
Blue Sky Electronics TDIG CANbus High Level Protocol

TDIG CANbus High Level Protocol
Version 1.5 (10.13.04)

Justin Kennington

Communication between the MCU on TDIG and the CANbus host PC comprises six
transactions:

DATA_TO_PC
SET_CONTROL
CONFIGURE_TDC
GET_STATUS
CHANGE_MCU_PROGRAM
THRESHOLD
DEBUG

The first of these, DATA_TO_PC, is a one-way communication initiated by the MCU.

The rest of the transactions are command sequences of two or more messages.
SET_CONTROL, GET_STATUS, and DEBUG are initiated by a request for data from the PC,
and completed with a single response from the MCU (containing the requested data).
CONFIGURE_TDC and CHANGE_MCU_PROGRAM are more complicated, because more
data than the 8 byte limit of each CAN message are required. In these cases, an 8 byte data
packet is sent (by the PC) and acknowledged (by the MCU) before another 8 byte packet is sent.
This continues until all data have been sent.

 1

Blue Sky Electronics TDIG CANbus High Level Protocol

CANbus Packet ID
Each CANbus packet contains an 11-bit identifier field. The packet ID encapsulates three pieces
of data: Message type, board number, and TDC number. The data is stored as follows:

MsgID[10:6] = Message type
MsgID[5:4] = TDC Number
MsgID[3] = Extra bit (will be specified per message type if applicable)
MsgID[2:0] = Board number

Message type
Message type is a 5-bit field that specifies the type of command that the message is related to and
whether the packet is a command from the control system (downstream) or response from a
TDIG board (upstream). Table 1 shows the available message types and the corresponding
codes.

Command
Downstream

Code
Upstream

Code Function
DATA_TO_PC N/A 00000 TDC data upload
SET_CONTROL 00100 00010 Apply new TDC control word
CONFIGURE_TDC 01000 00110 Apply new TDC configuration
GET_STATUS 01100 01010 Get TDC or TDIG status
CHANGE_MCU_PROGRAM 10000 01110 Change MCU firmware
DEBUG 10100 10010 Multifunction debugging code
THRESHOLD 11000 10110 Sets new discriminator threshold
ERROR N/A 11110 Response to unrecognized message

Table 1

TDC Number
Some message types apply to a specific TDC on a board. These types include SET_CONTROL,
CONFIGURE_TDC, and GET_STATUS. For these messages types, the TDC number is
included in the message ID to save bits in the payload. The TDCs are numbered 1 to 4 and
encoded as follows:

MsgID[5:4] = 00 => TDC1, Leading edge Hit[7:0]
MsgID[5:4] = 01 => TDC2, Leading edge Hit[15:8]
MsgID[5:4] = 10 => TDC3, Leading edge Hit[23:16]
MsgID[5:4] = 11 => TDC4, Trailing edge Hit[23:0]

Board Number
Each tray contains one TCPU card and eight TDIG cards numbered 0 to 7. Board Number is a 3-
bit field indicating which of the eight boards a packet is to or from. The most upstream (closest
to TCPU) board is number zero, while the most downstream (farthest from TCPU) is number
seven. The board number is binary encoded. TCPU does not need a unique ID because it
receives all messages transmitted by TDIG cards.

MsgID[3:0] = 0000 => Board 0 (Far upstream)
MsgID[3:0] = 0001 => Board 1
...
MsgID[3:0] = 0111 => Board 7 (Far downstream)

 MESSAGE ID 2

Blue Sky Electronics TDIG CANbus High Level Protocol

DATA_TO_PC
This command is used to push data upstream from the MCU. These messages only flow one
direction, and the MCU assumes that the messages are received.

MsgID[10:6] = 00000
MsgID[5:4] = 00
MsgID[3] = 0
MsgID[2:0] = Board number

Payload:
For bench testing and debugging, TDC data can be sent via the CANbus. Each TDC word is
four bytes, so the MCU will typically pack two words per CAN message. However, if only one
word is available, the MCU will send a CAN message with a single word, to avoid stalls. The
resulting two payload formats are:

dddddddd dddddddd dddddddd dddddddd
 [four byte data packet from TDC]

dddddddd dddddddd dddddddd dddddddd dddddddd dddddddd dddddddd dddddddd
[1st four byte data packet from TDC] [2nd four byte data packet from TDC]

Information identifying whether the packet is a group header, TDC header, etc. is included in the
data word itself. No guarantee is made regarding which TDC either data word will come from.
The TDC ID is included in each data word, so the upstream entity will be able to keep this
straight without use of the TDC number field in the message ID.

 DATA_TO_PC 3

Blue Sky Electronics TDIG CANbus High Level Protocol

SET_CONTROL

SET_CONTROL
This command sequence is used to set the 40-bit control word used by the TDC. See TDC data
sheet section 17.6 for details on the control word. When the MCU receives a SET_CONTROL
packet from upstream, it immediately programs the new control word into the TDC, then
responds with a confirmation message.

Message ID
For commands issued to TDIG:

MsgID[10:6] = 00100
MsgID[5:4] = TDC number
MsgID[3] = ‘All TDCs’ bit
MsgID[2:0] = Board number

For responses by TDIG:
MsgID[10:6] = 00010
MsgID[5:4] = TDC number
MsgID[3] = ‘All TDCs’ bit
MsgID[2:0] = Board number

In a response packet, MsgID[10:6] are set appropriately, and the remaining bits are echoes of the
command packet.

‘All TDCs’ bit
It is convenient sometimes to apply the same control word to all four TDCs at once. In this case,
the commanding node should send the SET_CONTROL command with the ‘All TDCs’ bit set.
The new control word will be applied to all four TDCs.

Payload:
The payload format for SET_CONTROL packets is the 40-bit (5 byte) new control word. The
MSB (bit 39) is in payload word 0; the LSB (bit 0) is in payload word 5.

cccccccc cccccccc cccccccc cccccccc cccccccc
 [40-bit control word]

Once the TDC has been updated, the MCU returns a response packet for confirmation that the
new control word has been copied to the TDC. The payload of the response packet matches the
payload of the command packet.

 4

Blue Sky Electronics TDIG CANbus High Level Protocol

CONFIGURE_TDC

CONFIGURE_TDC
This instruction uses a command and response technique to allow the PC and MCU to coordinate
as the PC updates the MCU’s local copy of the TDC configuration settings, and then the MCU
reprograms the TDC with the updated configuration. For each command that the PC issues to
the MCU, the MCU performs a particular action and then issues a confirmation response to the
PC.

For commands issued by the PC to the MCU:
MsgID[10:6] = 01000
MsgID[5:4] = TDC number
MsgID[3] = Unused (don’t care)
MsgID[2:0] = Board number

For responses by the MCU to the PC:
MsgID[10:6] = 00110
MsgID[5:4] = TDC number
MsgID[3] = Unused (don’t care)
MsgID[2:0] = Board number

Payload:
In both cases, the first byte of the payload is a descriptor field that gives three pieces of
information about the message and its contents. The descriptor field is laid out as follows:

DES[3:0] = packet_number
DES[4] = Unused (don’t care)
DES[5] = error
DES[7:6] = sub_instruction

Each of these fields is further defined herein:

I. Packet number:
Each payload can carry 7 bytes of configuration data (8 byte payload – 1 byte descriptor). Each
configuration string is 647 bits = 81 bytes. Therefore, the configuration string will be sent in
twelve packets of up to seven bytes each. The first eleven packets will contain seven bytes of
data, while the final (12th) packet will contain four bytes. Data beyond the fourth byte in the
twelfth packet will be ignored. Each packet will be numbered sequentially, and the data will be
written to MCU data memory sequentially based on packet numbers. The first data packet sent
will have packet_number = 1 and will contain seven bytes of MSB’s. The final data packet will
have packet_number = 12 and contain bytes 78 – 81 (LSB’s). The configuration string is left
justified with MSB’s first.

647 bits is one bit shy of 81 bytes. A 0 should be appended to the end (LSB) of the configuration
data (in packet 12), and the very first bit sent (in packet 1) should be the MSB (parity) of the
configuration data. Correctly setting the parity bit is optional, as the MCU will calculate the
correct parity bit regardless.

As defined by the sub_instruction field, not every payload in the configure_TDC sequence will
carry configuration data. For non-data payloads, packet_number should be given a value of zero.

 5

Blue Sky Electronics TDIG CANbus High Level Protocol

II. Error:
This bit is set by the MCU to indicate that an error has occurred. If the MCU detects an error, it
will perform no action, and instead will send back the message payload with the error bit set.
The MCU will set the error bit under the following conditions:

 The MCU receives the start sub_instruction but is not ready to begin
CONFIGURE_TDC

 The MCU detects a mismatch between sub_instruction and packet_number (i.e. non-
zero packet_number with non-data sub_instruction, or zero packet_number with data
sub_instruction)

 The MCU receives an out-of-order data packet (e.g. a packet_number is skipped)
 The MCU receives a CONFIGURE_TDC message for a particular TDC between start

and program sub_instructions for another TDC. That is, while configuring a TDC,
the entire configuration process must be complete before configuring another TDC.

 The MCU receives a config_end sub_instruction but the MCU does not have a full
configuration.

 The MCU receives a program sub_instruction but the MCU has not received a
config_end sub_instruction.

If the PC receives a packet with the error bit set, the safe response is to restart the configuration
by sending a new start sub_instruction and re-sending all data. However, the MCU will also
maintain its state following the most recent packet received without error. Continuing from that
point by sending the appropriate next packet is guaranteed to work.

III. Sub-instruction:
The sub-instruction defines the command as 1 of 4 subcommands in the configure_TDC
sequence. The four sub-instructions are:

Start: instructs the MCU to initialize the CONFIGURE_TDC sequence. Data will follow in
later packets. Sending the start sub_instruction (for the TDC currently being configured) will
always re-start the configuration sequence.
DES[7:6] = 00 (sub_instruction)
DES[3:0] = 0000 (packet_number)

Data: a data-containing message. As described above, the payload will contain the
descriptor and four or seven bytes of data to write to the configuration.
DES[7:6] = 01 (sub_instruction)
0001 < DES[3:0] < 1100 (packet_number)

Config_end: advises the MCU that the PC is finished sending configuration data. MCU
should check to see that it has received a full configuration.
DES[7:6] = 10 (sub_instruction)
DES[3:0] = 0000 (packet_number)

Program: instructs the MCU to load the updated configuration settings into the TDC.
DES[7:6] = 11 (sub_instruction)
DES[3:0] = 0000 (packet_number)

 CONFIGURE_TDC 6

Blue Sky Electronics TDIG CANbus High Level Protocol

The program command initiates a full reset of both TDCs. It disables the clock inputs,
reprograms the configuration bits, then performs a full startup routine. If the user desires to
configure both TDCs, it is possible to execute a config_TDC sequence for both TDCs from
start through config_end, and then send a program command. This way, both TDCs will be
updated simultaneously.

Reapply Configuration:
To reapply the current configuration to the TDCs, send a START command immediately
followed by a PROGRAM command. This will cause the MCU to reset and configure both
TDCs with the configuration bits stored in MCU memory (previously applied configuration, or
default configuration if no previous change has been made). The sequence START-PROGRAM
may be transmitted at any time to reapply the configuration.

MCU to PC packets (Responses):
The MCU has a response to each packet sent by the PC, and the PC should wait for the
appropriate response to a packet before sending the next packet. The MCU responds to PC
packets by changing the Message Sub-ID and echoing back the payload, unchanged.

For messages sent by the PC to the MCU:
MsgID[10:6] = 01000
MsgID[5:0] = Echo

For responses by the MCU to the PC:
MsgID[10:6] = 00110
MsgID[5:0] = Echo

Each response by the MCU indicates that a particular action, dependent on the sub_instruction,
has been taken by the MCU. The actions taken by the MCU, along with the meaning of the
response, are as follows:

Start: Response indicates that the MCU has received the start command and is prepared to
begin writing configuration information to MCU data memory.

Data: Response indicates that the MCU has received the configuration information, written it
to data memory, and is ready to receive following information.

Config_end: Response indicates that the MCU has received a full 647 bit configuration
string and is prepared to write the string to the TDC.

Program: Response indicates that the MCU has written the new configuration string to the
TDC. Indicates that the old configuration has been reapplied if the program command
immediately follows a start command.

If the MCU detects an error according to the conditions described above, a message is sent with
the MCU-to-PC message ID, the error bit set, and the payload otherwise unchanged. None of the
above-described actions are performed, and the PC should restart the configuration sequence.

 CONFIGURE_TDC 7

Blue Sky Electronics TDIG CANbus High Level Protocol

Example
The following is an example of a correct CONFIGURE_TDC sequence (showing only
arbitration and data fields) for configuring board 5, TDC3. The first 11 bits are the MsgID.
Everything following is the payload.
New config data = 5C 00 16 00 00 00 25 C0 20 08 0B FF FE FB ...
 ... 00 00 11 24 F0 F0 F0 00 00 00 00 01 D5 30 00 03 FF A2 (Note: Trailing 0)

‘01000 10 0 101 00000000’b
; start CONFIGURE_TDC for board 5 (101), TDC3 (10)

‘00110 10 0 101 00000000’b
; acknowledge start CONFIGURE_TDC

‘0100 0000111 01000001’b ‘5C 00 16 00 00 00 25’h
; packet 1 with 7 bytes

‘0011 0000111 01000001’b ‘5C 00 16 00 00 00 25’h
; acknowledge packet 1

‘0100 0000111 01000010’b ‘C0 20 08 0B FF FE FB’h
; packet 2 with 7 bytes

‘0011 0000111 01000001’b ‘C0 20 08 0B FF FE FB’h
; acknowledge packet 2

...
; packets 3 - 9

...
; acknowledge packets 3 – 9

‘0100 0000111 01001010’b ’00 00 11 24 F0 F0 F0’h
; packet 10 with 7 bytes

‘0011 0000111 01001010’b ’00 00 11 24 F0 F0 F0’h
; acknowledge packet 10

‘0100 0000111 01001011’b ’00 00 00 00 01 D5 30’h
; packet 11 with 7 bytes

‘0011 0000111 01001011’b ’00 00 00 00 01 D5 30’h
; acknowledge packet 11

‘0100 0000111 01001100’b ’00 03 FF A2’h
; packet 12 with 4 bytes

‘0011 0000111 01001100’b ’00 03 FF A2’h
;acknowledge packet 12

‘0100 0000111 10000000’b
; config_end

‘0011 0000111 10000000’b
; acknowledge config_end

‘0100 0000111 11000000’b
; program TDC

‘0011 0000111 11000000’b
; acknowledge program TDC (Finished with sequence)

 CONFIGURE_TDC 8

Blue Sky Electronics TDIG CANbus High Level Protocol

GET_STATUS

GET_STATUS
This function also has a command and response structure, though it is far simpler than
CONFIGURE_TDC. The code sequence comprises a single command-response pair. The
command tells the MCU to return the status of one of the four TDCs or the TDIG board itself
(information from temperature sensors, MCU status, etc). The format of TDIG status is TBD.

For the PC Command:
MsgID[10:6] = 01100
MsgID[5:4] = TDC Number
MsgID[3] = TDIG status bit
MsgID[2:0] = Board number

For the MCU response:
MsgID[10:6] = 01010
MsgID[5:4] = TDC Number
MsgID[3] = TDIG status bit
MsgID[2:0] = Board number

TDIG status bit
If this bit is set to 1, then the request is for status of TDIG itself, not for a TDC. If this bit is set
to zero, then the board number field functions as normal, and determines which TDC’s status to
return.

Payload

PC to MCU (Command):
There is no payload for a status request command. It is a zero-length message. The Message ID
determines whether the request is for TDC1, TDC2, TDC3, TDC4, or for TDIG itself.

MCU to PC (Response):
The response payload for TDC status requests is 64 bits including two leading zeros and 62 bits
of status information. Each TDC reports 62 bits of status. All 62 available bits are reserved for
TDIG status. The response payload will be formatted as follows:

00 ssssss ssssssss ssssssss ssssssss ssssssss ssssssss ssssssss ssssssss

s = TDC status[61:0]

 9

Blue Sky Electronics TDIG CANbus High Level Protocol

The response payload for TDIG status requests is 64 bits and includes one 10-bit temperature
value for each of four temperature monitors. Two monitors are on TDIG, and two are on TAMP.

000000aa aaaaaaaa 000000bb bbbbbbbb 000000cc cccccccc 000000dd dddddddd

a = TDIG temperature readout under PLD
b = TDIG temperature readout at TDC2
c = TAMP temperature readout at board edge (inside tray)
d = TAMP temperature readout at board center (inside tray)

The 10-bit temperature word is the output of a 10-bit A/D converter inside the MCU of TDIG.
The temperature may be determined by the formula:

C
mV

mVmVdecimalA

CT

°

−
+

=°
10

5003300*
1024

1)(

)(

T = Temperature in degrees celcius

A = ADC word, decimal (Ranges from 0 to 1023)

 GET_STATUS 10

Blue Sky Electronics TDIG CANbus High Level Protocol

THRESHOLD
This function is used to set the discriminator threshold. TDIG contains an onboard DAC that
converts a 12-bit word from the MCU into an analog output voltage that feeds the threshold
offset inputs of the discriminator circuits.

For the PC Command:
MsgID[10:6] = 11000
MsgID[5:4] = xx (Threshold affects all TDC’s)
MsgID[3] = x
MsgID[2:0] = Board number

For the MCU response:
MsgID[10:6] = 10110
MsgID[5:4] = xx
MsgID[3] = x
MsgID[2:0] = Board number

Payload

PC to MCU (Command):
The payload consists of the 12-bit DAC word that is directly transcribed into the DAC. Four
leading zeros will fill out the two byte payload.

0000dddd dddddddd

d = DAC word [11:0]

The DAC word is related to the threshold voltage by the following equation:

V = -0.05 * D + 101.51

D = -20.003 * V(mV) + 2030.5

The value of D returned by this equation is decimal. It must be converted to hexadecimal before
being transmitted as the DAC word.

The maximum threshold setting is approximately 100 mV, DAC word = 0x000. The minimum
threshold is approximately -100mV, DAC word = 0xFFF. The corresponding DAC word to
threshold voltage conversion will also change at that time. Standard threshold level will be
approximately 30mV, DAC word = 0x596.

 GET_STATUS 11

Blue Sky Electronics TDIG CANbus High Level Protocol

MCU to PC (Response):
The response payload consists of the 10-bit ADC word that is read directly from the ADC. Six
leading zeros will fill out the two byte payload.

000000aa aaaaaaaa

a = ADC word [9:0]

The ADC word can be used to check the value to which the threshold voltage gets set. It is
related to the DAC and to the threshold voltage by the following equations:

A = 0.1606*D + 1.5168

V = -0.3113*A + 101.97

A = ADC code word

D = DAC code word

V = Threshold voltage (mV)

The value of A returned by this equation is decimal.

DAC
word

DAC
Decimal
value

Resulting
Threshold
(mV)

ADC
word

ADC
Decimal
Value

0x000 0 101.4 0x003 3
0x04F 79 97.6 0x00F 15
0x0FF 255 88.8 0x02B 43
0x1FF 511 76 0x053 83
0x2FF 767 63.2 0x07C 124
0x4FF 1279 37.5 0x0CD 205
0x5FF 1535 24.7 0x0F6 246
0x6FF 1791 11.9 0x11F 287
0x7FF 2047 -0.8 0x148 328
0x8FF 2303 -13.5 0x178 376
0x9FF 2559 -26.4 0x19D 413
0xAFF 2815 -39.2 0x1C9 457
0xBFF 3071 -52 0x1EF 495
0xCFF 3327 -64.8 0x218 536
0xDFF 3583 -77.6 0x240 576
0xFFF 4095 -103.3 0x292 658

 GET_STATUS 12

Blue Sky Electronics TDIG CANbus High Level Protocol

DEBUG
Instruction space is reserved for a further command/response pair for debugging. The commands
will consist of requests for various data and/or calls to various diagnostic functions. These
functions might include restarting the TDCs, or simply requesting trigger or timing information.
These functions will be used to allow the CAN bus to detect and/or correct system errors.
Further definition of these functions will be added later.

For commands issued by the PC to the MCU:
MsgID[10:6] = 10100
MsgID[5:4] = TDC number (where applicable)
MsgID[3] = Unused (don’t care)
MsgID[2:0] = Board number

For responses by the MCU to the PC:
MsgID[10:6] = 10010
MsgID[5:4] = TDC number
MsgID[3] = Unused (don’t care)
MsgID[2:0] = Board number

MCU Restart
The DEBUG command can be used to restart the MCU. This process first shuts off the TDC
clocks, then starts executing the MCU’s initialization code. This is as close to a power-off reset
as one can get without actually turning off the power. The TDCs will be restored to their default
configuration.

Header
Bits [5:3] of the header are ignored and may be set to any value. They will be echoed in the
response.

Payload
The payload is an arbitrary 8 digit code to prevent accidental restarts:

0100 0101 0110 1001 0011 0011 0001 0100

HEX: 0x45 69 33 14

PLD Reset
This command is used to reset the PLD’s internal state machines and flush data FIFOs.

Header
Bits [5:3] of the header are ignored and may be set to any value. They will be echoed in the
response.

 DEBUG 13

Blue Sky Electronics TDIG CANbus High Level Protocol

Payload
Like MCU reset, the payload consists of an arbitrary four byte code:

0110 1001 1001 0110 1010 0101 0101 1010

HEX: 0x69 96 A5 5A

MCU Data Readout Mode
The MCU can read out TDC data in three different modes:

PLD (serial) readout:

Data is read serially from the TDC’s by the PLD. The MCU receives this data from the PLD and
transmits is up the CANbus. This data will include any words inserted by the PLD, including
data separators, geographical words, etc. Note that setting the MCU to this mode will cause any
data in the PLD FIFOs to immediately be sent.

JTAG readout:

This is a special function mode used only for major debugging. In this mode, data is read
directly from the TDC’s by the MCU via JTAG. Note that the TDC’s must be manually
configured to allow JTAG readout.

Silent mode (no readout):

In this mode, no data will be read out via CANbus. This is the default mode selected upon MCU
startup.

Header
For serial readout and silent modes, bits [5:3] are ignored. For JTAG readout, bits [5:4] select
the TDC desired for readout. Only one TDC may be selected at a time for JTAG readout.
Sending a new JTAG readout mode command will allow the user to select a new TDC for JTAG
readout.

Payload
The payload consists of two bytes. The first byte is 0xAA to indicate that this is a readout mode
select message. The second byte selects one of the three modes.

10101010 000000mm

m = mode select bits:

00 -> Silent mode (default)
01 -> Serial PLD readout
10 -> JTAG readout

 DEBUG 14

Blue Sky Electronics TDIG CANbus High Level Protocol

ERROR
When the MCU receives a CAN message that it does not understand, it replies with an error
packet. Error conditions include: unrecognized message ID and malformed payload. For
example, if a request for status is received and the first data byte is not F0, F3, or FB, an error
message is issued. Note that a configure_TDC command received in error will result in a
configure_TDC response packet with its error bit set.

MsgID[10:6] = 11110
MsgID[5:0] = Echo

 CHANGE_MCU_PROGRAM 15

Blue Sky Electronics TDIG CANbus High Level Protocol

CHANGE_MCU_PROGRAM

CHANGE_MCU_PROGRAM
This command sequence is used to change the program code running on the MCU or PLD. The
CHANGE_MCU_PROGRAM sequence is similar to the CONFIGURE_TDC sequence, but with
added safety features. The format used for the MsgID is slightly altered to make the transaction
more efficient.

For commands issued by the PC to the MCU:
MsgID[10:6] = 10000
MsgID[5:3] = xx
MsgID[2:0] = Board number

For responses by the MCU to the PC:
MsgID[10:6] = 01110
MsgID[5:3] = xx
MsgID[2:0] = Board number

Overview:
The MCU (PIC18LF8720) has 128 kilobytes of internal program memory space, which is easily
more than double the amount of program code used in TDIG (currently less than 8 kilobytes).
As initially programmed, the program code will reside in the lower half of program memory,
beginning at address 0x00000. When updated firmware is applied, the new code will be written
to the upper half of program memory (starting at address 0x10000), and once written, execution
will jump to that space. Upon reboot, a CAN message will need to be sent to jump execution
back to the reprogrammed code.

Data will be programmed in groups of 64 bytes. Every 64 bytes the data will be checksummed,
and a Program_64 command will be issued. Once the checksum is verified by the MCU, CAN
communication with the MCU will pause while the MCU writes the 64 bytes to flash memory.
After writing and verifying 64 bytes, the MCU will confirm that they have been written. This
process will continue until all program changes are complete. At that time, a final checksum will
be performed for the whole program code. Once verified, the PC will issue a JUMP_PC
command. The MCU will acknowledge the JUMP_PC command and jump its program counter
to the start of the new code. It is advised to include code at the beginning of the new code that
will send a CAN message confirming execution of the new code.

To change the code a second time, the MCU will need to be rebooted to the original code, and
the previous updated code will be overwritten. This way, the original code will never be
overwritten. It is impossible for this document to promise any features in the newly programmed
code. However, it is strongly advised that the new code not be capable of reprogramming
any flash memory.

Payload:
There are several different types of packets involved in MCU reprogramming. Each type has a
particular function and format. The type is identified by the sub-instruction field, stored in the
descriptor that forms the first byte of all reprogramming packet payloads.

 16

Blue Sky Electronics TDIG CANbus High Level Protocol

Descriptor:
The first byte of all reprogramming payloads is a descriptor field that gives information about the
command type and any errors that have occurred. The descriptor field is laid out as follows:

DES[7] = error
DES[6] = error (where used)
DES[6:4] = not used (don’t care)
DES[3:0] = sub_instruction

The sub_instruction field is used to determine which of the reprogramming packet types
commands the packet represents.

Error bits:
An error bit is set by the MCU to indicate that an error has occurred. If the MCU detects an
error, it will perform no further action, and will send back the message payload with the
appropriate error bit set. The meaning of the error bits is different for each sub_instruction, and
is described below. If the PC receives a packet with the error bit set, the safe response is to
restart the current 64 byte block by sending a new start sub_instruction and re-sending all data.

MCU to PC packets (Responses):
The MCU has a response to each packet sent by the PC, and the PC should wait for the
appropriate response to a packet before sending the next packet. The MCU responds to PC
packets by changing the Message ID. That is,

MsgID[10:6] = 01110
MsgID[5:0] = Echo (same as sent by PC)

Each error-free response by the MCU indicates that a particular action has been taken, dependent
on the sub_instruction. The actions taken by the MCU are described below.

Start Packet:
DES[3:0] = 0000

Format:

The start command’s payload contains only the descriptor.
e000 0000

e = error bit

Effect:

The start command instructs the MCU to ready itself for the transfer of 64 bytes of new program
data. Data will follow in later packets. Sending the start sub_instruction will always re-start the
64 byte transfer. Error-free response indicates that the MCU has received the start command and
is prepared to begin receiving new program data.

A start command may be issued at any time, and will always any current reprogramming
sequence.

Errors:

An error bit will be set if the MCU is not ready to accept new program data.

 CHANGE_MCU_PROGRAM 17

Blue Sky Electronics TDIG CANbus High Level Protocol

Data Packet:
Format:

DES[3:0] = 0001 (data)

Actual program data is sent in data packets, each of which contains four bytes of new program
data. In addition to the descriptor and program data, each data packet contains a 16-bit start
address. The start address is the address that the first data word is written to. The next data
word is written to start address + 1. The first data packet in a 64 byte block must have a start
address of a 64 byte block. Therefore the 6 LSB’s will be zero (e.g., 0x000, 0x040, 0x080, etc.).

e000 0001 aaaaaaaa aaaaaaaa 1ddddddd 2ddddddd 3ddddddd 4ddddddd

e = error bit
a = start address (MSB first)
1d = first data word
2d = second data word

Effect:

When the MCU receives a data packet, it will write the data words to data memory. Error-free
response indicates that the MCU has received the new program data, written it to data memory,
and is ready to receive following information.

The PIC18’s 128 kilobyte address space is addressed with 17 bits. Only 16 bits of address are
sent, and a leading 1 is appended by the MCU before writing data. This assures that only the top
half of memory can be written with new code. Sending data with a start address of 0x0000 will
result in that data being written to program memory at 0x10000. Of course, safety mechanisms
like this cannot be guaranteed in the new code.

Errors:
A data packet must be preceded by a start instruction or another data packet. The error bit is set
under either of two conditions:

1. The preceding packet was a start instruction, but the data packet address is not the start of
a 64-byte sector. A first data packet will always have a start address that is the beginning
of a 64 byte sector (that is, the 6 LSB’s will be zero).

2. A non-first data packet has a start address not equal to the previous data packet start
address plus four.

 CHANGE_MCU_PROGRAM 18

Blue Sky Electronics TDIG CANbus High Level Protocol

Checksum_64 Packet:
Format:

DES[3:0] = 0010 (chksum_64)

The message payload contains the descriptor, the start address of the just-transferred 64-byte
block, and the 8-bit checksum of that 64-byte block.

e000 0010 aaaaaaaa aaaaaaaa cccccccc

e = error bit
a = 16-bit address for START of new program data
c = checksum of previous 64 program bytes

Effect:

The Checksum_64 command is used to confirm the successful transmission of one 64-byte
block. It checks the program code that is temporarily stored in data memory, before the code has
been written to flash program memory. Therefore this message is only valid following a
completed 64-byte data transaction. It is also ok to send this command following a
Program_64 programming error.

When the MCU receives this command, it calculates a checksum from the 64-byte temporary
program array in data memory. It then compares the calculated value to that transmitted in the
CAN message. If and only if there is a match, the MCU will allow a following Program_64
command (see below) to execute.

Errors:

Three conditions can cause an error in response to a Checksum_64 packet.

1. The preceding packet was not a Data packet or a Checksum_64 packet

2. The start address provided does not match the expected start address.

3. A checksum mismatch occurs.

In all cases, the error bit will be set. In the case of a checksum mismatch, the calculated
checksum will be appended to the returned message, like so:

1000 0010 aaaaaaaa aaaaaaaa cccccccc xxxxxxxx

e = error bit (will always be 1 in this case)
a = 16-bit address for START of new program data
c = checksum sent by PC
x = data memory checksum calculated by MCU (mismatch)

A packet error (cases 1 and 2) response will not include the calculated checksum. Therefore, it is
possible to determine which type of error occurred by checking the length of the returned error
packet.

 CHANGE_MCU_PROGRAM 19

Blue Sky Electronics TDIG CANbus High Level Protocol

Program_64 Packet:
Format:

DES[3:0] = 0011

The payload contains the descriptor and a start address.
ex00 0010 aaaaaaaa aaaaaaaa

e = address error bit
x = programming error bit
a = 16-bit address for START of new program data

Effect:

The Program_64 packet is the final transaction for writing a 64 byte block to program memory.
This packet is only accepted if the previous transaction was a successful Checksum_64. When
the MCU receives a Program_64 packet following a successful checksum, the 64 bytes of new
program code are written to FLASH program memory beginning at the start address included in
the Program_64 packet and continuing through this address + 63. After the data has been written
to program memory, it will be checked against the copy stored in data memory. An error-free
response to this packet indicates that the previous 64 bytes have been successfully written to
program memory and verified.

Errors:

The Program_64 response has two error bits. The address error bit is set if the preceding packet
was not a Checksum_64, or if the start address provided does not match the expected start
address. The start address must match that of the preceding Checksum_64 packet.

The programming error bit is set if there is a mismatch between the program data temporarily
stored in data memory (and previously checksum-verified) and the data programmed into Flash
program memory. If a programming error is detected, it is ok to resend the corresponding
Checksum_64 packet and re-try the Program_64.

Final_chksum Packet:
Format:

DES[3:0] = 0100

The payload of a Final_chksum packet includes the descriptor, a final address, and an 8-bit
checksum that is the 8-bit sum of all program memory data from 0x0000 to the final address.
This is a checksum for all of the new program code.

e000 0011 aaaaaaaa aaaaaaaa cccccccc

e = packet error bit
x = checksum error bit
a = program code end address. Checksum is calculated from 0x0000 to this

address (but not including this address!)
c = 8-bit checksum of new program code

Note that the address sent with the Final_chksum packet is outside the address space used by the
new program code. It is equal to the highest address of the final 64-byte sector plus one.
Therefore this address will be a 64-byte aligned address (6 LSB’s = 0).

 CHANGE_MCU_PROGRAM 20

Blue Sky Electronics TDIG CANbus High Level Protocol

Effect:

This packet is a final checksum for the entire new program code stored in FLASH program
memory. If this checksum fails, there is little that can be done to easily correct the problem. The
entire programming sequence must likely be restarted. However, it is a necessary final check to
ensure that the new program code has made it uncorrupted into program memory. An error-free
response to this packet indicates that the entire program code has successfully made it into
program memory and is ready for execution.

Errors:

Three conditions can cause an error in response to a Final_chksum packet:

1. The Final_chksum packet was not preceded by a Start or Program_64 packet.

2. The Final_chksum packet follows a Program_64 packet, but the program code end
address does not match the expected end address (calculated by adding 0x40 to the
Program_64 address).

3. A checksum mismatch occurs.

In all cases, the error bit will be set. In the case of a checksum mismatch, the calculated
checksum will be appended to the returned message, like so:

1000 0010 aaaaaaaa aaaaaaaa cccccccc xxxxxxxx

e = error bit (will always be 1 in this case)
a = 16-bit address for START of new program data
c = checksum sent by PC
x = data memory checksum calculated by MCU (mismatch)

An address or packet mismatch (cases 1 and 2) response will not include the calculated
checksum. Therefore, it is possible to determine which type of error occurred by checking the
length of the returned error packet.

Jump_PC Packet
Format:

DES[3:0] = 0101

The payload of a Jump_PC packet includes only the descriptor.
e000 0100

e = error bit

Effect:

The Jump_PC packet instructs the MCU to jump execution to address 0x10000, the start location
of updated program code. This packet must be preceded by a successful Final_Chksum packet.
There is no guaranteed response to this message, as it causes the program counter to begin
executing new code. It is recommended that the new code be programmed to send a
confirmation upon startup.

Errors:

The error bit is set if a Jump_PC packet is preceded by anything other than a successful
Final_Chksum packet.

 CHANGE_MCU_PROGRAM 21

Blue Sky Electronics TDIG CANbus High Level Protocol

Summary
The key to understanding the reprogramming sequence is to understand what each command
does, and the circumstances under which each command is allowed to execute. Some commands
have more than one allowable preceding command. This chart will help:

Command

Required
Preceding
Command 1

Required Current
Address 1

Required
Preceding
Command 2

Required Current
Address 2

Start Any Any
Data Start ‘xxxxxxxx xx000000' Data Previous + 0x4
Checksum_64 Data Previous + 0x3C Checksum_64 Previous
Program_64 Checksum_64 Previous
Final_chksum Start Any Program_64 Previous + 0x40
Jump_PC Final_chksum N/A

Important notes:

Following an MCU restart, the MCU will be executing old code, not the reprogrammed code. In
order to switch to the new code, send a start command, followed by a Final_chksum (yes this
means the checksum must be known!), followed by a Jump_PC command. One side effect of
allowing this sequence is that a Final_chksum packet is not required to follow a Program_64
packet. However, it is strongly advised that when new program data is initially written, you
follow the final Program_64 packet with a Final_chksum packet. This helps to ensure that the
entire memory space that was supposed to be written has actually been written.

MCU Startup Message
In order to keep the user of a potentially reprogrammed system informed, a message is sent at the
beginning of the MCU code. This message uses the ID of a reprogramming packet, and a
message of this type should be used in newly reprogrammed code to indicate successful
execution of upper memory code.

Format:

The payload of a startup packet includes an upper byte of all 1’s followed by three bytes of all
zeros, representing the memory location of the startup code (location 0x00). Newly
reprogrammed code should indicate its memory location by inserting 0x10000, which is the
startup location of the new code.

11111111 00000000 00000000 00000000

Hex: 0xFF 00 00 00

 CHANGE_MCU_PROGRAM 22

Blue Sky Electronics TDIG CANbus High Level Protocol

NEW FUNCTIONS TO IMPLEMENT (OR OFFICIALIZE):

RESET TDCs
RESET TDIG

 ERROR 23

	CANbus Packet ID
	Message type
	TDC Number
	Board Number

	DATA_TO_PC
	Payload:

	SET_CONTROL
	Message ID
	‘All TDCs’ bit

	Payload:

	CONFIGURE_TDC
	Payload:
	I. Packet number:
	II. Error:
	III. Sub-instruction:

	Reapply Configuration:
	MCU to PC packets (Responses):
	Example

	GET_STATUS
	TDIG status bit
	Payload
	PC to MCU (Command):
	MCU to PC (Response):

	Payload
	PC to MCU (Command):
	MCU to PC (Response):

	MCU Restart
	Header
	Payload

	PLD Reset
	Header
	Payload

	MCU Data Readout Mode
	Header
	Payload

	CHANGE_MCU_PROGRAM
	Overview:
	Payload:
	Descriptor:
	Error bits:
	MCU to PC packets (Responses):
	Start Packet:
	Data Packet:
	Checksum_64 Packet:
	Program_64 Packet:
	Final_chksum Packet:
	Jump_PC Packet

	Summary
	MCU Startup Message

