Inclusive Jet Cross Section in the Forward Region using the K_T algorithm

Pre-blessing Talk - CDF Note 7771

R. Lefèvre, M. Martínez, O. Norniella

IFAE-Barcelona

QCD Meeting August 12th

Outline

- \rightarrow Motivation
- \rightarrow Event Selection
- \rightarrow Trigger Study
- \rightarrow MC simulation
 - Comparison Data/MC of Raw Quantities
 - Bisector Method
 - Dijet Balance
- \rightarrow Jet P_T Corrections
 - Pile-up correction
 - Average P_T^{Jet} correction
- \rightarrow Unfolding
- \rightarrow Systematic Uncertainties
- \rightarrow NLO Calculations
- \rightarrow Results

Motivation

- > Measure inclusive jet cross section
 - Stringent test of pQCD
 - Over 9 order of magnitude

✓ Tail sensitive to New Physics and PDFs

- Sensitivity to distances ~ 10⁻¹⁹ m
- \checkmark Measurements in the forward region allow to constrain the gluon distribution
 - Enhance sensitivity to New Physics in the central region

 \succ K_T algorithm preferred by theory

- ✓ Infrared/collinear safe to all order in pQCD
- ✓ No merging/splitting feature
 - $\boldsymbol{\cdot}$ No $\boldsymbol{R}_{\text{SEP}}$ issue comparing to pQCD

Event Selection

- \rightarrow Data collected in: Jet20, Jet50, Jet70 and Jet100 datasets
 - Using v5.3.1 Data (analyzed using v5.3.3nt)
 - Good Run list version 7
 - Runs [155368,155742] excluded
 - Cross section drop of about ~40%
- \rightarrow Event Selection
 - Jets defined with K_T algorithm (D=0.7)
 - Primary vertex position $|V_z| < 60$ cm
 - Missing E_T significance $E_T^{miss} / \Sigma E_T < min (2+5/400*P_T^{jet} (leading jet), 7)$
 - Jets in different Y regions:

Region 1: |Y| < 0.1(90° crack)Region 2: 0.1 < |Y| < 0.7 (Central Cal.) (Not presented here)Region 3: 0.7 < |Y| < 1.1 (Central Cal. + 30° crack)Region 4: 1.1 < |Y| < 1.6 (30° crack + Plug Cal.)Region 5: 1.6 < |Y| < 2.1 (Plug Cal.)

Scan of highest P_T events

\Rightarrow No cosmic or beam halo related background

Trigger Study: method

→Trigger Structure

 \rightarrow Study the L1, L2 and L3 Trigger Efficiency from data

→ High P_T muons: Eff. Stw5(L1)
 → Stw5 data : Eff. J15(L2) and J20(L3)
 → Jet20 data : Eff. Stw10(L1), J40(L2) and J50(L3)
 → Jet50 data : Eff. J60(L2) and J70(L3)
 → Jet70 data : Eff. J90(L2) and J100(L3)

 \rightarrow Use data only where trigger fully efficient: thresholds defined by L1 × L2 × L3 efficiencies > 99%

 $\cdot To$ avoid trigger related systematic due to energy scale uncertainties, the obtain thresholds are increased by 5%

Trigger Study: results

Raw Cross Sections

Corrections strategy

From calorimeter to hadron level

- Pile-up correction (data based)
- •Average P_T^{Jet} correction (MC based)

To correct the average energy lost in the calorimeter

Unfolding (MC based)

To account for smearing/resolution effects

The MC simulation is good in the central part of the detector... what about the forward region?

- Comparison of Raw Quantities
- Bisector Method -> study the resolution
- Dijet Balance -> understand the energy scale relative to central jets

Comparison of Raw Quantities: |Y jet | < 0.1

10

Comparison of Raw Quantities: 0.7 < |Y jet | < 1.1

Comparison of Raw Quantities: 1.1 < |Y jet | < 1.6

12

Comparison of Raw Quantities: 1.6 < |Y jet | < 2.1

Test simulation of P_T^{Jet} reconstruction

Raw comparisons show

- General good agreement between Data and MC
- But MC is not perfect (Number of Towers inside jets)

 \cdot Need to test accuracy of the simulation of the P_T^{Jet} reconstruction in the MC

→ Bisector Method -> study the resolution

- Dijet Balance -> understand the energy scale
- General Event Selection
 - 2 and only 2 jets with $P_T^{\text{Jet}} \ge 10 \text{ GeV/c}$
 - 1 and only 1 primary vertex (|Vz| < 60cm)
 - Missing E_{τ} significance cut applied in both jets

Bisector Method

Event Selection

- One jet (Jet 1) with 0.1 < $|Y^{\text{Jet}}| < 0.7$
- The other jet (Jet 2) with

 $|Y^{Jet}| < 0.1; 0.7 < |Y^{Jet}| < 1.1; 1.1 < |Y^{Jet}| < 1.6; 1.6 < |Y^{Jet}| < 2.1$

Bisector Method: σ_{D} in DATA and MC

Bisector Method: Data/MC

The two cases must be treated differently

Resolution Corrections (I)

Case 1: Resolution underestimated in the MC

• Correct the resolution by smearing P_T^{RAW} in the MC with a Gaussian (0, σ_G): $P_T^{RAW}_{Smeared} = P_T^{RAW} + \Delta P_T^{RAW}$

$$\sigma_{corr} = \sigma_{MC} \oplus \sigma_{G} = F \cdot \sigma_{MC} \text{ where } F > 1$$
$$\Rightarrow \sigma_{G} = \sigma_{MC} \cdot \mathcal{J}(F^{2} - 1)$$

- Calculate the σ_{MC} matching CAL-HAD pair of jets $\Rightarrow \sigma$ (P_T^{HAD} P_T^{CAL}) vs P_T^{CAL}
- \cdot Try different values of F
- Keep the one for which $\sigma_D^{Data} = \sigma_D^{MC}$

 $0.7 < |Y^{\text{Jet}|} < 1.1 \rightarrow F = 1.06$

 $1.6 < |Y^{Jet}| < 2.1 \rightarrow F = 1.10$

Resolution Corrections (II)

Case 2: Resolution overestimated in the MC

- The method based on the smearing of $\mathsf{P}_{\mathsf{T}}{}^{\mathsf{RAW}}$ in the MC cannot be applied
- The correction will be applied later: slightly modified unfolding factors
- To know the difference between Data and MC
 - Smear $\mathsf{P}_{\mathsf{T}}^{\mathsf{RAW}}$ in the data this time (ONLY FOR THIS) using same definition of $\sigma_{\!G}$

- Try different values of F
- Keep the one for which $\sigma_{\rm D}^{\rm Data}$ = $\sigma_{\rm D}^{\rm MC}$
 - $1.1 < |Y^{Jet}| < 1.6 \rightarrow F = 1.05$

⇒ Correction to apply to the resolution in the MC is 1/1.05

Dijet Balance: method

After the P_T resolution has been adjusted in the MC (wherever possible)

• Event Selection

- One jet (Trigger Jet) with 0.2 < $|\eta_{\text{D}}|$ < 0.6
- The other jet (Probe Jet) with $|Y^{Jet}| < 0.1; 0.7 < |Y^{Jet}| < 1.1; 1.1 < |Y^{Jet}| < 1.6; 1.6 < |Y^{Jet}| < 2.1$

Definitions

->
$$P_T^{Mean} = (P_T^{Trig} + P_T^{Prob})/2$$

-> $\Delta P_T^F = (P_T^{Prob} - P_T^{Trig})/P_T^{Mean}$
-> In bin of $P_T^{Mean} : \beta = (2 + \langle \Delta P_T^F \rangle)/(2 - \langle \Delta P_T^F \rangle)$

Event by event:
$$\beta = P_T^{Prob} / P_T^{Trig}$$

Dijet Balance: β in Data and MC

Dijet Balance: Data/MC

Pile-up correction (based on data)

→ Correction : P_T^{RAW} (Pile-up corrected) = P_T^{RAW} - $\varepsilon_{0.7}$ × (NVQ12 - 1)

 $\rightarrow \varepsilon_{0.7}$ extracted from data for jets in the central region : $\varepsilon_{0.7}$ = 1.62 $\stackrel{+}{}_{-0.46}^{0.70}$ GeV/c

- Shape of cross sections vs P_T^{JET} for two subsamples
- \Rightarrow high luminosity/low luminosity normalized ratio

```
Low luminosity: 5 to 15 x 10^{30} cm<sup>-2</sup>s<sup>-1</sup>
```

High luminosity: > 35×10^{30} cm⁻²s⁻¹

- Same study performed for the different rapidity regions used
- \Rightarrow results consistent with a single factor independent of Y^{Jet}

Average P_T^{Jet} Correction: method

After applying corrections to the MC based on Bisector Method and Dijet Balance studies

>Use PYTHIA MC to extract the average absolute P_T^{Jet} corrections

 \rightarrow Reconstruct jets at Calorimeter (P_T^{RAW}) and Hadron (P_T^{HAD}) level

 \rightarrow Match pair of CAL-HAD jets in Y - ϕ space

$$\Delta R = \sqrt{Y^2 + \phi^2} < 0.7$$

 \rightarrow The correlation < P_T^{HAD}-P_T^{RAW}> versus <P_T^{RAW}> for matched jets is reconstructed and fitted to a 4th order polynomial

• In bins of $(P_T^{HAD}+P_T^{RAW})/2$ to less bias the $P_T^{HAD}-P_T^{RAW}$ distribution

Average P_T^{Jet} Correction

Unfolding Procedure

> Use Pythia MC to correct the jet spectrum back to the hadron level

→ Count: the N_{Jet} Calorimeter level (all cuts & P_T^{Jet} corrected) N_{Jet} Hadron (no cuts)

 \rightarrow Bin-by-bin unfolding factors

$$C_i = \frac{N_{Jet} \text{ Hadron level}}{N_{Jet} \text{ Calorimeter level}} (P_T^{Jet} \text{ bin i})$$

> Apply corrections factors to the measured P_T spectrum (P_T^{Jet} corrected) to unfold it to the hadron level.

$$N_{jets}^{DATA UNFOLDED} (P_T^{Jet} bin i) = C_i \times N_{jets}^{DATA} (P_T^{Jet} bin i)$$

Unfolding Factors

PYTHIA- Tune A (not reweighted)

Re-weighting Pythia

 \succ To make the measurements independent of the jet $P_{\rm T}$ spectrum in the MC which is related to the PDF used

Unfolding Factors (weighted PYTHIA)

Resolution correction for case 2 ($1.1 < |Y^{Jet}| < 1.6$)

Reminder: case 2 = Resolution overestimated in the MC

 \cdot Correct the unfolding factors to take into account the discrepancy between data and MC on the jet energy resolution

• Corrections factors extracted from the ratio of the hadron level spectrum smeared by σ_{MC} and $\sigma_{corr} = \sigma_{MC} \times (1/1.05)$

The systematic related to the application of the dijet balance before correcting for the resolution has been evaluated: ~ 3%

30

Systematic Uncertainties

\rightarrow Jet Energy Scale

• Energy scale varied in MC according to uncertainty estimated by Jet Energy and Resolution Group

\rightarrow Unfolding

 \bullet Sensitivity to P_{T} spectrum : ratio of unfolding factors obtained from unweighted and weighted <code>PyTHIA</code>

• Sensitivity to fragmentation model: ratio of unfolding factors obtained from weighted HERWIG and weighted PYTHIA

\rightarrow Jet Energy Resolution

8% uncertainty on the jet momentum resolution

\rightarrow Pile-Up

 \bullet Pile-up corrections are changed within uncertainties obtained on ϵ_{D}

$\rightarrow P^{Jet}$ cut

- The lowest edge of each bin is varied by $\pm 3\%$ \rightarrow effect ~ 2%

\rightarrow Missing E_T significance cut

• Vary at the same time missing $E_{\rm T}$ scale by $\pm 10\%$ and jet energy scale by $\pm 3\%$ \rightarrow effect < 1%

$\rightarrow V_Z cut$

• Cut is varied by ± 5 cm \rightarrow effect ~ 0.3%

Systematic uncertainties |Y jet | < 0.1

Systematic uncertainties $0.7 < |Y|^{jet}| < 1.1$

Systematic uncertainties 1.1 < |Y jet| < 1.6

NLO calculations

- \rightarrow JETRAD CTEQ61 package
- $\mu_R = \mu_F = Maximum Jet P_T/2$

\rightarrow NLO uncertanties

- Scale μ_R = μ_F = Maximum Jet P_T
- Preliminary estimation of the uncertainties associated to the PDFs
 - -Use the four sets corresponding to plus and minus deviations of eigenvectors 5 and 15

Eigenvector 15 related to gluon PDF which dominates the uncertainty

- Uncertainties obtained by considering the maximal positive and negative deviations with respect to nominal set

- Final uncertainties will be computed taking into account all the 40 PDF sets and procedure as explained in hep-ph/0201195

\rightarrow UE / Hadronization corrections

 Correct the NLO pQCD calculations for Underlying Event and Fragmentation in order to compare to data

$$C_{HAD}(P_T^{Jet}, Y^{Jet}) = \frac{\sigma (Hadron Level Pythia Tune A with MPI)}{\sigma (Parton Level Pythia Tune A no MPI)} (P_T^{Jet}, Y^{Jet})$$

UE / Hadronization Correction

Systematic for this correction will be estimated using HERWIG (+ JIMMY eventually)

Results: $|Y^{jet}| < 0.1$

Results: $0.7 < |Y|^{jet} < 1.1$

39

Results: $1.1 < |Y|^{jet} < 1.6$

Results: $1.6 < |Y|^{jet} < 2.1$

41

Summary and plans

Inclusive jet cross section measured using 385 pb⁻¹ of CDF RunII data for jets with $P_T \ge 54$ GeV/c in four rapidity regions:

 $|Y^{Jet}| < 0.1; 0.7 < |Y^{Jet}| < 1.1; 1.1 < |Y^{Jet}| < 1.6; 1.6 < |Y^{Jet}| < 2.1$

- ${\boldsymbol{\cdot}}$ Using the K_{T} algorithm
- Fully corrected to the hadron level
- Good agreement with theory, NLO pQCD corrected for UE / Hadronization
- Complement previous measurements for central K_T jets, 0.1 < $|Y^{Jet}|$ < 0.7

Final results (final theoretical uncertainties) in a couple of months

- Start preparation of PRD
- Request Godparent Committee
 - May be the same Committee than for the central K_{T} jets PRL