 to 33% improvement in surface payload delivery
capability.18 More importantly for O2/RP-1/Al and
NTO/MMH/Al propellants, adding metal can deliver
considerably higher propellant density, depending on

the application.  Hence, both the tankage mass as well
as the overall propulsion system dry mass can be
substantially reduced.  The propellant density
increases and their attendant Isp changes with the
aluminum additives allow a payload increase of 14 to
35% by replacing the Space Shuttle Solid Rocket
Booster with a Liquid Rocket Booster using O2/RP-
1/Al and NTO/MMH/Al, respectively.19

In summary, the gelled propellant combinations,
with their solid technology base, and the operational
attributes associated with them, make them an
attractive option to consider in any future SSTO
launch system where operational cost and robust
operations are critical system requirements.

Many of these attributes associated with gelled
propellant propulsion systems are also true for hybrid
propellant propulsions. Discussion associated with
these attributes and the supporting technology base
associated with hybrid propulsion systems is provided
in the past HYP-SSTO concept study work.7

III.  Launch System and Vehicle Description

The AUGMENT-SSTO launch system concept is
portrayed in Figure 2, while Table 2 summarizes
vehicle propulsion subsystem usage by mission phase.
The initial launch phase requires a main propulsion
LO2/LH2 burn to achieve a parking orbit.  The gelled
propellant or hybrid auxiliary propulsion system
(APS) is then used during the final orbit insertion
phase of flight.  Once the proper orbital velocity and
inclination is achieved, the vehicle then configures
itself for payload delivery or retrieval.  Major orbit
maneuvering burns are performed with the APS.  The
APS is also used to perform the deorbit burn.  On
reentry, aerobraking (through nose forward reentry
maneuvering) is the primary deceleration mode.
During the terminal landing phase of flight, the APS
is fired to steer the vehicle to a gentle landing on the
pad.  When the terminal launch phase is initiated, the
extendible communications boom is deployed.  The
vehicle receives Global Positioning System (GPS)
position updates and highly accurate rate information.
Additionally, the position beacon transmitter, laser
ranger, and television camera are activated.  The
highly accurate landing position concept is used to
guide the vehicle with minimum hover time.  After
landing and completion of initial safing operations,
the system's health monitoring data is retrieved and
critical components are inspected.  This is followed
by on-pad maintenance and refurbishment as
required.  A minimum of launch base assets,
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personnel and equipment, are required to support this
launch system concept.

A representative AUGMENT-SSTO vehicle
concept is shown in Figure 3.  Table 3 highlights the
design, technology, and operational features
associated with this design concept.  To determine
dry mass of a particular AUGMENT-SSTO launch
vehicle concept and its major subsystems, weight
scaling relationships for many of the vehicle’s major
subsystems where derived from the baseline HYP-
SSTO vehicle concept that was previously assessed.7

Table 4 displays the dry weight scaling relationships,
as well as their supporting assumptions and
limitations.  It should be noted that the HYP-SSTO
based vehicle subsystem dry weight scaling
relationships used in the evaluation of the
AUGMENT-SSTO concept are based on “first-
principle” engineering knowledge and propulsion
system design experience.  Though some uncertainty
in these weight estimates may be present, these
uncertainties are considered well within the that
shown in similar preliminary SSTO launch vehicle
studies done in the past.  To address uncertainties
pertaining to estimating the dry weight of a particular
launch vehicle concept design contingency margins of
10, 20 and 30% were examined in the assessment.
Unless otherwise noted, the 20% design contingency
margin is considered as the nominal value in the
discussion of a particular launch vehicle concept’s
dry weight.

The major exception to the HYP-SSTO based
dry mass scaling relationships are those pertaining to
the liquid and gelled O2/H2, NTO/MMH, and
O2/RP-1 APSs.  In determining the dry mass of these
launch vehicle APSs, the following general mass-
scaling equation was used:

Mdry = A + (B • Mp),                       (1)

where A and B are scale parameter coefficients, and
Mp and Mdry are the propulsion system propellant
and dry mass in kilograms, respectively.  Table 4 list
the propulsion mass-scaling parameters for all of the
APS systems examined.  These parameters include all
of the masses that are required to store and deliver
propellants to the main engines.  They include
tankage, engines, feed system, thermal control, and
structure.  Residuals and contingency factors are not
included in these relations, but are incorporated into
the design analysis after the zero contingency dry and
propellant system weights are determined.  Also
included is the weight relationships are the interface

and component aerodynamic structure of the APS,
and other intertank structures, as needed.  It is
assumed that power and other support systems are
provided by the corresponding primary AUGMENT-
SSTO vehicle systems.  These mass scaling
parameters were derived from the results of past
studies and the results of propellant tank mass
estimation codes.  The parameter A of the scaling
equations (see Equation 1 and Table 4) varies due to
the different engine and propulsion system
configuration layout, and subsystem masses of the
differing APS options considered in the study.  The B
parameter is dependent upon the propellant mixture
ratios, the gelled propellant metal loading and hence
the propellant density. The specific mixture ratios and
the metal loadings that were baselined are listed in
Table 5.19,33 Engine performance considerations are
discussed in detail in Appendix A.

All of the tankage configurations considered in
the study were based on the ability to package the
boosters within a current launch vehicle's length and
diameter constraints. Typically, the main tankage is
cylindrical with ellipsoidal dome ends.  The smaller
tankage for the pressurization systems was spherical.

The propellant tankage for all of the pump-fed
systems is designed for a 50-psia maximal operating
pressure. The propellant is stored at 30 psia. All of
the tankage for O2, H2 and RP-1 is composed of
aluminum alloy (2219-T87).  APS tanks for the NTO
and MMH propellants are made of titanium (Ti-6Al-
4V).  The flange factor and safety factor are 1.4 and
2.0, respectively, for the propellant tanks. The safety
factor is based on the tank material ultimate stress.  It
is assumed that the APS will have propellant ground
support up until liftoff, no large allowance was made
for propellant losses due to ground hold boil-off.

Each cryogenic O2/H2 propulsion system uses
autogenous pressurization.  The O2/RP-1/Al and
NTO/MMH system used regulated pressurization.
The pressurant is assumed to be  helium.  In the
pressurant tank, the maximal operating pressure is
3722 psia. The storage pressure is 3444 psia.  The
flange factor and safety factor for the pressurant tanks
are 1.1 and 2.0, respectively.  For the autogenous
systems, a small helium pressurization system is
included.  It can pressurize one-tenth of the total
propellant tank volume. For thermal control, the
cryogenic propellants (O2 and H2) use a high-
performance multilayer insulation. The storable
propellants only require a lower-performance
multilayer insulation.
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Two launch/orbit profiles were considered for
the AUGMENT-SSTO vehicle performance
assessment: 1. a 100 nautical mile, circular, 28.5O

east-west (E-W), low Earth orbit (LEO), which was
launched from Cape Canaveral, FL; and, 2. a 100
nautical mile, circular, 90.0O north-south (N-S), polar
LEO which was launched from Vandenberg Air Force
Base, CA.  For both ascent trajectory profiles
considered, the launch vehicle first is launched into
an appropriate 50 x 100 nautical mile elliptic parking
orbit using a MPS burn, see Figure 2 and Table 2.
The AUGMENT-SSTO’s APS is then used to place it
into it’s circular, 100 nautical orbit.  A typical
AUGMENT-SSTO reentry profile assumes a nose
forward aerodynamic flight reentry profile where the
vehicle is rotated to an aft-end forward position at
approximately 35,000 feet.  The vehicle has over a 10
second loiter capability to assist in landing.  Table 6
summarizes the flight profile delta-velocity (∆V)
energy required for both E-W and polar vehicle flight
profiles considered.  Vehicle GLOWs assumed in the
assessment, as a function MPS and orbit type, are
shown in Table 7.

System ascent performance was estimated by
performing POST  (Program to Optimize Simulated
Trajectories) analyses of boost trajectories.  The
POST model resulted in a "first-order" estimate of
system performance.  Trajectory pitch rates were
optimized to place maximum weight  into a 50 x 100
nm parking orbit.  Launches from Cape Canaveral,
FL (east) and Vandenberg Air Force Base, CA (polar)
were simulated, as previously mentioned.  In Figure
4, altitude and Mach number are shown for a typical
launch profile.  Time to achieve orbit is about 5.5
minutes.  Vehicle weight and thrust histories are
shown in Figure 5.  Note that the rocket engines are
throttled beginning about 110 seconds after launch
due to a 3g constraint imposed during boost.  A
number of POST cases were run for different
propellant combinations and different launch sites.
These results were used as a basis for the vehicle
sizing studies.

The propellant mass for each of the other flight
profile regimes listed in Table 3 were estimated by
evaluating the ideal rocket equation.34 By knowing
the initial mass (mi) of the vehicle at each flight
regime, the vehicle’s final mass (mf) can be estimated
by

m m EXP V g Ispf i c= •( ( ))∆ .             (2)

In the AUGMENT-SSTO analysis, the appropriate
propulsion systems Isp is adjusted accordingly by:

Isp Ispback pressure vacuum= •−η .         (3)

to account for atmospheric back pressure variations
for each flight regimes.  The Isp back-pressure
adjustment factor’s (ηback-pressure) assumed in the
assessment are shown in Table 8.  The propellant
mass used for each flight regime is then determined
by:

Mp = mi - mf.                                    (4)

The total propellant mass required for each
AUGMENT-SSTO design concept considered by is
found by summing the propellant mass need to
perform each flight profile function.  It should also be
noted that a 1% propellant residual weight was
included in determining propellant mass
requirements. Subtracting the vehicle’s total dry and
propellant masses from it’s initial GLOW defines the
payload weight into orbit.

IV.  Upper Stage System Description

Advanced, high-performance liquid and gelled
O2/H2 and NTO/MMH propellant upper stage
system options were also examined in this study.
High specific impulse upper stage systems are a
critical element in any SSTO launch vehicle concept
because these systems can help off-set payload
performance limitations, which are typical of such
launch systems. These upper stage options
considered were examined in a past study.33 Upper
stage dry scaling relationships and major design
assumptions are summarized in Table 9.

The upper stage mass scaling parameters were
derived from past study results and analyses using
propellant tank mass estimation codes.  Like the
launch vehicle APS dry weight scaling relationships
(see Equation 1), the parameter A of the scaling
equations varies due to the different engine and
subsystem masses of the differing propulsion system
types and upper stage designs.  The B parameter is
dependent upon the propellant mixture ratios, the
propellant metal loading and hence the propellant
density.  The specific mixture ratios for the upper
stage propulsion system options considered, and their
metal loadings are listed in Table 10.  The metallized
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gelled O2/H2/Al upper stage mass scaling equation
also used the most of the same design assumptions as
that for the O2/H2/Al MPS.  One major difference is
that a small helium pressurant system is added to the
upper stage system design.  This design difference is
representative of the using autogenous pressurization
with the larger propellant load and larger volume of
the O2/H2 MPS and APS versus the non-autogenous
pressurization used in the non-cryogenic upper stage
designs.

All of the tankage configurations considered in
the study were based on the ability to package the
upper stage within a reasonable VTOL/SSTO launch
vehicle's length and diameter constraints.  Most of the
upper stage tankage was spherical, except for the H2
and H2/Al tanks, which were cylindrical with
ellipsoidal dome ends.  The pressurization systems
also used spherical tankage.

The propellant tankage for the high-pressure
pump-fed systems are designed for a 50-psia maximal
operating pressure.  The propellant is stored at 30
psia.  All of the tankage for O2 and H2 are composed
of aluminum alloy (2219-T87).  The upper stage
tanks for NTO and MMH are made of titanium (Ti-
6Al-4V). The flange factor and safety factor are 1.4
and 2.0, respectively, for the propellant tanks.  The
safety factor is based on the tank material ultimate
stress. Because the stages have propellant ground
support up until liftoff, no large allowance was made
for propellant losses due to ground boil-off in the
analysis.  Each cryogenic O2/H2 propulsion system
uses autogenous pressurization.  The NTO/MMH
system used regulated pressurization, with helium as
the pressurant.  In the pressurant tank, the maximum
operating pressure is 3722 psia.  The storage pressure
is 3444 psia.  The flange factor and safety factor for
the pressurant tanks are 1.1 and 2.0, respectively.  For
the autogenous systems, a small helium pressurization
system is included.  It can pressurize one-tenth of the
total propellant tank volume.  For thermal control, the
cryogenic propellants (O2 and H2) assumes a high-
performance multilayer insulation, while the storable
propellants only use a lower-performance multilayer
insulation.  Upper stage engine performance is
addressed in detail in Appendix A.

In addition, much of the assessment methodology
applied to launch vehicle MPS and APS study were
applied to this comparison analysis.  To address
design weight estimate uncertainties, dry weight
design contingencies of 10, 20, and 30% were
examined, with the 20% case considered as nominal,
unless otherwise noted.  Additionally, a 1%

propellant residual mass was included and payload
performance was determined by applying the ideal
rocket equation, see Equation 3.

Upper stage options were considered that are
capable of providing Delta-V (∆V) values of 5000
and 22000 ft/sec.  Such ∆V values are currently of
interest to the military to conduct a number of space
operation missions that employ SSTO type systems.
These values represent requirements for a typical
‘pop-up’ launch option wherein the launch vehicle
deploys the upper stage (subsequent to vehicle main
engine cut-off (MECO) ) at a suborbital velocity.
The launch vehicle then makes an unpowered return
to earth and lands downrange of the launch site. The
upper stage would provide the additional 5000 ft/sec
to inject the payload into a LEO orbit.  A
Geosynchronous-Earth-Orbit (GEO) mission would
require a total of about 22000 ft/sec from the upper
stage.  The advantage of the ‘pop-up’ option is that
the payload to orbit is significantly greater than that
can be provided by current SSTO launch vehicle
system options.

V.  Launch System Results

Using the analysis methodology previously
discussed in Section III, a number AUGMENT-SSTO
concept approaches were quantified, as well as SOA,
conventional, LO2/LH2 and gelled O2/H2
VTOL/SSTO launch systems (no APS) for
comparison.  The launch vehicle masses that are put
into an E-W or polar initial parking orbit are given in
Table 11.  These mass estimates were determined
from the POST modeling analysis effort.  Applying
these results with ideal rocket equation to determine
propellant mass required to all the propulsive
maneuvers for the other phases of the flight and the
vehicle dry weight mass scaling equations the payload
performance of the launch vehicle is determined.
Table 12 through 17 show representative weight and
performance characteristics for representative launch
vehicles to perform E-W orbit missions, which are of
interest to this study.  Conventional LO2/LH2 and
gelled O2/H2 launch systems are shown in Tables 12
and 13, respectively, while representative
AUGMENT-SSTO design concepts are displayed in
Tables 14 through 17.  Additionally, polar orbit
launch vehicle design were characterized in similar
manner.

The results of the payload mass delivered to LEO
for the launch vehicle configurations considered are
presented in Table 18, as well as in Figures 6 and 7.
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Ten different options were analyzed, and these
combinations are listed in the figures.  Figure 6 shows
the payloads in LEO for the easterly launches.  A
20% dry mass contingency for the MPS/APS
combinations is the nominal case presented.  The
baseline case was the O2/H2 MPS with no APS and
its payload delivered to LEO was 18,051 lbm, while
the gelled O2/H2 MPS case (no APS) had a 17,762
lbm capability.  These are the two highest payload
cases of all of the options considered.

The second highest payload cases were the
O2/H2 MPS and gelled O2/H2 MPS/APS
combinations. Both options used a gelled O2/H2
APS.  Their payload performances were 15,326 and
15,021 lbm, respectively.  Though the use of the APS
does reduce the payload performance by over 2,000
lbm, the use of the APS will place lower requirements
on the throttling of the MPS engines, as well as the
propellant acquisition of liquid or gelled cryogens for
long orbital stays. The other 6 combinations all have
similar payload performance, in the 12,000 lbm
range.  The best of these are the baseline O2/H2
MPS, with the O2/RP-1/Al APS, delivering a payload
of 12,433 lbm.

Figure 7 compares the payload capabilities for
the ten polar launch options. The trends seen in the
easterly launch payloads are followed by the polar
flights.  The highest payload cases are the MPS
options (no APS), with a payload of 10,607 lbm.  As
with the easterly launches, the O2/H2  MPS/APS and
the gelled O2/H2 MPS/APS are the second highest
payload capacity options.

The dry mass contingency assumptions can be
very important to the success of the SSTO vehicle.
The mass contingency is a percentage of the dry mass
of the vehicle that is added over and above the dry
mass resulting from designs analyses and estimates.
The 20% contingency was considered the nominal
value for this study.  This assumption is reasonable
based on the complexity of the preliminary design of
the overall vehicle and the maturity of the
technologies considered for use.  Vehicles with flight
hardware mass estimates are typically afforded a 1-
5% mass contingency, detailed designs are given a
10% contingency, and preliminary designs, with some
detailed analysis are allowed a larger 20%
contingency.  Other less complete designs with little
or no detailed analyses would be considered
acceptable with a 30 to 50% contingency.

Figure 8 and 9 show a range of contingency from
10 to 30%. In the easterly and polar launches, the

contingency has a powerful effect.  The all of the
vehicles lose over 9,000 lbm of payload going from a
10 to a 30% contingency.  This is particularly critical
for the polar launches, as with many of the options,
the payload mass drops to a very low value.  With the
polar launches, at a 30% contingency, only the 4
highest payload performance MPS/APS combinations
have a positive payload mass in LEO.  The vehicles
using other MPS/APS technologies with 30%
contingency have essentially no payload.

By using a gelled or hybrid propulsion system for
major orbit maneuver burns and landing, this launch
system concept has many advantages over
conventional VTOL/SSTO concepts that use
LO2/LH2 propulsion system(s) burns for all major
phases of flight.  One advantage is that vehicle
insulation requirements can be relaxed, since little or
no hydrogen boil-off is present after lift-off, thus
reducing the tank structural mass (on-orbit cryogenic
propellant storage is eliminated) for the gelled or
hybrid APS options.  For the hybrid APS it will
consume oxygen from the same tank which feeds the
main propulsion system, but will require separate
turbopumps. These pumps will be much smaller than
those required for the main propulsion system, and
will constitute an added fallback propulsion source in
the event of main engine failure.  This is also true for
the liquid/gelled APS options which are envisioned to
an independent propulsion feed system.  The reduced
thrust of the vehicle’s APS will still provide adequate
thrust-to-weight (after jettison of the hydrogen fuel
and part of the oxygen) to enable a safe abort from
any altitude.  An abort would only be necessary if
more than one hydrogen/oxygen engine failure
occurred before the critical mass of propellants had
been consumed.  Thus, there will be a sequence of
flight envelope intervals as main propulsion system
propellants are consumed, where more and more main
engine subsystems (engine modules) can be shut
down without compromising a safe abort.  Finally,
there will be a time after which a safe abort is
possible using the hybrid APS alone, even with total
shutdown of the main propulsion system.  Of course,
after the vehicle is at orbital altitude, the APS is more
than adequate to provide full thrust for all subsequent
operations, including deorbit and vertical landing.

Preliminary analysis has shown that even with
the lower specific impulse associated with a hybrid
propulsion, when compared to a that of a typical
LO2/LH2 propulsion system, the vehicle's propellant
mass fraction can be comparable to conventional
VTOL/SSTO launch system concepts. This is also
true if a higher performance gelled O2/H2 APS is

8NASA/TM—1998-206306



considered.  Additionally, by employing an APS
propulsion system for major orbit maneuver and
landing propulsive burns, the major technical issue of
restarting large, dormant, LO2/LH2 propulsion
systems is avoided, as well as relaxing the throttling
demands of such a system.  Even for a conventional
type VTOL/SSTO launch vehicle design, using a
gelled O2/H2 MPS can provide comparable payload
performance to LO2/LH2, as well as address many of
the demanding propellant management issues
associated with such systems.

Another advantage of the AUGMENT-SSTO
hybrid APS concept, is if one only uses the vehicle's
hybrid propulsion system (no hydrogen onboard), the
vehicle can easily function as a suborbital
demonstration test bed and/or can also perform cross-
country ferry flights for launch repositioning at
various sites within the country.  The same can also
said for the AUGMENT-SSTO gelled APS concept if
preloaded/packaged gelled APSs are supplied to the
vehicle.  This capability greatly increases basing
flexibility and helps reduce system development risk
and cost.  Because gelled and hybrid propulsion
systems are relatively simple, and inert (and relatively
safe) by their nature, the AUGMENT-SSTO launch
system concept has the potential to support short
turnaround times between launch, be economical to
develop, and reduce (or offer a competitive) overall
system life-cycle cost.  Support personnel should be
able to freely work around the launch vehicle, while
new refurbished hybrid propellant grain motor
modules or preloaded /packaged gelled APSs are
inserted in the vehicle.

VI.  Upper Stage System Results

A series of analyses were completed to compare
the upper stage options when used with the different
MPS options.   Tables 19 and 20, as well as Figures
10 through 13 compare the payload in LEO for all 8
options of upper stages with the MPS/APS options,
with two different upper stage velocity changes being
delivered: 5,000 ft/s and 22,000 ft/s.  Easterly and
polar orbit launches were assessed. Figures 10 and
11 are for 5,000 ft/s velocity change stages, and
Figures 12 and 13 depict the stages delivering 22,000
ft/s. Within each figure, there are also two distinct
upper stage masses that were considered.  The stage
masses were 15,326 and 18, 051 lbm for the easterly
flights.  With the polar flights, the upper stage masses
were 7,970 lbm and 10,607 lbm.  In both the easterly
and polar launches, the lighter upper stage was used
with the AUGMENT-SSTO (MPS/APS combination)

launch vehicles, and the heavier upper stage was
combined with the conventional VTOL/SSTO (MPS
only options (no APS)).  The payloads masses
presented here were for the nominal 20% dry mass
contingency cases.

Figure 10 shows the results for the easterly
launches with all 8 MPS upper stages combinations.
The most attractive overall combination, with the
second highest delivered payload of 11,070 lbm, was
the O2/H2 MPS, with no APS, and O2/H2 upper
stage. Virtually the same performance is delivered by
the baseline O2/H2 MPS (no APS), with the gelled
O2/H2/Al upper stage (60-wt% Al).  The gelled
upper stage can deliver a payload of 11,127 lbm,
which is higher than the O2/H2 stage, but must
include the higher uncertainty of the metallized gelled
H2/Al performance.  The 60-wt% aluminum loading
in the H2/Al will experience some degree of two-
phase flow losses, and ultimately reduce the overall
predicted payload performance of the stage.  If these
performance losses can be minimized, then certainly,
the O2/H2/Al upper stage delivers a more attractive
higher payload performance.

One of the most interesting results from this
analysis was that the O2/H2 MPS /gelled
NTO/MMH/Al upper stage option has a comparable
performance to the O2/H2 MPS/APS - O2/H2 upper
stage options.  This may be a more complex system to
employ from an operational standpoint.  With the
gelled NTO/MMH/Al upper stages, the launch team
may have to deal with different fluids, and hence
increase the operational complexity.  This
complexity, however, will be significantly reduced if
the gelled upper stage were prepackaged, with little
or no processing conducted at the launch site.
Because the gelled NTO/MMH/Al stage uses storable
propellants, its integration into the launch vehicle
may be handled as with a solid rocket motor.
Additional sensors to detect storable propellant
leakage will be required, but the prepackaged stage
transfers the complexity of a storable upper stage
fueling and processing away from the launch site
crew, and enables nearly the same payload mass
performance as an all O2/H2 system.

Figure 11 illustrates the polar launch upper stage
results.  The overall trends and results for the polar
launches follows those of the easterly flights. Again,
with the conventional VTOL/SSTO launch vehicle
with an O2/H2 upper stage performs the best, with the
gelled O2/H2/Al stage option delivering essentially
the same payload.  The payloads were 6,226 lbm
(with the O2/H2 stage) and 6,259 lbm (for the gelled
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O2/H2/Al stage).  As with the easterly flights, the
baseline MPS (no APS) /gelled storable
NTO/MMH/Al upper stage option provided
comparable or higher payloads to LEO than the all
O2/H2 MPS/APS - upper stage vehicles.

Figure 12 and 13 provide the results for the
22,000 ft/s velocity change upper stages. In most
cases, the designs considered had very small or no
payload performance compared to the 5,000 ft/s
upper stages. In Figure 12, there were only four of
the eight cases that delivered any payload on the
easterly launch.  All other cases delivered  “negative”
payloads.  A negative or zero payload represents a
case where the vehicle design must be reassessed.  As
a vehicle cannot deliver a positive payload, these
results imply that the vehicle option is inappropriate
for the assigned mission profile.  A different staging
method, perhaps with two upper stages, might allow a
positive payload to be delivered, or a different higher
energy propulsion option might be considered for the
upper stage and/or the MPS/APS.

The Figure 12 results show that the positive
payloads were delivered with only the combinations
of O2/H2 MPS (with or without an APS) and O2/H2
or gelled O2/H2/Al upper stages.   The MPS/APS
combinations delivered between 374 and 440 lbm to
the easterly orbit.  The baseline MPS cases delivered
616 to 694 lbm.  The gelled O2/H2/Al upper stage
was in both cases able to deliver the highest payloads
of these ranges.  With the MPS/APS/upper stage
combination, the gelled O/H2/Al upper stage could
deliver 17.6% more payload than the O2/H2 upper
stage, and with the MPS/upper stage alone (no APS),
the gelled upper stage delivered 12.7% added
payload.

In Figure 13, the polar flight results for the
22,000 ft/s upper stages are presented. In all cases,
the payloads for these options were zero or negative,
requiring reassessment of these vehicle options for
this very high energy mission.

Figures 14 through 17, as well as Tables 19 and
20, present the influence of the dry mass contingency
on the mass payload in LEO.  The overall influence
of the dry mass contingency was small in the 5,000
ft/s upper stage cases, as shown in Figure 14.  Over
the range of 10 to 30% contingency, the payload
performance for the easterly launches dropped by
only 300 to 400 lbm.  The polar launch payload mass
reduction going from a 10% to a  30% contingency,
depicted in Figure 15, was in the range of 200 to 300
lbm.

With the data in Figures 16 and 17 for the 22,000
ft/s upper stages, the mass reduction for the easterly
launches have a sensitivity to the contingency of 500
to 600 lbm, and for the polar flights, the payload
reduction is 400 to 450 lbm.  Thus the options using
staging are much less sensitive to the dry mass
contingency than the SSTO MPS/APS options.
Additional staging studies would identify the “best”
options for using upper stages for conventional
VTOL/SSTO and AUGMENT-SSTO launch systems.

VII.  Concluding Remarks

A preliminary design study was performed that
examined the propulsion augmented, AUGMENT-
SSTO launch system.  Results from this study showed
that this concept has improved (or at least
competitive) payload performance when compared to
conventional VTOL/SSTO launch vehicle designs
currently under study.  Simplified operational
characteristics are enabled with the AUGMENT-
SSTO design, and may outweigh the potential
payload reductions for the MPS/APS-only cases.  On
the other hand, the concept has superior performance
to conventional VTOL/SSTO designs for cases when
the AUGMENT-SSTO vehicle designs carry a high
energy upper stage.

The performance of a VTOL/SSTO vehicle for
Earth-to-orbit payload delivery was analyzed.  Ten
options were considered for the MPS/APS
combinations alone and 8 options using upper stages
with the MPS/APS were reviewed.  Both polar and
easterly launches were assessed, and two different
upper stage velocity changes were investigated.
Using the O2/H2 MPS (no APS) combination (a
conventional VTOL/SSTO launch vehicle design), a
maximal payload mass of 18,051 lbm was achieved.
The gelled O2/H2 MPS (no APS), the payload
delivered was nearly the same at 17,762 lbm.  The
second highest performance options were those using
O2/H2 MPS/APS and the gelled O2/H2 MPS/APS
combinations, with payloads to LEO of over 15,000
lbm.  Both easterly and polar flights have similar
trends in the relative payload performance of the
different options.

All of the 5,000 ft/s upper stage options were
able to deliver significant easterly and polar payloads
with the current MPS/APS vehicle designs.  The
highest payload options were the baseline O2/H2
MPS with and O2/H2/Al upper stage (60-wt% Al,
with a payload of 11,127 lbm)) and the O2/H2 MPS,
with no APS, and O2/H2 upper stage (with a 11,070
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lbm payload).  Essentially the same performance is
delivered by the baseline O2/H2 MPS (no APS), with
the gelled O2/H2/Al upper stage (60-wt% Al).  The
gelled upper stage can deliver a higher payload than
the O2/H2 stage, but must include the higher
uncertainty of the metallized gelled H2/Al
performance.  The 60% aluminum loading in the
H2/Al will experience some degree of two-phase flow
losses, and ultimately reduce the overall predicted
payload performance of the stage. The 22,000 ft/s
upper stages had 4 of 8 easterly launch options where
payloads were able to reach LEO.  None of the
22,000 ft/s upper stage options were able to deliver
payloads to polar orbits. Using such a high energy
stage will require a redesign of the launch vehicle
system, with a higher gross lift-off weight, or higher
energy propellants.

The sensitivity of the payload performance to the
dry mass contingency was very strong with the launch
vehicle system cases.  The payload mass losses over a
10% to 30% contingency are 9,000 lbm for the
MPS/APS options alone, whereas the payload mass
loss for the upper stage cases was much less sensitive,
and was a value of only several hundred pounds over
the same 10% to 30% contingency.   Careful effort
must be made to assure the design is well defined and
that the mission planner can have control and
knowledge of the mass and its contingency.  Payload
performance will suffer greatly without this ability to
know and affect the vehicle mass.

Like its counterparts, from the analysis, the
AUGMENT-SSTO launch vehicle concept is also
sensitive to propulsion system performance and
vehicle structural (dry) weight, but it also exhibits
numerous favorable design and operational features
that are not typical of conventional VTOL/SSTO
launch vehicle designs that use LO2/LH2 propulsion
for all phases of flight.  One major advantage is that
vehicle insulation requirements can be relaxed,
because, in many cases, little or no hydrogen is
present after parking orbit velocity is achieved.
Reducing the insulation mass, can lead to reduced
propellant and tankage mass, and also consequently
reduce the structural mass of the vehicle.
Additionally, by employing independent gelled or
hybrid propulsion system for major orbit maneuver
and landing propulsive burns, the major technical
issue of restarting large, dormant LO2/LH2
propulsion systems is avoided.  Even for a
conventional type VTOL/SSTO launch vehicle
design, use of a gelled O2/H2 MPS has potential to
provide comparable payload performance, as well as
address many of the demanding propellant

management issues associated with such systems:
reduced boiloff, increased density, and reduced H2
slosh and reduced leakage.  Another advantage of this
concept is if one only uses the vehicle's APS, the
vehicle can function as a suborbital demonstration
test bed and/or perform cross-country ferry flights for
launch repositioning at various sites within the
country.  Because gelled and hybrid propulsion
systems are relatively simple and inert by their nature,
this concept has the potential to support short
turnaround times between launch, be economical to
develop, and reduce (or provide a competitive)
overall system life-cycle cost.

Like other VTOL/SSTO concepts, this concept
also has some unique technology/development issue
drivers that must be addressed, such as developing
and space qualifying a gelled or hybrid propulsion
system.  Technology/development challenges for this
concept are believed to be well within the realm of
difficulty being considered for conventional
VTOL/SSTO concepts.  Planned work in the future
on this VTOL/SSTO concept is to perform additional
engineering design assessment studies.  This study
showed that a gelled propellant APS exhibits many of
the design and operability features of that which is
typical of a hybrid system, and significantly improves
overall vehicle system performance.

The results from this initial feasibility study show
that the AUGMENT-SSTO concept has the potential
to meet future spacelift and that further study is
recommended.  The AUGMENT-SSTO concept
would make a logical fall back design approach if the
current SSTO launch system designs being pursued
are unable to meet their goals.
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APPENDIX A.  Metallized Gelled Propellant
Engine Performance

Using a computer simulation code42, the engine
performance of the metallized gelled propellant
combinations was estimated.  The propellants were
provided to the combustion chamber in the liquid
state and are pump fed.  The expansion ratio for the
O2/H2 and O2/H2/Al (0-wt% Al) MPS engines was
40:1 and was selected based on the Space
Transportation Main Engine design.  The engine
chamber pressure was 2,250 psia.  The other APS
designs used a 1000-psia chamber pressure and an
expansion ratio of 30:1.  The upper stage engines
were designed with an engine chamber pressure of
1,000 psia, and an expansion ratio of 500:1. The
chamber pressures and expansion ratios were selected
based upon the designs of the various engines under
consideration for future launch and Space Exploration
Initiative vehicles.

Table A-1 contrasts the predicted performance of
several propulsion systems with and without
metallized gelled fuel. The increases in Isp are
typically several seconds. An engine Isp efficiency
was used to modify the code-predicted Isp.  The Isp
efficiency is the ratio of the engine performance
shown in Table II and the code-predicted Isp. This
reduction reflects the losses incurred due to the
nozzle boundary layer, engine cycle inefficiencies
and other propulsion system losses.  The engine
efficiencies were derived using the performance
estimates from References 35 through 38 and
comparisons with the vacuum Isp predicted by the
engine code.  In this analysis, metallized gelled
propellants have the same engine efficiency as the
non-metallized systems. There are additional losses
that have not been included in this analysis that may
potentially penalize the metallized gelled propellant
cases, such as two-phase flow losses in the exhaust
and the nozzle boundary layer, and nozzle erosion.
Numerical modeling, propellant rheology
experiments and hot-fire engine testing have been

conducted to determine the potential engine
efficiency of metallized gelled propellants.14,16,17,20,35-

41 Without the predicted increases in Isp, the
advantages of these propellants are significantly
reduced.  Testing has shown that the traditional liquid
fuels and gelled fuels with small loadings of metal
additives perform with comparable Isp efficiencies.17

At high metal loadings, additional technology to
ensure complete metal combustion is needed, and
investigations are continuing in this area.

The mixture ratios and the metal loading for
these designs are given in Tables 5 and 10.  The
metal loading represents the fraction (by mass) of
aluminum in the total mass of the fuel. The mixture
ratio is defined as it is for traditional chemical
propulsion: the ratio of the total oxidizer mass to the
total fuel mass.  In selecting the "best" metallized
gelled system design, the propellant metal loading, its
effects on the engine Isp and the propulsion system
dry mass must be analyzed.  Some of the issues that
are important in determining the appropriate design

    Table A-1.  Traditional and Metallized Gelled
Engine Performance.

____________________________________________

Vehicle and              Isp (s) Isp Mixture
Propellant        (No Metal) (Metal) Eff. Ratio
____________________________________________

MPS Options -
O2/H2 439.2  -- 0.940 6.0
O2/H2/Al  -- 439.9 0.940 4.2

APS Options -
O2/RP-1 324.5  -- 0.920 2.7
O2/RP-1/Al  -- 317.3 0.920 1.1
NTO/MMH 307.7  -- 0.920 0.9
NTO/MMH/Al  -- 318.9 0.920 2.0
O2/H2 439.2  -- 0.940 6.0
O2/H2/Al  -- 439.9 0.940 1.6

Upper Stage Options -
NTO/MMH 321.2  -- 0.938 2.0
NTO/MMH/Al  -- 366.4 0.938 0.9
O2/H2 479.5  -- 0.984 6.0
O2/H2/Al  -- 485.4 0.984 1.6
____________________________________________

for a metallized propulsion system are the propellant
density, the performance and the system dry mass.  In
this preliminary analysis, the "best" design points
were selected based on the results of past gelled
propellant studies.19,33 A more detailed analyses may
reveal a better “best” design point.

Using the Al loadings considered in the engine
performance calculations, the propellant density for
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the RP-1 can increase from 773 kg/m3 to 1281 kg/m3

(55 % Al loading in the fuel). For H2 fuel, the density
can increase from 70 kg/m3 to 168.6 kg/m3 (H2 with a
60% Al loading). The density increase is computed
using:

Metallized gelled propellant density =
1 / ([1 - ML - GL]/ liquid propellant density

+ ML / metal density
+ GL / gellant density )

  (A-1)

where: ML is the metal loading (60-wt% Al = 0.60),
GL is the gellant loading (10-wt% CH4 = 0.10), with

the Al metal density equal to 2768 kg/m3, and the
methane (CH4) gellant density (solid CH4) is equal to
520 kg/m3.

In these preliminary analyses based on past
studies, gellants were not used in the density
calculations for MMH/Al, RP-1/Al or 60-wt% H2/Al.
Gellants were only considered in the 0-wt% H2/Al (or
gelled H2).

Table 1. Gelled H2/CH4 Mixture Ratios and Densities.

CH4 Loading Mixture Ratio Density

________________________________________________________

 0.0 6.0  70.00
 5.0 4.2  73.17
10.0 4.2  76.63
15.0 4.2  80.44
20.0 4.3  84.65
25.0 4.3  89.33
30.0 4.3  94.55
35.0 4.2 100.41
40.0 4.3 107.06
45.0 4.2 114.65
50.0 4.2 123.39
55.0 4.1 133.58
60.0 4.1 145.60
65.0 4.0 160.00
70.0 4.0 177.56

Table 2.  AUGMENT-SSTO Vehicle Propulsion Subsystem Usage by Mission Phase.

Mission
Phase

Propulsion
System

     Launch
        Orbit
 Circularization
       Burn(s)

       Major
     On-Orbit
    Maneuvers

    On-Orbit
   Adjustment
    Maneuvers

     Deorbit
     Burn(s)

     Reentry/
     Landing

LO2/LH2          P*          ---          ---          ---          ---          ---
Gelled or Hybrid       S, B/A**           P           P          B/A           P           P
Reaction Control         S         B/A          B/A            P           S           S
*   P = Primary Function; S = Support Function (if/as required); B/A = Backup/Abort Function (if required)
** Baseline concept approach does not use the APS during the launch phase of flight

(wt%) (kg/m3)

________________________________________________________
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Table 3.  Key Design, Technology and Operational Features Associated with the AUGMENT-SSTO Concept.

Design/Technology Features

• NASP Structures Technology (primary Structure/Tanks)
• NASP/SDI/BMDO High Heat-Flux Thermal Management/Materials Technology
• Modified RL-10 Engine System Technology

-  26 Engines Paired Into 13 Modules - Integrated Into an Aft-Base Spike Nozzle Configuration
-  Highly Integrated Propellant Management feed System Employed
-  Demonstrated Aerospike Propulsion Technology is Considered a Backup Technology

• Conservative Gelled-Propellant Technology Extrapolation(s) Incorporated for the Gelled APS Version
• Proven Hybrid Propulsion Technology Used for Hybrid APS Version

-   6 - 16,000 lbf Motors Located About the Aft-Base Region → Takes Advantage of Spike Nozzle
   Configuration
-  Demonstrated Restart/Stop Operation; Deep Throttling (20:1); Millisecond Response
-  Integrated LO2 Feed System with LO2/LH2 Propulsion Feed System

• SDI/BMDO Technology Derived High Performance Storable Reaction Control System Employed
• Uses SDI/BMDO Guidance, Navigation, Control, Power, Sensor, Communications Technology
• Supported by GPS
• Incorporates a Robust Health Management System
• Unpressurized Crew Compartment
• Modular Subsystem Designs/Interfaces
• Incorporates Modularized/Standardized Payload/Cargo Interfaces
-------------------------------------------------------------------------------------------------------------------------------------------

Operational Features

• Minimal Amount of Ground Facility Assets Required
-  Simple Launch/Landing Pad
-  Mobile Launch Control and Propellant Storage/Feed Stations

• On-Site APS Refurbishment Operation(s)
• On-Site Payload Integration/Checkout Operation(s)
• Incorporates an Efficient Maintenance Support Program/Operation
• Maximum Use of Parallel Processing Operations
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Table 4.  AUGMENT-SSTO Launch Vehicle Subsystem Dry Weight Scaling Relationships Summary.

SUBSYSTEM DRY WEIGHT SCALING
RELATIONSHIP@

COMMENT(S)/RATIONALE

Primary Vehicle Structure 0.03173689 x GLOW* [1], Likely good for vehicles with GLOWs ranging
from 500,000 to 1,500,000 lbm.

Heat Shield/Spike Nozzle
Structure

0.011553193 x GLOW [1], Likely good for vehicles with GLOWs ranging
from 500,000 to 1,500,000 lbm.

LO2/LH2 Main
Propulsion System

0.009444879 x GLOW x TW** [1], Stripped RL-10 engine type assembly with
highly integrated feed system (from past P&W
input).  Vehicle provides many subsystem
functions, Assumes Isp = 439.2 s (vac) at ε = 40:1.

Gelled O2/H2 Main
Propulsion System

(0.009444879 x GLOW x TW) x 1.05 Assumes gelled main propulsion assembly will
likely weigh 5 percent more than a conventional -
type O2/H2 main propulsion system; 0-wt% H2/O2,
or gelled H2 with CH4 gellant; Isp = 439.9 s (vac)
at ε = 40:1.

Hybrid Auxiliary
Propulsion System

0.20479663 x APSPW+ [1], Scaled from past AMROC input. Assumes Isp
= 315.0 s (vac).

Gelled O2/H2 Auxiliary
Propulsion System

700+(0.08408 x APSPW(kg)) Assumes 0-wt% O2/H2, or gelled H2 with CH4
gellant; Isp = 439.9 s (vac) at ε = 40:1.  Based on
past gelled propulsion analysis systems work.
Striped down auxiliary propulsion system assumed
(vehicle provides many subsystem functions).

NTO/MMH Auxiliary
Propulsion System

840+(0.0650 x APSPW(kg)) Assumes Isp = 307.7 s (vac) at ε = 30:1.  Based on
past propulsion analysis systems work.  Stripped
down auxiliary propulsion system assumed
(vehicle provides many subsystem functions).

Gelled NTO/MMH/Al
Auxiliary Propulsion
System

700+(0.05417 x APSPW(kg)) Assumes 40-wt% MMH/Al; Isp = 318.9 s (vac) at ε
= 30:1.  Based on past gelled propulsion analysis
systems work.  Stripped down auxiliary propulsion
system assumed (vehicle provides many
subsystem functions).

O2/RP-1 Auxiliary
Propulsion System

700+(0.06225 x APSPW(kg)) Assumes Isp = 324.5 s (vac) at ε = 30:1.  Based on
past propulsion analysis systems work.  Stripped
down auxiliary propulsion system assumed
(vehicle provides many subsystem functions).

Gelled O2/RP-1/Al
Auxiliary Propulsion

700+(0.05958 x APSPW(kg)) Assumes 55-wt% RP-1/Al; Isp = 317.3 s (vac) at ε
= 30:1.  Based on past gelled propulsion analysis
systems work.  Stripped down auxiliary propulsion
system assumed (vehicle provides many
subsystem functions).

Reaction Control System 0.001630805 x GLOW [1], Likely good for vehicles with GLOWs ranging
from 500,000 to 1,500,000 lbm.

Tank Servicing
Equipment

Constant - 300 lbm [1], Independent of vehicle size.

Thermal Control 0.002081759*GLOW [1], Likely good for vehicles with GLOWs ranging
from 500,000 to 1,500,000 lbm.

Avionics/Electric Power Constant - 500 lbm [1], Independent of vehicle size.
Crew Provisions (2 crew
members)

Constant - 1600 lbm [1], Independent of vehicle size.

Landing Struts 0.015443167 x VWIO++ [1], Likely good for vehicles with GLOWs ranging
from 500,000 to 1,500,000 lbm.

@   Weights expressed in lbm unless noted
*   GLOW = Vehicle Gross Liftoff Weight
**  TW = Vehicle Initial Liftoff Thrust-to-Weight
+    APSPW = Auxiliary Propulsion System Propellant Weight
++  VWIO = Vehicle Weight In Orbit
[1]  Past HYP-SSTO study work, AIAA Paper 96-28407

System
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Table 5.  MPS, APS Rocket Engine Metal Loadings and Mixture Ratio Options - Pump-Fed.

PROPELLANT
COMBINATION

METAL
LOADING

MIXTURE RATIO

(%) Gelled Traditional
O2/RP-1 -- -- 2.7

O2/RP-1/Al 55 1.1 --
NTO/MMH -- -- 2.0

NTO/MMH/Al 40 0.9 --
O2/H2 -- -- 6.0

Gelled O2/H2 0 (gelled H2) 4.2
O2/H2/Al 60 1.6 --

Table 6.  Flight Profile Delta-Velocity (∆V) Budget Summary.

Flight Profile Regime ∆V (ft/s) - 28 degree E-W Orbit ∆V (ft/s) - 90 degree N-S Orbit
Ascent Trajectory Burn 29,422/29,423* 30,732/30,730
Orbit Circularization Burn(s) 92 92
Initial Reentry Deorbit Burn 92 92
Major Reentry Deceleration Burn (High
Altitude)

155 155

Major Reentry Deceleration Burn (Low
Altitude)

372 372

Landing/Hover 514 514
* LO2/LH2 MPS/Gelled O2/H2 MPS

Table 7.  Launch Vehicle GLOW as a Function of Main Propulsion System and Orbit Type.

Main Propulsion System 28 degree E-W Orbit 90 degree N-S Orbit
LO2/LH2 722,452* 713,460
Gelled O2/H2 722,788 713.787
* in lbm

Table 8.  Propulsion System Performance Back-Pressure Influence Adjustment Factor (ηback-pressure)
Values as a Function of Flight Profile Regime.*

Flight Profile Regime ηback-pressure
Ascent Trajectory Burn Adjusted accordingly by POST analysis calculation

Orbit Circularization Burn(s) 1.000
Initial Reentry Deorbit Burn 1.000

Major Reentry Deceleration Burn (High Altitude) 0.889
Major Reentry Deceleration Burn (Low Altitude) 0.825

Landing/Hover 0.825
* Isp=ηback-pressure• Ispvacuum

--
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 Table 9.  Upper Stage Dry Weight Scaling Relationships and Design Assumptions Summary.*

SYSTEM DRY WEIGHT SCALING
RELATIONSHIP**

DESIGN ASSUMPTIONS

O2/H2 Upper Stage 373.8+(0.1576 x USPW+) High-pressure, pump-fed system;
Isp = 479.5 s (vac) at ε = 500:1.

Gelled O2/H2/Al Upper
Stage

373.8+(0.1584 x USPW) High-pressure, pump-fed system;
Isp = 485.4 s (vac) at ε = 500:1.

NTO/MMH Upper Stage 440.0+(0.1358 x USPW) High-pressure, pump-fed system;
Isp = 341.2 s (vac) at ε = 500:1.

Gelled NTO/MMH/Al
Upper Stage

440.0+(0.1345 x USPW) High-pressure, pump-fed system;
Isp = 366.4 s (vac) at ε = 500:1.

*   Based on Past Upper Stage Study Work33

**  Weights expressed in kg unless noted
+   USPW = Upper Stage System Propellant Weight

Table 10.  Upper Stage Rocket Engine Metal Loadings and Mixture Ratios - Pump-Fed.

PROPELLANT
COMBINATION

METAL
LOADING

MIXTURE RATIO

(%) Gelled Traditional
NTO/MMH -- -- 2.0

NTO/MMH/Al 50 0.9 2.0
O2/H2 -- -- 6.0

O2/H2/Al 60 1.6 --

Table 11.  Launch Vehicle Mass into the Initial Parking Orbit (50 x 100 nm) as a Function of
Main Propulsion System and Orbit Type.

Main Propulsion System 28 degree E-W Orbit 90 degree N-S Orbit
LO2/LH2 90,062* 81,070
Gelled O2/H2 90,399 81,397

* in lbm
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Table 12.  Conventional LO2/LH2 VTOL/SSTO Launch Vehicle Performance and Mass Estimate -
No APS/E-W Orbit Profile.

Launch to Parking Orbita

Lift-off Weight - GLOW (lbm)                                         722,452
Weight after Initial Ascent (lbm)                                       90,062
∆V (ft/sec)                                                                         29,442
Specific Impulse (s)                                                            439.2
Required Propellant (lbm)                                               632,390

Orbit Circularization Maneuverb

∆V (ft/sec)                                                                           92.0
Specific Impulse (s)                                                           439.2
Required Propellant (lbm)                                                  585.0

Initial Reentry Deorbit Maneuverb

∆V (ft/sec)                                                                           92.0
Specific Impulse (s)                                                           439.2
Required Propellant (lbm)                                                  580.7

Major Reentry Deceleration Maneuversb

∆V (ft/sec)                                                                         155.0
Specific Impulse (sec)                                                       391.0
Required Propellant (lbm)                                               1,088.7

∆V (ft/sec)                                                                         372.0
Specific Impulse (sec)                                                       363.0
Required Propellant (lbm)                                               2,753.1

Landing/Hover Maneuver(s)b

∆V (ft/sec)                                                                         514.0
Specific Impulse (sec)                                                       363.0
Required Propellant (lbm)                                                3662.5

Launch/Landing                                           Cape Canaveral, FL
Parking Orbit (nautical mile)                              50 x 100 - E-W
Final Orbit (nautical mile)                                 100 x100 - E-W
---------------------------------------------------------------------------------
Ignition Thrust/Weight                                                        1.42
Required Ignition Thrust (lbf)                                     1,026,400
---------------------------------------------------------------------------------

Dry Weight (lbm)

Primary Vehicle Structure                                               22,928
Heat Shield/Spike Nozzle Structure                                  8,347
LO2/LH2 Main Propulsion System                                    9,694
Augmentation Propulsion System                                             0
Reaction Control System                                                   1,178
Tank Servicing Equipment                                                   300
Thermal Control                                                                 1,504
Avionics/Electric Power                                                        500
Crew Provisions (2 Crew Members - 450 lbm)                  1,600
Landing Struts                                                                   1,390

                                             Subtotal                              47,442

                  Dry Weight Margin (20%)                                9,488

                                                 Total                                56,930
----------------------------------------------------------------------------------
Propellant Residuals (1%)                                                  6,411
----------------------------------------------------------------------------------
Payload (lbm)                                                                   18,051
----------------------------------------------------------------------------------
Propellant Mass Fraction                                                    0.896

a = LO2/LH2 MPS Used; b = LO2/LH2 MPS Used
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Table 13.  Gelled O2/H2 VTOL/SSTO Launch Vehicle Performance and Mass Estimate -
No APS/E-W Orbit Profile.

Launch to Parking Orbita

Lift-off Weight - GLOW (lbm)                                          722,788
Weight after Initial Ascent (lbm)                                        90,399
∆V (ft/sec)                                                                         29,423
Specific Impulse (s)                                                            439.9
Required Propellant (lbm)                                               632,389

Orbit Circularization Maneuverb

∆V (ft/sec)                                                                           92.0
Specific Impulse (s)                                                           439.2
Required Propellant (lbm)                                                  586.0

Initial Reentry Deorbit Maneuverb

∆V (ft/sec)                                                                           92.0
Specific Impulse (s)                                                           439.9
Required Propellant (lbm)                                                  582.0

Major Reentry Deceleration Maneuversb

∆V (ft/sec)                                                                         155.0
Specific Impulse (sec)                                                       391.6
Required Propellant (lbm)                                               1,091.2

∆V (ft/sec)                                                                         372.0
Specific Impulse (sec)                                                       363.6
Required Propellant (lbm)                                               2,759.0

Landing/Hover Maneuver(s)b

∆V (ft/sec)                                                                         514.0
Specific Impulse (sec)                                                       363.6
Required Propellant (lbm)                                                3670.6

Launch/Landing                                           Cape Canaveral, FL
Parking Orbit (nautical mile)                              50 x 100 - E-W
Final Orbit (nautical mile)                                 100 x100 - E-W
---------------------------------------------------------------------------------
Ignition Thrust/Weight                                                        1.42
Required Ignition Thrust (lbf)                                     1,026,400
---------------------------------------------------------------------------------

Dry Weight (lbm)

Primary Vehicle Structure                                               22,939
Heat Shield/Spike Nozzle Structure                                  8,351
LO2/LH2 Main Propulsion System                                  10,179
Augmentation Propulsion System                                            0
Reaction Control System                                                   1,179
Tank Servicing Equipment                                                   300
Thermal Control                                                                 1,505
Avionics/Electric Power                                                        500
Crew Provisions (2 Crew Members - 450 lbm)                  1,600
Landing Struts                                                                   1,396

                                             Subtotal                              47,948

                  Dry Weight Margin (20%)                                9,587

                                                 Total                                57,535
----------------------------------------------------------------------------------
Propellant Residuals (1%)                                                  6,411
----------------------------------------------------------------------------------
Payload (lbm)                                                                   17,762
----------------------------------------------------------------------------------
Propellant Mass Fraction                                                    0.895

a = Gelled O2/H2 MPS Used; b = Gelled O2/H2 MPS Used
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Table 14.  AUGMENT-SSTO Launch Vehicle Performance and Mass Estimate -
Hybrid APS/E-W Orbit Profile.

Launch to Parking Orbita

Lift-off Weight - GLOW (lbm)                                         722,452
Weight after Initial Ascent (lbm)                                       90,062
∆V (ft/sec)                                                                        29,422
Specific Impulse (s)                                                            439.2
Required Propellant (lbm)                                               632,390

Orbit Circularization Maneuverb

∆V (ft/sec)                                                                            92.0
Specific Impulse (s)                                                           315.0
Required Propellant (lbm)                                                  814.0

Initial Reentry Deorbit Maneuverb

∆V (ft/sec)                                                                            92.0
Specific Impulse (s)                                                           315.0
Required Propellant (lbm)                                                  806.6

Major Reentry Deceleration Maneuversb

∆V (ft/sec)                                                                         155.0
Specific Impulse (sec)                                                       280.0
Required Propellant (lbm)                                               1,508.9

∆V (ft/sec)                                                                         372.0
Specific Impulse (sec)                                                       260.0
Required Propellant (lbm)                                               3,781.6

Landing/Hover Maneuver(s)b

∆V (ft/sec)                                                                         514.0
Specific Impulse (sec)                                                       260.0
Required Propellant (lbm)                                               4,956.0

Launch/Landing                                           Cape Canaveral, FL
Parking Orbit (nautical mile)                              50 x 100 - E-W
Final Orbit (nautical mile)                                 100 x100 - E-W
---------------------------------------------------------------------------------
Ignition Thrust/Weight                                                        1.42
Required Ignition Thrust (lbf)                                     1,026,400
---------------------------------------------------------------------------------

Dry Weight (lbm)

Primary Vehicle Structure                                               22,928
Heat Shield/Spike Nozzle Structure                                  8,347
LO2/LH2 Main Propulsion System                                    9,694
Augmentation Propulsion System                                      2,430
Reaction Control System                                                   1,178
Tank Servicing Equipment                                                   300
Thermal Control                                                                 1,504
Avionics/Electric Power                                                        500
Crew Provisions (2 Crew Members - 450 lbm)                  1,600
Landing Struts                                                                   1,391

                                             Subtotal                              49,873

                 Dry Weight Margin (20%)                                9,975

                                                 Total                                59,848
----------------------------------------------------------------------------------
Propellant Residuals (1%)                                                  6,443
----------------------------------------------------------------------------------
Payload (lbm)                                                                   11,905
----------------------------------------------------------------------------------
Propellant Mass Fraction                                                    0.901

a = LO2/LH2 MPS Used; b = Hybrid APS Used
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Table 15.  AUGMENT-SSTO Launch Vehicle Performance and Mass Estimate -
Gelled O2/H2 APS/E-W Orbit Profile.

Launch to Parking Orbita

Lift-off Weight -GLOW (lbm)                                          722,452
Weight after Initial Ascent (lbm)                                       90,062
∆V (ft/sec)                                                                        29,422
Specific Impulse (s)                                                            439.2
Required Propellant (lbm)                                               632,390

Orbit Circularization Maneuverb

∆V (ft/sec)                                                                            92.0
Specific Impulse (s)                                                           439.9
Required Propellant (lbm)                                                  584.0

Initial Reentry Deorbit Maneuverb

∆V (ft/sec)                                                                            92.0
Specific Impulse (s)                                                           439.9
Required Propellant (lbm)                                                  579.8

Major Reentry Deceleration Maneuversb

∆V (ft/sec)                                                                         155.0
Specific Impulse (sec)                                                       391.0
Required Propellant (lbm)                                               1,088.7

∆V (ft/sec)                                                                         372.0
Specific Impulse (sec)                                                       363.0
Required Propellant (lbm)                                               2,753.1

Landing/Hover Maneuver(s)b

∆V (ft/sec)                                                                         514.0
Specific Impulse (sec)                                                       363.0
Required Propellant (lbm)                                               3,662.6

Launch/Landing                                           Cape Canaveral, FL
Parking Orbit (nautical mile)                              50 x 100 - E-W
Final Orbit (nautical mile)                                 100 x100 - E-W
---------------------------------------------------------------------------------
Ignition Thrust/Weight                                                        1.42
Required Ignition Thrust (lbf)                                     1,026,400
---------------------------------------------------------------------------------

Dry Weight (lbm)

Primary Vehicle Structure                                               22,928
Heat Shield/Spike Nozzle Structure                                  8,347
LO2/LH2 Main Propulsion System                                    9,694
Augmentation Propulsion System                                      2,272
Reaction Control System                                                   1,178
Tank Servicing Equipment                                                   300
Thermal Control                                                                 1,504
Avionics/Electric Power                                                        500
Crew Provisions (2 Crew Members - 450 lbm)                  1,600
Landing Struts                                                                   1,391

                                             Subtotal                              49,714

                 Dry Weight Margin (20%)                                9,943

                                                 Total                                59,657
----------------------------------------------------------------------------------
Propellant Residuals (1%)                                                  6,411
----------------------------------------------------------------------------------
Payload (lbm)                                                                   15,326
----------------------------------------------------------------------------------
Propellant Mass Fraction                                                    0.896

a = LO2/LH2 MPS Used; b = Gelled O2/H2 APS Used
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Table 16.  AUGMENT-SSTO Launch Vehicle Performance and Mass Estimate -
Gelled NTO/MMH/Al APS/E-W Orbit Profile.

Launch to Parking Orbita

Lift-off Weight - GLOW (lbm)                                         722,452
Weight after Initial Ascent (lbm)                                       90,062
∆V (ft/sec)                                                                        29,422
Specific Impulse (s)                                                            439.2
Required Propellant (lbm)                                               632,390

Orbit Circularization Maneuverb

∆V (ft/sec)                                                                           92.0
Specific Impulse (s)                                                           307.7
Required Propellant (lbm)                                                  833.0

Initial Reentry Deorbit Maneuverb

∆V (ft/sec)                                                                           92.0
Specific Impulse (s)                                                           307.7
Required Propellant (lbm)                                                  825.5

Major Reentry Deceleration Maneuversb

∆V (ft/sec)                                                                         155.0
Specific Impulse (sec)                                                       273.5
Required Propellant (lbm)                                               1,543.7

∆V (ft/sec)                                                                         372.0
Specific Impulse (sec)                                                       253.9
Required Propellant (lbm)                                               3,867.2

Landing/Hover Maneuver(s)b

∆V (ft/sec)                                                                         514.0
Specific Impulse (sec)                                                       253.9
Required Propellant (lbm)                                               5,061.7

Launch/Landing                                           Cape Canaveral, FL
Parking Orbit (nautical mile)                              50 x 100 - E-W
Final Orbit (nautical mile)                                 100 x100 - E-W
---------------------------------------------------------------------------------
Ignition Thrust/Weight                                                        1.42
Required Ignition Thrust (lbf)                                     1,026,400
---------------------------------------------------------------------------------

Dry Weight (lbm)

Primary Vehicle Structure                                               22,928
Heat Shield/Spike Nozzle Structure                                  8,347
LO2/LH2 Main Propulsion System                                    9,694
Augmentation Propulsion System                                      2,200
Reaction Control System                                                   1,178
Tank Servicing Equipment                                                   300
Thermal Control                                                                 1,504
Avionics/Electric Power                                                        500
Crew Provisions (2 Crew Members - 450 lbm)                  1,600
Landing Struts                                                                   1,391

                                             Subtotal                              49,643

                 Dry Weight Margin (20%)                                9,929

                                                 Total                                59,572
----------------------------------------------------------------------------------
Propellant Residuals (1%)                                                  6,445
----------------------------------------------------------------------------------
Payload (lbm)                                                                   11,914
----------------------------------------------------------------------------------
Propellant Mass Fraction                                                    0.901

a = LO2/LH2 MPS Used; b = Gelled NTO/MMH APS Used
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Table 17.  AUGMENT-SSTO Launch Vehicle Performance and Mass Estimate -
Gelled O2/RP-1/Al APS/E-W Orbit Profile.

Launch to Parking Orbita

Lift-off Weight - GLOW (lbm)                                         722,452
Weight after Initial Ascent (lbm)                                       90,062
∆V (ft/sec)                                                                        29,422
Specific Impulse (s)                                                            439.2
Required Propellant (lbm)                                               632,390

Orbit Circularization Maneuverb

∆V (ft/sec)                                                                            92.0
Specific Impulse (s)                                                           324.5
Required Propellant (lbm)                                                  790.0

Initial Reentry Deorbit Maneuverb

∆V (ft/sec)                                                                            92.0
Specific Impulse (s)                                                           324.5
Required Propellant (lbm)                                                  783.3

Major Reentry Deceleration Maneuversb

∆V (ft/sec)                                                                         155.0
Specific Impulse (sec)                                                       288.4
Required Propellant (lbm)                                               1,466.1

∆V (ft/sec)                                                                         372.0
Specific Impulse (sec)                                                       267.8
Required Propellant (lbm)                                               3,677.6

Landing/Hover Maneuver(s)b

∆V (ft/sec)                                                                         514.0
Specific Impulse (sec)                                                       267.8
Required Propellant (lbm)                                               4,827.1

Launch/Landing                                           Cape Canaveral, FL
Parking Orbit (nautical mile)                              50 x 100 - E-W
Final Orbit (nautical mile)                                 100 x100 - E-W
---------------------------------------------------------------------------------
Ignition Thrust/Weight                                                        1.42
Required Ignition Thrust (lbf)                                     1,026,400
---------------------------------------------------------------------------------

Dry Weight (lbm)

Primary Vehicle Structure                                                22,928
Heat Shield/Spike Nozzle Structure                                   8,347
LO2/LH2 Main Propulsion System                                    9,694
Augmentation Propulsion System                                      2,262
Reaction Control System                                                   1,178
Tank Servicing Equipment                                                   300
Thermal Control                                                                 1,504
Avionics/Electric Power                                                        500
Crew Provisions (2 Crew Members - 450 lbm)                  1,600
Landing Struts                                                                   1,391

                                             Subtotal                              49,704

                 Dry Weight Margin (20%)                                 9,941

                                                 Total                                59,645
----------------------------------------------------------------------------------
Propellant Residuals (1%)                                                  6,439
----------------------------------------------------------------------------------
Payload (lbm)                                                                   12,433
----------------------------------------------------------------------------------
Propellant Mass Fraction                                                    0.900

a = LO2/LH2 MPS Used; b = Gelled O2/RP-1 APS Used
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Table 18.  Launch Vehicle Payload Performance Results Summary.

System Type Percent Contingency 10 20 30
LEO Orbit Type

Baseline O2/H2 MPS*/
No APS**

28 degree E-W 22,795+ 18,051 13,307

Polar N-S 15,295 10,607 5,919
Gelled O2/H2 MPS/

No APS
28 degree E-W 22,557 17,762 12,967

Polar N-S 15,047 10,308 5,570
O2/H2 MPS/
Hybrid APS

28 degree E-W 16,893 11,905 6,918

Polar N-S 9,982 5,075 168
O2/H2 MPS/

Gelled O2/H2 APS
28 degree E-W 20,298 15,326 10,355

Polar N-S 12,878 7,970 3,062
Gelled O2/H2 MPS/

Hybrid APS
28 degree E-W 16,618 11,580 6,541

Polar N-S 9,700 4,742 NPC++

Gelled O2/H2 MPS/
Gelled O2/H2 APS

28 degree E-W 20,043 15,021 9,998

Polar N-S 12,614 7,656 2,697
Baseline O2/H2 MPS/

Gelled NTO/MMH/Al APS
28 degree E-W 16,879+ 11,914 6,950

Polar N-S 9,800 4,898 NPC
Gelled O2/H2 MPS/

Gelled NTO/MMH/Al APS
28 degree E-W 17,314 12,353 7,392

Polar N-S 10,192 5,293 394
Baseline O2/H2 MPS/

O2/RP-1 APS
28 degree E-W 17,404 12,433 7,463

Polar N-S 10,273 5,365 458
Gelled O2/H2 MPS/

O2/RP-1 APS
28 degree E-W 17,173 12,205 7,236

Polar N-S 10,065 5,159 254

*  Main Propulsion System
** Augmentation Propulsion System
+  Payload weight into orbit (lbm)
++ NPC = No Payload Capability
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Table 19.  Conventional LO2/LH2 Launch Vehicle Payload Performance with Upper Stage Insertion -
Results Summary.

System Type Percent Contingency/
Upper Stage ∆V (ft/s)

10/
5,000

20/
5,000

30/
5,000

10/
22,000

20/
22,000

30/
22,000

LEO Orbit Type/Initial
Stage Weight (lbm)+

Baseline LO2/LH2
MPS*-O2/H2
Upper Stagea

28 degree E-W/
18,051

11,231++ 11,070 10,909 915 616 318

Polar N-S/10,607 6,226 6,097 5,968 164 NPO NPO
Baseline LO2/LH2

MPS-Gelled
O2/H2/Al

Upper Stagea

28 degree E-W/
18,051

11,287 11,127 10,966 993 694 396

Polar N-S/10,607 6,259 6,130 6,002 209 NPO -209
Baseline LO2/LH2
MPS-NTO/MMH

Upper Stageb

28 degree E-W/
18,051

9,326 9,139 8,952 NPOc NPO NPO

Polar N-S/10,607 5,040 4,890 4,740 NPO NPO NPO
Baseline LO2/LH2

MPS-Gelled
NTO/MMH/Al
Upper Stageb

28 degree E-W/
18,051

9,758 9,577 9,396 NPO NPO NPO

Polar N-S/10,607 5,294 5,148 5,001 NPO NPO NPO

*  Main Propulsion System
+  Includes Upper Stage System plus Payload
++ Payload weight into orbit (lbm)
a  Spherical O2 Tank, Cylindrical H2 Tank
b  Spherical Tanks
c  NPO = No Payload into Orbit
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Table 20. AUGMENT-SSTO Launch Vehicle Payload Performance with Upper Stage Insertion - Results Summary.

System Type Percent Contingency/
Upper Stage ∆V (ft/s)

10/
5,000

20/
5,000

30/
5,000

10/
22,000

20/
22,000

30/
22,000

LEO Orbit Type/Initial
Stage Weight (lbm)+

LO2/LH2
MPS*/Gelled O2/H2

APS**-O2/H2
Upper Stagea

28 degree E-W/
15,326

9,399++ 9,250 9,100 640 374 108

Polar N-S/7,970 4,452 4,335 4,218 NPOc NPO NPO
LO2/LH2 MPS/

Gelled O2/H2 APS-
Gelled O2/H2/Al

Upper Stagea

28 degree E-W/
15,326

9,447 9,298 9,148 706 440 174

Polar N-S/7,970 4,477 4,360 4,243 NPO NPO NPO
LO2/LH2

MPS/Gelled O2/H2
APS-NTO/MMH

Upper Stageb

28 degree E-W/
15,326

7,757 7,584 7,410 NPO NPO NPO

Polar N-S/7,970 3,521 3,384 3,248 NPO NPO NPO
LO2/LH2 MPS/

Gelled O2/H2 APS-
Gelled

NTO/MMH/Al
Upper Stageb

28 degree E-W/
15,326

8,124 7,956 7,788 NPO NPO NPO

Polar N-S/7,970 3,712 3,578 3,444 NPO NPO NPO

*  Main Propulsion System
** Augmentation Propulsion System
+  Includes Upper Stage System plus Payload
++ Payload weight into orbit (lbm)
a  Spherical O2 Tank, Cylindrical H2 Tank
b  Spherical Tanks
c  NPO = No Payload into Orbit
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Figure 5. Typical AUGMENT-SSTO E-W Orbit Ascent Flight Parameters as a Function of Time -  
Thrust and Weight
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Figure 4. Typical AUGMENT-SSTO E-W Orbit Ascent Flight Parameters as a Function of Time -  
Mach Number and Altitude
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SSTO cases: polar launch, 20% contingency
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Figure 6. Payload Mass in LEO for Various VTOL/SSTO Launch Vehicle Propulsion System 
Combination Options - E-W Orbit Profile /20% Dry Weight Contingency.  
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Figure 7. Payload Mass in LEO for Various VTOL/SSTO Launch Vehicle Propulsion System 
Combination Options - Polar Orbit Profile /20% Dry Weight Contingency.  
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Easterly launch, SSTO cases
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Figure 8. Effect of Dry Mass Contingency on Payload Mass in LEO - E-W Orbit Profile.

Figure 9. Effect of Dry Mass Contingency on Payload Mass in LEO - Polar Orbit Profile.
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Figure 11. Payload Mass in LEO for Various VTOL/SSTO Launch Vehicle /Upper Stage  Propulsion System 
Combination Options - 5,000 ft/s  Capability /Polar Orbit Profile.
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Figure 10. Payload Mass in LEO for Various VTOL/SSTO Launch Vehicle /Upper Stage  Propulsion System 
Combination Options - 5,000 ft/s  Capability /E-W Orbit Profile. 

Easterly launch: 5000 ft/s upper stage
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Figure 13. Payload Mass in GEO for Various VTOL/SSTO Launch Vehicle /Upper Stage  Propulsion System 
Combination Options - 22,000 ft/s  Capability /Polar Orbit Profile.
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Figure 12. Payload Mass in GEO for Various VTOL/SSTO Launch Vehicle /Upper Stage  Propulsion System 
Combination Options - 22,000 ft/s  Capability /E-W Orbit Profile.
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Easterly launch: 22,000 ft/s upper stage
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Figure 15. Effect of Dry Mass Contingency on Payload Mass in LEO - 5,000 ft/s Upper Stage /Polar Orbit Profile.
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Figure 14. Effect of Dry Mass Contingency on Payload Mass in LEO - 5,000 ft/s Upper Stage /E-W Orbit Profile.
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Figure 17. Effect of Dry Mass Contingency on Payload Mass in GEO - 22,000 ft/s Upper Stage /Polar Orbit Profile.
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Figure 16. Effect of Dry Mass Contingency on Payload Mass in GEO - 22,000 ft/s Upper Stage /E-W Orbit Profile.
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