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Introduction: 

Despite advances in our understanding of the pathogenesis of atherosclerosis, 

coronary heart disease is still the leading cause of death in western societies. 

Approximately 50% of all myocardial infarctions occur in patients with no prior 

symptoms. It is well established that the risk for plaque rupture is predicated by plaque 

burden and plaque composition {Naghavi, 2003 #77}. Reliable and accurate assessment 

of the composition of coronary atherosclerosis can currently achieved mainly by invasive 

methods like intracoronary ultrasound or angioscopy {Schoenhagen, 2003 #27}.  Since 

these are invasive procedures they are not suitable for preventive investigations in 

asymptomatic patients. Electron beam tomography and multidetector computed 

tomography enable an accurate noninvasive identification and quantification of calcified 

coronary plaques {Agatston, 1990 #78}. Although calcified plaques reflect only a small 

proportion of the entire plaque burden and the proportion of lesions containing calcium 

reveals a broad variability among humans it is suggested that the extent of coronary 

calcium is a surrogate marker for total plaque burden. It has been demonstrated  that 

future coronary events may be predicted on the basis of the calcium score derived by 

various CT-modalities{Arad, 2000 #89; Shaw, 2003 #51}. However myocardial infarction 

is initiated by rupture or superficial erosion of vulnerable coronary plaques and these 

plaques are not necessarily calcified as calcium is considered to be a frequent feature of 

stable lesions{Naghavi, 2003 #77}. Further there are several potential morphologic 

features such as lipid-cores that constitute potential targets for noninvasive imaging in 

particular for Multislice CT and Magnetic Resonance Imaging. Hence for risk 
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stratification and guidance of anti-atherosclerotic therapies, a noninvasive tool that can 

identify both calcified and non-calcified plaques would be of great interest. 

Clinical value of coronary atherosclerosis imaging: 

Coronary atherosclerosis starts very early in life and early stages of atherosclerotic 

lesions are already present in young adults under 20 years of age. In general the 

disease remains clinically silent for years. 50% of acute myocardial infarctions occur in 

previously asymptomatic patients and is the first clinical manifestation of CAD. In other 

patients the first clinical sign of CAD is typically stable angina pectoris, which is due to 

myocardial ischemia due to a high grade coronary lumen obstruction.  The reason for 

the late development of clinical symptoms is the fact that plaque accumulation within the 

vessel wall leads to compensatory diameter expansion, a process called coronary 

vessel remodeling {Glagov, 1987 #90}. Therefore diagnostic tests targeting the detection 

of myocardial ischemia due to high-grade coronary stenosis identify only the late 

development stage of coronary atherosclerosis. Currently, catheter based invasive 

modalities like intravascular ultrasound (IVUS) and angioscopy are almost exclusively 

used for identification of coronary atherosclerosis in a preclinical stage. IVUS has been 

shown to allow an accurate determination of coronary plaque burden and plaque 

composition (compared with histology). From post mortem histopathologic studies 

investigating the coronaries of victims of myocardial infarction it is known that the 

responsible culprit lesion in most cases reveals typical characteristics: It is an eccentric 

plaque containing a large lipid core which is covered by a very thin fibrous cap with an 

abundance of inflammatory cells (macrophages) on the shoulders. Calcium is not 

necessarily present {Virmani, 2002 #91}. In accordance to these histologic criteria IVUS 

has shown that plaque rupture initiating myocardial infarction occurred most frequently in 
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plaques with a large plaque volume with hypoechoic tissue revealing echolucent zones 

and presenting extensive compensatory vessel remodeling {Yamagishi, 2000 #125}. 

Interestingly most of these plaques caused no significant luminal obstruction on initial 

angiograms.    

Evidence from recent investigations suggests that plaque rupture is a systemic coronary 

process rather than a focal event. In a multi-vessel IVUS study of patients with 

myocardial infarction, Riofoul et. al{Rioufol, 2002 #126} identified multiple silent plaque 

ruptures in vessels distinct from the culprit lesion. Similar observations were made by 

angioscopy where multiple yellow (lipid-rich) lesions were found in patients with acute 

coronary syndromes whereas in patients with stable coronary artery disease the 

predominant plaque type was a white (fibrotic, calcified) plaque {Asakura, 1998 #136}. 

Goldstein et al. reported from the presence of multiple complex lesions in patients with 

acute myocardial infarction{Goldstein, 2000 #137}.  In accordance Leber et al. found 

significantly more noncalcified and less calcified lesions by multislice CT in patients with 

acute myocardial infarction if compared to patients with stable coronary artery 

disease{Leber, 2003 #63}. Those studies indicate that it may not be sufficient to identify 

the one vulnerable plaque that will cause MI in future because patients at risk have 

several of them.  Moreover it is necessary to identify the vulnerable patient on the basis 

of the “pan-coronary” morphology of atherosclerosis. 

  The reasons for the sudden rupture of multiple plaques are currently not totally 

understood. It is suggested that systemic inflammatory factors play a key role in the 

development of vulnerable plaques and their progression to rupture. Therefore, a 

combined approach of determining   plaque burden and plaque composition in 
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conjunction with the determination of biomarkers like CRP or s-CD40 ligand will play an 

important role for risk-stratification in the future.      

 

Plaque imaging by CT -Technical aspects: 

In contrast to other organs imaging of the heart is particular challenging due to the rapid 

heart motion that causes severe artifacts. In the past CT failed to generate diagnostic 

quality images because of its restricted temporal resolution. Former spiral-CT 

technology needed at least 500ms to obtain one tomographic slice. With the introduction 

of Electron Beam CT (EBCT) and its fast acquisition time of 100ms, the first motion free 

images of the coronaries were obtained. Albeit the excellent temporal resolution motion 

artifacts can only be avoided in a certain phase of the heart cycle during diastole. Thus 

irrespective of the heart rate it is mandatory to generate images at identical time points 

of the R-R interval, which is achieved by using an ECG-trigger. With the introduction of 

Multidetector CT (MDCT) a temporal resolution of 83-250 ms is now available. In 

addition to the faster gantry rotation the major advantage of this technology compared to 

conventional mechanical spiral CT scanners is the fact that it consists of 4-32 detector 

rows, which allow to generate 4-64 slices simultaneously. For coronary applications the 

whole volume of the heart is covered in the spiral technique with simultaneous digital 

registration of the ECG-signal. Using this approach, images can be reconstructed after 

data acquisition retrospectively at every time point of the ECG-cycle. That makes this 

technique more robust against extra systoles and arrhythmias. Furthermore, different 

trigger points can be used for each coronary vessel. 16- and 64-slice CT scanners offer 

a very high spatial resolution and generate very thin slices allowing the acquisition of 

isotropic voxels.  This has already led to a major advance in noninvasive coronary 
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angiography.  For visualizing noncalcified plaques (unlike Calcium-Scoring) contrast 

agent has to be administered intravenously and the protocols for coronary angiography 

are applied. To obtain diagnostic image quality with MDCT it is essential to reduce heart 

rates below 65bpm. This is generally done by administering oral or intravenous Beta-

Blockers. In a recent study it was demonstrated that despite beta-blockade in 15% of 

patients a sufficient heart rate reduction could not be achieved {Leber, 2004 #58}. 

Furthermore patients with renal insufficiency or those allergic to contrast agent cannot 

be investigated by MDCT.  Therefore it is not suitable for a considerable number of 

patients.  

  

CT-Imaging of non-calcified plaques: 

Plaque Composition  

Current developments in particular CT allows noninvasive imaging of coronary vessels. 

Recent investigations report very high accuracies for determining coronary stenoses. 

From studies investigating atherosclerotic plaques of the aorta and the carotid arteries 

we know that CT permits to detect and classify atherosclerotic lesions. The CT 

attenuation of plaque components correlates well with the echogenicity of ultrasound 

and even histopathologic criteria. However, only limited data concerning CT-imaging of 

coronary plaque exists. Becker et al recently demonstrated in an ex vivo study showing 

that advanced stages of coronary plaques in heart specimens can be detected by MDCT 

(Figure1){Becker, 2003 #156}. In their comparison with the histologic Stary-

classification, they found that CT could visualize type III to type VI plaque, whereas early 

stages (type I and II) were not detectable. In a 4-slice CT study, Schroeder and 

colleagues found a good correlation between the CT-attenuation measured within 
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coronary plaques and the echogenicity of plaques on IVUS {Schroeder, 2001 #158}.In 

another recent study, Leber et al. using a 16-slice CT demonstrated that non-calcified 

lesions could be detected with a reasonable sensitivity of 78% (Table 1). However they 

found that the ability of 16-slice CT to identify non-calcified plaques is restricted to larger 

more advanced lesions (with a plaque diameter of at least 1.5mm) that are located in 

proximal and middle coronary segments, which is explained by the given limitations due 

to temporal resolution {Leber, 2004 #144}. Quantitative characteristics of MDCT 

detected vs. non detected coronary plaques are shown in Table 2. Similar results were 

also reported by Achenbach et al{Achenbach, 2004 #164}.  

In accordance with previously reported results, Leber et al. also found a good correlation 

between CT-density measurements within plaques and echogenicity on IVUS. 

Hypoechoic plaques on IVUS that represented lipid-rich plaques had a significant lower 

density than fibrotic plaques. Corresponding longitudinal and axial IVUS and MDCT 

images are shown in Figure 2.  However, as in ex vivo studies they also observed a 

wide overlap of density values among fibrous and soft plaques, making the 

differentiation of these lesions very difficult. There are several reasons for this 

observation: 1. Even  by  IVUS  analysis, the separation between lipid-rich and fibrous 

tissue is difficult as the echogenicity differences between these plaques are relatively 

small. 2. Density values measured within plaques vary depending on the CT-attenuation 

within the lumen. The optimal luminal contrast enhancement for plaque differentiation 

has been found to be located within 200 and 250 HU. This value however cannot be 

consistently achieved in the clinical situation. 3. Coronary plaques are rarely composed 

only from fibrous, calcified or lipid-rich tissue. In the majority of cases all kinds of tissue 
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can be observed. CT-Density values for hypo echoic, hyper echoic and calcified plaques 

are shown in Figure 3. 

 

Vessel remodeling 

As mentioned in the introduction, positive coronary vessel remodeling is supposed to be 

a characteristic feature of vulnerable plaques. Schoenhagen et al. have demonstrated 

that MDCT offers the opportunity to visualize this compensatory diameter expansion 

{Schoenhagen, 2003 #26}. Achenbach et al. have also demonstrated that in highly 

selected patients the16-slice CT can determine positive and negative vessel remodeling 

and it is feasible to accurately determined plaque areas {Achenbach, 2004 #37}. The 

limitation of all these quantitative CT-analysis however is that they were all exclusively 

performed in patients with high CT-image quality. This high quality could only achieved 

in approximately 75% of patients.  Nevertheless these study-results indicate that MDCT 

provides a unique opportunity to identify several morphologic features associated with 

plaque vulnerability like plaque composition, plaque volume and positive vessel 

remodeling. Although the prognostic impact of these features is unknown so far and the 

first follow up studies are just underway, evidence from first clinical studies underline the 

predictive potential of MDCT.  In a clinical study MDCT-derived plaque morphology of 

patients with acute myocardial infarction and stable angina pectoris was compared.  In 

this population, patients with stable angina had significantly more calcified and less non-

calcified lesions than patients with myocardial infarction. As a consequence, total plaque 

burden of patients with myocardial infarction would have been significantly 

underestimated by calcium scoring alone. Moreover in 10% of patients with AMI only 

non-calcified lesions were present. These observations imply that non-calcified lesions 
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may be involved in the process leading to unstable coronary disease.  

Schroeder et al.19 have demonstrated that the prevalence of non-calcified lesions is 

inhomogeneous even among a patient selection with a similar high-risk profile, which 

might reflect different prognostic outcomes. They observed in 14% of patients only non-

calcified lesions, in 50% calcified and non-calcified lesions and in 36% of patients only 

calcified lesions. However future prospective studies have to prove whether patients with 

detectable non-calcified lesions are prone to develop adverse coronary events when 

compared to patients with predominant calcified lesions.  

Finally, In a recent paper Leber et al.20 performed contrast-enhanced 64-slice CT  in 

59 patients scheduled for coronary angiography due to stable angina pectoris. In a 

subset of 18 patients, IVUS of32 vessels was part of the catheterization procedure. In 55 

of 59 patients, 64-slice CT enabled the visualization of the entire coronary tree with 

diagnostic image quality (American Heart Association 15-segment model). The overall 

correlation between the degree of stenosis detected by quantitative coronary 

angiography compared with 64-slice CT was r=  0.54. Sensitivity for the detection of 

stenosis  50%, stenosis  50%, and stenosis 75% was 79%, 73%, and 80%, respectively, 

and specificity was 97%. In comparison with IVUS, 46 of 55 (84%) lesions were 

identified correctly. The mean plaque areas and the percentage of vessel obstruction 

measured by IVUS and 64-slice CT were 8.1mm2 versus 7.3mm2 (p <0.03, r  = 0.73) 

and 50.4% versus 41.1% (p<0.001, r =  0.61), respectively. 

 

Future and Conclusions – CT Imaging: 

Due to a rapid improvement of the new generation sub-millimeter multislice CT- 

technology, noninvasive tomographic imaging of the coronary vessel wall has no w 
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become a reality. First clinical studies have shown the ability of 16-slice CT to determine 

plaque burden, plaque composition and compensatory vessel-wall remodeling. These 

novel findings already constitute an important step forward in assessing coronary 

atherosclerosis non-invasively in a detailed manner that opens promising new 

opportunities for a better understanding and risk stratification of coronary 

atherosclerosis. Current limitations, mainly the insufficient accuracy to detect small 

lesions in distal coronary segments, might be overcome by improved spatial and 

temporal resolution of the next generation of CT scanners operating with 64 and more 

detectors. 
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Table 1: Sensitivity of  MDCT in the detection of different coronary plaques in vessels (58/68) 

and specificity to exclude coronary lesions. 

 soft Fibrous Calcified Total 

 sensitivity specificity 

RCA      (49/49) 

100% 

n.a. 

94/102 

92% 

(85-97%) 

LAD (76/83) 

92% 

(83-97%) 

294/315 

93% 

(90-96%) 

RCX 

 

(25/26) 

96% 

(80-99%) 

96/108 

89% 

(81-94%) 

Total 

sensitivity 

(12/16) 

 75% 

(48-92%) 

(44/54) 

81% 

(69-91%) 

(6/10) 

60% 

(26-88%) 

(62/80) 

78 % 

(67- 86%) 

sensitivity 

(27/34) 

79% 

(62-91%) 

(47/62) 

76% 

(63-86%) 

(13/16) 

82% 

(54-95%) 

(87/112) 

78 % 

(69- 85%) 

(150/ 158) 

95% 

(90- 98%) 

484/525 

92% 

(89-94%) 

Values are (n), %, (95% confidence interval) 
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Table2: Quantitative characteristics of  by MDCT detected vs. non detected coronary plaques 

 Detected Not detected 

Plaque thickness 1.5 mm ± 0.3  0.9 mm ± 0.3 

Vessel size (EEM CSA)  4.5 mm ±  1.2  3.6 mm ± 1.1 

% Plaque cross sectional area 42% ± 16% 22 ± 5% 

p-values < 0.05 for all categories  
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Figure 1 Figure 1: For analysis of IVUS- and MDCT-data the coronary arteries were divided in 

3 mm sections. White lines indicate 3 mm intervals of the RCA in the longitudinal view of IVUS 

(D)  and MDCT (B).  A: Axial MDCT view of a calcified plaque. B: Longitudinal MDCT view 
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lumen

Hypoechoic plaque

Calcium:

acoustic shadowing

catheter

A

B

C D

}3 mm

} 3 mm



 

 

14 

14 

of the RCA containing a partly calcified and non-calcified plaque, the level of image A is 

indicated by the white line.  C: Corresponding axial IVUS view. D: Longitudinal IVUS view of 

the RCA, the level of the axial image C is indicated by the arrow. 
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Figure 2: CT-Density values for hypo echoic, hyper echoic and calcified plaques: Each box 

describes the distribution of density values within one standard deviation, the whiskers above and 

below each box are describing the range between the lowest and highest observed density value. 
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The differences of the mean CT-density values between hypo echoic, hyper echoic and calcified 

plaques were significant with a p value <0.02. 
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Figure 3: Corresponding longitudinal and axial IVUS and MDCT images: 

A: IVUS of a LAD in longitudinal direction containing a hypo echoic plaque adjacent to a stent. 

B: Corresponding MDCT -reconstruction using maximum intensity projection. C: Axial 

tomographic view of the hypo echoic plaque on the level of the arrow in image A. D: Same 

plaque in axial view using multi-planar reformatted MDCT data. 
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