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Abstract

Coupled 6-DOF/CFD trajectory predictions using an automated Cartesian method are demonstrated
by simulating a GBU-31/JDAM store separating from an F/A-18C aircraft. Numerical simulations are
performed at two Mach numbers near the sonic speed, and compared with flight-test telemetry and
photographic-derived data. For both Mach numbers, simulation results using a sequential-static series
of flow solutions are contrasted with results using a time-dependent approach. Both numerical ap-
proaches show good agreement with the flight-test data through the first 0.25 seconds of the trajectory.
At later times the sequential-static and time-dependent methods diverge, after the store produces peak
angular rates, however both remain close to the flight-test trajectory. A computational cost compari-
son for the Cartesian method is included, in terms of absolute CPU time, and relative to computing
uncoupled 6-DOF trajectories through a pre-computed matrix of simulations. A detailed description of
the 6-DOF method is provided in an appendix, along with verification studies confirming its numerical
accuracy.

1 Introduction

Trajectory prediction is an important element
in Computational Fluid Dynamics (CFD) simula-
tions of bodies undergoing unconstrained, or par-
tially constrained motion. Modeling this behav-
ior involves integrating the Newton-Euler equations
for six-degree-of-freedom (6-DOF) rigid-body mo-
tion, in response to aerodynamic and other ex-
ternally applied loads. Numerous important ap-
plications for such models exist, including store
separation from an aircraft, booster separation
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from a space launch vehicle, canopy or shroud
separation, and simulation of flight control sys-
tems. Many CFD technologies have been demon-
strated for 6-DOF simulations, including struc-
tured overset[1, 2], unstructured tetrahedral[3, 4],
and hybrid prismatic/Cartesian[5]. The current
work demonstrates an integrated package for per-
forming 6-DOF simulations couple with an inviscid,
Cartesian embedded-boundary method.

Such non-body-fitted, Cartesian methods are
particularly interesting for 6-DOF applications
since they can be made both extremely fast and
robust, and the volume meshing can proceed au-
tomatically. Moreover, they are comparatively in-
sensitive to the complexity of the input geometry
since the surface description is decoupled from the
volume mesh. In the current work, the “cut-cell”
Cartesian meshing scheme of Aftosmis et al.[6] is
utilized. The intersection of the solid geometry
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Figure 1: U.S. Navy GBU-31 Joint Direct Attack Munition (JDAM) on the F/A-18C wing pylon. The dark green fins
and center carriage (frame (a)) provide the JDAM GPS guidance augmentation system which can be retrofit on a general
purpose unit such as (in this case) an Mk-84.

with the regular Cartesian hexahedra is computed,
and polyhedral cells are formed which contain the
embedded boundary. This volume meshing proce-
dure is robust, computationally efficient, and does
not require user intervention.

In order to demonstrate the utility of the Carte-
sian 6-DOF package, a U.S. Navy GBU-31 Joint
Direct Attack Munition (JDAM) store (cf. Fig. 1)
separating from an F/A–18C is simulated using
both sequential-static and time-dependent meth-
ods. This transonic JDAM separation was put for-
ward by the Navy as a “challenge” to the CFD com-
munity because it exhibited behavior that could not
reliably be predicted with conventional store sepa-
ration analysis tools (cf. Cenko [7, 8]) . The JDAM
separation provides an attractive demonstration
case because it contains a complex aircraft ge-
ometry, flight telemetry and photographic-derived
quantitative data, and also because it has been
simulated by numerous other CFD methods[9–15].
These previous CFD simulations can be broken into
two broad classes; those which computed a set of
static solutions which were used with a store trajec-
tory simulation package, and those which computed
the trajectory of the store within the CFD simula-
tion process. Both of these approaches are sup-
ported with the current methods and a cost com-
parison will be presented.

The discussion begins by reviewing the geom-
etry used in the simulations, and briefly outlines
the numerical scheme. Next it presents computed
results for the JDAM separation flight conditions
just below and just above sonic speed (M∞ =
0.962 and 1.055). These results are directly com-
pared to both flight telemetry and photographic-

derived data. The computational cost for the cur-
rent method is provided, along with a summary of
the current results and topics for future work. A
detailed description and verification of the stand-
alone 6-DOF package used with the current scheme
is included in an appendix.

2 Numerical Scheme

2.1 Geometry and Computational
Mesh

The surface geometry was provided as a set of
structured surface patches. These were converted
to water-tight surface triangulations of the various
components. The addition of an internal duct con-
necting the engine diffuser face to the exit nozzle
was required in order to form a water-tight fuse-
lage. The component geometry for the complete
F/A-18C is shown in Fig. 2, with water-tight com-
ponents shown with different colors. All of the
major components of the geometry are modeled,
including the empennage, AIM-9 wingtip missile
and rail, wing with leading-edge extensions (LEX),
the LEX fence, the engine inlet including boundary
layer vents, and the wing pylons holding a 330 gal.
external fuel tank (EFT) inboard, and the GBU-31
JDAM outboard. Note that the flight configuration
did not contain the AIM-9 wingtip missiles. Fig. 3
shows a closeup view of the JDAM in its initial po-
sition beneath the port, outboard wing pylon. The
attachment hardware and ejector mechanism is not
modeled.

Using the automated Cartesian meshing scheme
of Aftosmis et al.[6], the triangulated surface was
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Figure 2: F/A-18C surface geometry. Water-tight components are shown with different colors.

Figure 3: Closeup view of triangulated GBU-31/JDAM in
its initial position beneath the wing pylon.

used to generate an unstructured Cartesian volume
mesh by subdividing the computational domain
based upon the geometry. The sharp geometric fea-
tures contain refined cells, while areas away from
the geometry maintain a relatively coarse spacing.
The intersection of the solid geometry with the reg-
ular Cartesian hexahedra is computed, and polyhe-
dral cells are formed which contain the embedded
boundary. Regions interior to the solid geometry
are removed. The solid-wall boundary conditions
for the flow solver are then specified within these
cut-cell polyhedra.

In addition to mesh refinement near geomet-
ric features, pre-specified adaption regions are ar-
ranged around the major components of the F/A-
18 aircraft to resolve the shock structures that oc-

cur at the current flow conditions. The adaption
region which surrounds the JDAM translates with
the center of mass (c.m.) location as the store
drops. In the future, these pre-specified regions will
be replaced with automated solution and geome-
try adaptation similar to the steady-state scheme
outlined by Aftosmis and Berger[16]. A mesh re-
finement comparison was performed for the static,
steady-state simulation with the JDAM in its initial
position at the Mach 0.962 flight conditions (cf. Ta-
ble 2). The resulting volume mesh is isotropic and
contains 3.8M cells with a surface resolution of 1.0
in. A volume mesh cutting plane through the wing
is shown in Fig. 4. Details of the mesh adaptation
to the moving geometry will be presented in Sec. 3.

2.2 Flow Solver

The inviscid, parallel multigrid flow solver of
Aftosmis et al.[17] provides static, steady-state flow
simulations for Cartesian meshes. Recently, this
flow solver has been extended to provide capability
for time-dependent flows, including dynamic simu-
lations with rigid bodies in relative motion[18, 19].
The current work implements an independent 6-
DOF module which can be utilized as a stand-alone
external application, or tightly coupled within the
time-dependent flow solver. A flow diagram for
the 6-DOF/CFD simulation process is shown in
Fig. 5. The GMP interface[20] is utilized to inte-
grate the independent mesh generation, flow solver,
post-processing, and 6-DOF steps into a unified
computational framework.
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Figure 4: Cutting plane through the Cartesian volume mesh.

Volume Mesh
Generation Flow Solver Force/Moment

Post-processing 6-DOF

New Geometry at n+1

GMP

Figure 5: Process diagram for 6-DOF simulations. The
red-colored processes are serial and the blue parallel. The
GMP interface[20] provides a single repository and API for
the moving-body information required by the separate pro-
cesses.

The 6-DOF module decomposes the rigid-body
motion into a translation of the center of mass and
a rotation about an axis passing through the c.m.
location. The position of the c.m. is updated us-
ing Newton’s laws of motion in the inertial frame,
while the rotation of the body is determined by nu-
merically integrating Euler’s equations of motion in
a body principal-axis system. The rotational posi-
tion of the body is specified using Euler parame-
ters, which are updated by numerical integration
of the angular velocity. General external applied
forces, in either the aerodynamic or body coordi-
nate frames, can be specified. A detailed discus-
sion of the 6-DOF model, along with validation test
cases is presented in Appendix A.

2.3 Ejector Force Model

The JDAM is forced away from its wing pylon
by means of identical piston ejectors located in the

lateral plane of the store, -10.11 in. forward of the
c.m., and 9.89 in. aft. The ejectors extend during
operation for 6 in., and the force of each ejector
is a polynomial function of this stroke extension
(cf. Cenko[7]). As the store moves away from the
pylon it begins to pitch and yaw due to aerody-
namic forces, and the stroke length of the individual
ejectors responds asymmetrically. This response of
the ejectors to the store motion is modeled, and the
result is presented as a function of time for each pis-
ton. This modeling process for the F/A-18/JDAM
is described by Fortin et al.[14], and the results
are presented in Table 1. A consistent theme with
previous simulations is that this ejector model is
limited (cf. Cenko[8]). Since even slight errors in
the initial trajectory of the store can become aug-
mented as the separation simulation is marched for-
ward in time, researchers have modified either the
ejector model [8, 9], or the computed JDAM trajec-
tory [14], in order to provide a realistic store sepa-
ration. Physically, the JDAM is constrained by the
ejector mechanism, which is not accounted for in
simplistic models. For example, the JDAM cannot
be allowed to pitch nose-down without bound, as
physically the aft ejector would restrict such mo-
tions.

While the focus of the current work is not to de-
velop an ejector model for the F/A-18/JDAM con-
figuration, simulating the store separation with an
ejector model which has known inaccuracies serves
little purpose. An attempt to modify the ejec-
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tor model to account for the constraint imposed
by the wing pylon and ejector mechanism is pro-
posed. First, following the a posteriori observa-
tions of Cenko[8], the magnitude of the ejector
forces was increased by 25%. Next, it is assumed
that while the ejectors are accelerating (roughly
0.0 < t < 0.05 sec), the rotation of the JDAM is re-
stricted by friction between the ejector pistons and
the JDAM surface. From examining the flight data
it is clear that the rotation is not completely re-
strained, so a friction resistance equivalent to 50%
of the aerodynamic moments is imposed initially,
which is allowed to linearly decrease to no resis-
tance at t = 0.05 sec. The modified ejector forces
and friction resistance are used with all the simu-
lation results presented here.

Forward Ejector Aft Ejector
Time(sec) Force (lbf) Force (lbf)

0.00 97 97

0.01 206 223

0.02 531 283

0.03 1053 549

0.04 4723 988

0.05 4641 4708

0.06 4542 4633

0.07 4414 4528

0.08 4255 4386

0.09 0 4243

0.10 0 0

Table 1: Original modeled F/A-18C/GBU-31 ejector forces
(cf. [7, 14]).

3 Computed Results

The numerical scheme outlined in the previous
section was used to compute the separation of a
GBU-31/JDAM from an F/A-18C at the two flight
conditions listed in Table 2. The inertial properties
for the JDAM were provided by the Navy, and are
summarized in Table 3. The pylon ejector modeling
was discussed in Sec. 2.3. This configuration was
tested in the wind-tunnel using a Captive Trajec-
tory System (CTS) and in-flight by the U.S. Navy
(cf. Cenko[7]). Near sonic speeds, the variation
of pitching and yawing moments experienced by
the JDAM with Mach number becomes highly non-
linear. This strong non-linearity makes trajectory
prediction using linearized methods (cf. Keen[21])
challenging. High-fidelity CFD methods can po-
tentially provide a cost-effective, accurate tool for

predicting store trajectories at all flight conditions.

Case 1 Case 2
Mach number (M∞) 0.962 1.055

Altitude (h) 6332 ft. 10,832 ft.
AOA (α) 0.46◦ −0.65◦

Dive Angle (γ) 43.0◦ 44.0◦

Table 2: Computed flight conditions.

Sref 1.767 sq. ft.
Lref 1.5 ft.
c.m. 62.66 in. from nose
mass 2059.44 lbm
Ixx 20.02 slug - sq. ft.
Iyy 406.56 slug - sq. ft.
Izz 406.59 slug - sq. ft.
Ixz -0.680 slug - sq. ft.
Ixy 0.860 slug - sq. ft.
Iyz 0.00 slug - sq. ft.

Table 3: GBU-31 JDAM inertial properties and reference
quantities from Cenko[7].

Static, steady-state simulations were computed
with the JDAM in its initial position below the
wing pylon for both flight conditions. Surface pres-
sure contours on the body surface are shown in
Fig. 6 for the M∞ = 1.055 simulation. The shock
reflections on the wing pylons due to the stores are
visible, as are the shocks that appear on the canopy,
wing, and empennage. The cutting plane shows the
resolution of the shocks to the farfield.

The computed forces and moments on the JDAM
from the initial static simulations are compared
with wind-tunnel and flight data in Table 4. No
uncertainty predictions or error estimates are avail-
able for the wind tunnel or flight data. The com-
puted results are in good agreement with the flight
and tunnel data, with the largest discrepancy oc-
curring in yawing moment at M∞ = 0.962, which is
less than 10% variation. In general, the computed
results compare more favorably to the flight data
at M∞ = 1.055 than 0.962, as would intuitively be
expected.

3.1 Sequential-static Simulations

The current work simulates the separation of
the JDAM using both time-dependent and steady-
state methods. The inertia of the GBU-31 is very

5



Figure 6: Surface pressure contours on the F/A-18C surface (M∞ = 1.055, α = −0.65◦).

CA CY CN Cl Cm Cn

Wind Tunnel – 0.31 0.11 – -2.32 -2.76
Flight – 0.31 0.15 – -2.5 -2.8

Computed 0.67 0.33 0.09 0.16 -2.36 -2.49

(a) M∞ = 0.962, α = 0.46◦, γ = 43◦

CA CY CN Cl Cm Cn

Wind Tunnel – 0.24 -0.02 – -2.07 -2.56
Flight – 0.25 -0.05 – -2.0 -2.2

Computed 0.65 0.28 -0.03 0.15 -2.02 -2.11

(b) M∞ = 1.055, α = −0.65◦, γ = 44◦

Table 4: Computed forces and moments on the JDAM for the initial store position. Wind tunnel and flight data taken
from Cenko[7].
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large, and the expectation is that unsteady effects
are minimal, at least while the store is still close
to the pylon. This thesis is examined by com-
parison of time-dependent separation results with
”sequential-static” simulations. The sequential-
static results are presented first. In this method,
the store is repositioned at the new time level based
upon the computed loads at the previous time level
(cf. Fig. 5, Sec. 2.2), however the flow solver ig-
nores the motion of the body and treats it as a
static, steady-state problem at the new body po-
sition. This approach can be attractive when ac-
curate, time-dependent, moving-body flow solvers
are not available. In the current work, the com-
puted solution at the previous time level is trans-
fered to the new mesh, after the body has been
repositioned, to use as an initial guess. This trans-
fer process, which is described in [19] for the time-
dependent scheme, minimizes the computational
cost since the solution at the previous time level
provides a good initial guess for the solution at the
next time level.
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Figure 7: Relative displacement for sequential-static simu-
lations. Flight data from Cenko[7].

A constant timestep of ∆t = 0.0075 sec. is used
for these simulations. Due to time constraints, it
was not possible to perform a time resolution study
for these cases. Information travels roughly one
JDAM body length in 12 timesteps using this res-
olution, which is felt to be reasonable. All simula-
tions were run through t = 0.45 sec.

Computed results for the relative displacement of
the JDAM c.m. location are compared to flight data
for both computed cases in Fig. 7. Similar plots
for the angular position and angular velocity of the
JDAM are shown in Figs. 8 and 9 respectively. Be-
low t = 0.20 sec. the predicted displacement and
angular position are in good agreement with the
flight data, however the angular rate prediction has
begun to degrade. At later times, the cumulative
errors in angular position lead to a poorer agree-
ment with the flight data, while the predicted dis-
placement of the c.m. correlates well through the
simulation. The accuracy of the current predictions
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Figure 8: Angular positions for sequential-static simula-
tions. Flight data from Cenko[7].
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is commensurate with previous computed results
for this same configuration[9–15]. The degradation
of the predicted angular orientation will be dis-
cussed in the next section with the time-dependent
simulations results.
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Figure 9: Angular rates for sequential-static simulations.
Flight data from Cenko[7].

The miss distance, or the distance between the
closest points on the JDAM and any other compo-
nent of the aircraft, is presented in Fig. 10. While
the predicted displacement and angular position
are in good agreement with the flight data over
the time interval presented, the miss distance un-
derpredicts the separation between the store and
the wing pylon. The explanation for this is that
as the ejectors push away the store, there is a re-
action force applied to the pylon. This reaction
leads to a rolling moment on the aircraft which rolls
the pylon away from the JDAM, i.e. increases the
miss distance between the two. This reaction of the
aircraft is not modeled in the current work (or in
previous work in the literature), and hence the sep-

aration is underpredicted. The closest miss, which
occurs near t = 0.10 sec., is caused by the tail fins
sweeping under the pylon as the JDAM yaws nose
outboard. At t = 0.20 sec. the closest component
changes from the pylon to the EFT, as the body
continues to yaw and fall.
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Figure 10: Miss distances for sequential-static simulations.
Flight data from Cenko[7].

Figure 11 shows a series of snapshots of the sur-
face pressure as the JDAM falls through t = 0.30
sec. in the M∞ = 1.055 simulation. The nose of the
store is forced downward and outboard by the shock
from the leading-edge of the wing. This causes the
JDAM to pitch and yaw immediately upon release
from the holding pylon. The change in shock struc-
ture on the pylon as the JDAM releases can be seen,
as well as changes on the aft portion of the aircraft
fuselage. As the JDAM falls, the tail fins provide
restoring moments which cause the store pitch back
nose up and inboard (compare with Figs. 8 and 9).
A complementary series of snapshots which show
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(a) t = 0.0 sec.

(b) t = 0.1 sec.

(c) t = 0.2 sec.

(d) t = 0.3 sec.

Figure 11: Surface pressure contours during JDAM sepa-
ration computed with sequential-static approach. (M∞ =
1.055, α = −0.65◦, γ = 44◦).

(a) t = 0.0 sec.

(b) t = 0.1 sec.

(c) t = 0.2 sec.

(d) t = 0.3 sec.

Figure 12: Cutting planes through the volume mesh during
JDAM separation. Compare with Fig. 11. (M∞ = 1.055,
α = −0.65◦, γ = 44◦).
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the adaptation of the mesh to the moving geom-
etry are shown in Fig. 12. The mesh automati-
cally adapts to the new geometry position, and also
coarsens in regions the body has moved through.

3.2 Time-dependent Simulations

The previous section presented results of cou-
pled 6-DOF/CFD trajectory predictions using
sequential-static flow simulations. This is con-
trasted here with fully-coupled, time-dependent
trajectory simulations performed using the Carte-
sian moving-body solver described in [19]. Ana-
lyzing Fig. 9, the angular rate prediction for the
sequential-static simulations begins to degrade af-
ter the rotation of the body experiences both the
highest velocities and an inflection point in the ac-
celeration, i.e. near t = 0.125 for pitch rate, and
t = 0.20 for yaw rate. This combination of high
velocity and change in sign of acceleration indicate
regions in the store trajectory where dynamic, or
unsteady effects, may be significant. This is exam-
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Figure 13: Relative displacement for time-dependent sim-
ulations. Flight data from Cenko[7].

ined in Figs. 13-16, which present relative displace-
ment, angular orientation, angular rate, and miss
distance for the time-dependent simulations, com-
pared with the sequential-static simulations and
flight-test data. The data shows that the two CFD
trajectory simulations are in good agreement prior
to t = 0.125, when the pitch rate reaches a maxi-
mum. After this point, the predicted pitch behavior
is improved, however the yaw prediction degrades.
The pitch and yaw trajectories are similar in the
sequential-static and time-dependent simulations,
except for the response near the maximum rates,
i.e. the dynamic effects are largely localized to
this region of the trajectory. The relative displace-
ment prediction is nearly unchanged in the time-
dependent simulations at M∞ = 1.055, however
M∞ = 0.962 shows a relatively significant change
in vertical drop, which is not currently well under-
stood. The underprediction of the separation dis-
tance after t = 0.20 is caused by the over-predicted

0 0.1 0.2 0.3 0.4 0.5
Time (sec)

-30

-20

-10

0

10

20

A
ng

le
 (

de
g)

Flight - Photo
Flight - Telemetry
Computed - Sequential-static
Computed - Time-dependent

Yaw

Roll

Pitch

(a) M∞ = 0.962, α = 0.46◦, γ = 43◦

0 0.1 0.2 0.3 0.4 0.5
Time (sec)

-30

-20

-10

0

10

20

A
ng

le
 (

de
g)

Flight - Photo
Flight - Telemetry
Computed - Sequential-static
Computed - Time-dependent

Yaw

Roll

Pitch

(b) M∞ = 1.055, α = −0.65◦, γ = 44◦

Figure 14: Angular positions for time-dependent simula-
tions. Flight data from Cenko[7].
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yaw angle in both the sequential-static and time-
dependent simulations, which causes the tail fins to
remain close to the EFT.
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Figure 15: Angular rates for time-dependent simulations.
Flight data from Cenko[7].

Consistently, in both the sequential-static and
time-dependent simulations, the predicted roll be-
havior of the JDAM does not correlate well with
the flight data. This is not unique to the current
work, and has been noted in previous trajectory
predictions for this configuration[7–15]. Cenko[7]
notes “[roll attitude] is the hardest to predict, for-
tunately has a minimal impact on the trajectory”.
While it is true that small changes in roll orienta-
tion are likely insignificant, the current predictions
consistently vary from the flight data by roughly
5◦ of roll, and even while the store is still being
pushed by the ejectors the roll is predicted in the
opposite direction. Since the roll orientation can ef-
fect the restoring moment provided by the tail fins,
it’s unclear whether these small differences can ac-
cumulate to produce the larger errors seen in pitch
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Figure 16: Miss distances for time-dependent simulations.
Flight data from Cenko[7].

and yaw prediction in the current work.

3.3 Computational Cost

The computational cost for the current
Cartesian/6-DOF scheme is presented in two
forms; absolute and relative to computing a fixed
“database” of static results. Note that the current
work was performed with tools designed for com-
puting a single fixed static simulation, and little
effort has gone into tailoring them for sequential
moving-body calculations. All simulated results
presented here were computed using NASA Ames’
1024 CPU, single-image SGI Origin 3000 (O3K)
which has 600MHz MIPS4 processors. The current
flow solver has been demonstrated to scale linearly
to 512 CPUs on this architecture for problems of
the size considered here. The current simulations
all required roughly 260 single-CPU-hours of
computational time to complete 60 timesteps, with
less than 5% of the computational time utilized
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by the volume mesh generation process. The
sequential-static and time-dependent simulations
require the same computational time with the
current scheme. The wallclock time to complete
a simulation using 32 CPUs is approximately 15
hours. This time reflects the adverse effects of the
serial mesh generation on the parallel efficiency of
the entire process. Parallelizing the entire process,
including volume mesh generation, will be a major
focus of future work.

The current work couples together the CFD flow
solver and the 6-DOF trajectory prediction. An-
other method of integrating high-fidelity CFD with
6-DOF predictions is to build a computational
database of results, and then “fly” 6-DOF trajec-
tories through this computed database. The ad-
vantage of this approach is that once the initial
database is created, many 6-DOF trajectories can
be computed essentially at no cost. The disadvan-
tage of the database approach for 6-DOF simula-
tions is the large number of computational cases
required to build even a minimal database. For a
single fixed wind vector (M∞, α, β) there are 6
free parameters (3 displacement and 3 angular po-
sition) for a static CFD database.∗ If each of these
is allowed to vary over 10 distinct states (which
is relatively coarse), then 106 computed cases are
required to fill the database. This is impractical
even for wind tunnel programs. It is possible to re-
duce the required independent variables by assum-
ing that the horizontal and lateral relative displace-
ments are much less than the vertical, and that the
roll orientation of the body can be ignored. This
reduction leaves on the order of 1000 data points
required for steady-state simulation. In the cur-
rent work, an initial steady-state calculation is re-
quired at the initial position of the store, and each
timestep costs roughly 1/5 of a full static simula-
tion. As 60 steps were required for a full simulation
using the current timestep, the cost for the current
coupled 6-DOF trajectory simulations is roughly
10 complete steady, static simulations. This im-
plies that on the order of 100 such coupled simu-
lations can be performed for the cost of building a
coarse, approximate database. Further, each cou-
pled simulation is independent, so that the simu-
lations can be carried out in parallel. The higher
accuracy and relatively low cost makes these cou-
pled CFD/6-DOF simulations an attractive analy-
sis tool.

∗Static here refers to the absence of any dynamic stability
derivative information.

4 Summary

The utility of a coupled Cartesian/6-DOF tra-
jectory prediction scheme has been demonstrated
by simulation of a GBU-31 JDAM separating from
an F/A-18C. The Cartesian scheme provides an au-
tomated, robust meshing scheme which can easily
be integrated into a design analysis. The accu-
racy and computational cost of the current sim-
ulated results are commensurate with previous re-
sults for the F/A-18/JDAM separation computed
using body-fitted approaches.

Future work will progress on two major fronts;
understanding the discrepancies in predicted an-
gular orientation that occur at later time levels,
and optimizing the flow simulation process for these
moving-body simulations. There are many possible
explanations, both computational and experimen-
tal, for the degradation in the predicted trajectory
at later time levels. It’s important to understand
whether this behavior is related to the current ap-
proach so that it can be corrected, if necessary.
The process optimization itself will mainly focus
on parallelizing the volume mesh generation, and
incorporating solution-adaptive capability.
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Appendix

A 6-DOF Model

This appendix describes an implementation of
the unconstrained motion of a rigid body, com-
monly referred to as six-degree-of-freedom (6-DOF)
motion. The 6-DOF model is implemented as a
stand-alone package with a well-defined Applica-
tion Programming Interface (API). In this man-
ner it can easily be integrated within a CFD flow
solver, or similar application, or used as a stand-
alone package, for example when performing tra-
jectory simulations within a pre-existing database
of force and moment data.

The 6-DOF motion is computed by solving
the Newton-Euler equations for rigid-body mo-
tion. The motion is broken into a translation of
the center of mass (c.m.) of the body (Newton’s
equations), and a rotation about a centroidal axis
system attached to the body (Euler’s equations)
(cf. Fig.A.1). Here superscripts are used to des-
ignate the coordinate system, with i referring to
the inertial frame, and b the body frame. The in-
ertial frame is considered to be the natural coordi-
nate system of the geometry. Note that this inertial
frame is not in general identical to the aerodynamic
frame in which forces and moments are calculated,
so a transformation from the aerodynamic frame to
the inertial frame is required.

The mass center translation is governed by New-
ton’s laws of motion, which are written in the iner-
tial frame as

Fi = Fi
a + Fi

e + Fi
g = mr̈i

c.m. (A.1)

where the applied force acting through the center
of mass has been broken into three components; the
aerodynamic forces Fi

a, the external applied forces
(such as thrust) Fi

e, and the forces due to grav-
ity Fi

g. Equation A.1 is written in non-dimensional
variables using the reference density (ρ∞), refer-
ence velocity (freestream sonic speed a∞), and a
reference length (L). The non-dimensional mass is
thus the dimensional mass scaled by the mass con-
tained in a reference unit volume

m =
m̃

ρ∞L3

and similary the forces and gravity are non-
dimensionalized by

F =
F̃

ρ∞a2
∞L2

g =
g̃L

a2
∞

Newton’s laws can be integrated directly to give
the position of the mass center as a function of
time. Holding F constant over the discrete physical
timestep (tn, tn+1) gives

ri
c.m.(t

n+1) =
1
2
Fi

m
∆t2 + ui

c.m.(t
n)∆t + ri

c.m.(t
n)

(A.2)
where ui

c.m. is the velocity of the center of mass.
The rotational motion is governed by Euler’s

equations of motion. The body axes are specified
to coincide with the principal axes of inertia, with
origin at the center of mass (cf. Fig. A.1). Euler’s
equations are then

M b
1 = Ib

1ω̇
b
1 − (Ib

2 − Ib
3)ω

b
2ω

b
3

M b
2 = Ib

2ω̇
b
2 − (Ib

3 − Ib
1)ω

b
3ω

b
1

M b
3 = Ib

3ω̇
b
3 − (Ib

1 − Ib
2)ω

b
1ω

b
2

(A.3)

where Mb are the applied moments in the body
frame, and are broken into aerodynamic and exter-
nal components as in Eqn.A.1. ωb is the angular
velocity in the body frame, and Ib are the princi-
pal moments of inertia. Using the same reference
quantities as above, the non-dimensional applied
moments and moments of inertia are given by

Mb =
M̃b

ρ∞a2
∞L3

Ib =
Ĩb

ρ∞L5

Equation A.3 is integrated numerically using a 4th-
order Runge-Kutta scheme.

In order to transform the angular velocity into a
change in orientation, it’s desirable to use quater-
nions, often referred to as “Euler parameters”, to
specify the angular orientation of the body frame
with respect to the inertial frame (cf. Fig. A.1). A
quadratic transformation matrix A, which is com-
posed of the direction cosines, can be expressed as
the result of two successive linear transformations.
Each linear transformation is composed of the 4
Euler parameters

p =
[
e0 e1 e2 e3

]T

The transformation matrix in terms of the Euler
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Figure A.1: Inertial and body-fixed coordinate systems. Superscripts are used to designate the coordinate system, with
i referring to the inertial frame, and b the body frame. The body frame is rotated by an angle φ about the axis a relative
to the inertial frame. The body frame is the unique frame defined by the principal axes of the moments of inertia. This is
contrasted with the non-unique body frame b′ (shown in green) which is defined by convenience. The angular velocity is
ω is the principal axes frame, and (p, q, r) in the general body frame.

parameters is given by

A = 2

e2
0 + e2

1 − 1
2 e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 e2
0 + e2

2 − 1
2 e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 e2
0 + e2

3 − 1
2


(A.4)

The Euler parameters specify an axis of rotation
(a), and an angular displacement about that axis
(φ)

e0 = cos
φ

2

e1 = ax sin
φ

2

e2 = ay sin
φ

2

e3 = az sin
φ

2

(A.5)

According to Euler’s theory of motion, the Euler
parameters are the same in both the body and fixed
reference frames, so no superscript appears on p,
however note that in this case the discussion as-
sumes the reference frame is attached to the center
of mass.

Using this, the change in orientation due to ro-
tation can be found through

ṗ =
1
2
LT ωb (A.6)

which can also be integrated numerically using a
4th-order Runge-Kutta scheme. Since the Euler
parameters are unit-normalized quaternions, it’s
necessary to impose that |p| = 1 after solving
Eqn. A.6. LT is given by

LT =


−e1 −e2 −e3

e0 −e3 e2

e3 e0 −e1

−e2 e1 e0


In order to update the position of an uncon-

strained rigid body, the following procedure is thus
followed

1. Translate
Solve Newton’s law’s of motion using Eqn. A.2
for the translation of the center of mass.

2. Rotate

(a) Angular Velocity
Numerically solve Euler’s equations of
motion using Eqn. A.3 for the angular ve-
locity in the body frame.

(b) Euler Parameters
Update the orientation of the body by nu-
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merically integrating Eqn. A.6 for the Eu-
ler parameters.

3. Reposition
Position the body according ri = ri

c.m. + Arb

While quaternions are convenient for calculating
the angular position of a rigid body, they are not
always intuitive. It’s often desirable to transform
the quaternions to a set of three angles (often re-
ferred to as Euler angles) which are non-unique, but
in practice often unambiguous. The Euler parame-
ters can be converted to angular displacement (φx,
φy, φz) of the body relative to the inertial frame
using

tan(φx) =
2.0 (e0e1 + e2e3)
e2
0 − e2

1 − e2
2 + e2

3

sin(φy) = −2.0 (e1e3 − e0e2)

tan(φz) =
2.0 (e1e2 + e0e3)
e2
0 + e2

1 − e2
2 − e2

3

(A.7)

The potential singularity in x and z orientation is
obvious. These conversions are determined by com-
paring elements in the transformation matrix A, so
that a similar conversion can be derived for other
conventions.

A.1 6-DOF Model Verification

The 6-DOF implementation was verified using a
variety of analytic test cases. Integration of New-
ton’s laws (Eqn. A.1) is verified using response of
a point mass to a constant external force, and the
terminal velocity of a falling sphere examines this
integration for a non-constant external force. Inte-
gration of Euler’s Eqn. A.3 was examined using the
response of a cylinder undergoing a coupled spin.
A tumbling rectangular volume demonstrates that
the numerical implementation has the same stabil-
ity properties as the physical system.

Translation is integrated analytically according
to Eqn. A.1, holding the applied force constant
over the timestep. Since the integration is ana-
lytic, it is exact in the presence of a constant exter-
nal force. To verify this consider a point mass with
an initial upward velocity in a gravitational field.
The force due to gravity is normalized such that
mg = (0, 0,−1), and the initial velocity vector is
u = (0, 0, 1). Figure A.2 shows the exact solution
for this case compared with the computed solutions
taken with ∆t = 0.025 and ∆t = 0.1. Since the in-
tegration is exact for this constant external force,

the numerical integration reproduces the exact so-
lution at both timesteps.
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Figure A.2: Distance as a function of time for a unit point
mass in a gravitational field. The force due to gravity is nor-
malized such that mg = (0, 0,−1), and the initial velocity
vector is u = (0, 0, 1).

When the external force is non-constant, hold-
ing F fixed over the timestep results in formal
1st-order accuracy. To demonstrate this, consider
a sphere with drag coefficient CD = 0.5 falling
through air in a gravitational field. The external
force is F = mg−CD

1
2ρu2

zS. When the gravity and
drag forces balance each other the sphere reaches
its terminal velocity u∞ =

√
2mgz

CDρS . Taking ρ = 1,
S = 1, and mg = (0, 0,−1) to construct a unit
model problem, one can solve for the velocity as a
function of position for an object initially at rest
and falling in the −z direction as

uz(z) =
√

4 (1 − e0.5z)

Figure A.3 plots velocity as a function of distance
for the theoretical result and numerical experi-
ments run with ∆t = 0.1, 0.2 and 0.4. As expected
halving the timestep halves the maximum error in
the simulations providing the expected order of ac-
curacy. All simulations converge to the correct ter-
minal velocity (u∞ = −2.0) since the external force
becomes a constant at this limit.

Smart [1] presents an exact solution to Euler’s
equations of motion that corresponds to a tumbling
and spinning cylinder. For this example there is no
translation, and in the current notation the inertial
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Figure A.3: Velocity vs distance evolution of a sphere
falling in a gravitational field subject to air resistance.

properties are given by

I1 = I2

I1 − I3 = I2 − I3 = αI1

The analytic solution of the time evolution of the
angular velocities is

ω1 = a cos(λt)
ω2 = b sin(λt)
ω3 = c

Setting I1 = I2 = 1.0, α = 0.5, a = 1.0 and c = 0.5
gives I3 = 0.5 and λ = 0.25.

At t = 0, the 6-DOF model is initialized with
ω = (1.0, 0.0, 0.5). Figure A.4 shows the system’s
response to this initial condition compared against
the analytic solution with b = −1. Evolution of the
numerically-integrated angular velocities are plot-
ted for ∆t = 1.0, 2.0 and 4.0. Since the integration
is formally fourth order, the results converge very
quickly and only the symbols for ∆t = 4.0 clearly
differ from the theoretical curve. With a ∆t of 1.0
there are approximately 12 samples per wavelength.
Table A.1 provides a quantitative comparison of the
convergence, listing the error in ω1 at t = 100 as ∆t
increases. Since the error increases with time, this
is the maximum error or the interval t = [0, 100].
The data in Table A.1 shows 4th-order asymptotic
convergence, as expected.

While the system of Euler’s Eqns. decouples
when the rotation axes are aligned with any one
of the principal axes of a body, stability analysis
shows that this rotation is only stable around the
minor or major axis - rotation around the semi-
major axis is unstable. The coupling of the sys-
tem means that any small perturbation about the

0 20 40 60 80 100
Time

-1

-0.5

0

0.5

1

A
ng

ul
ar

 R
at

e

ω1  (∆t = 1.0)
ω2 (∆t = 1.0)
ω1 (∆t = 2.0)
ω2 (∆t = 2.0)
ω1 (∆t = 4.0)
ω2 (∆t = 4.0)
ω1 Analytic Soln.
ω2 Analytic Soln.

Figure A.4: Time evolution of numerical integration for
angular velocities compared with an exact solution of Euler’s
laws of motion from Smart [1].

%Error in ω1 Order of
∆t at t = 100 Improvement accuracy

0.25 5.89E-5 20.96 4.39

0.50 1.2047E-3 22.80 4.51

1.0 0.02747 25.08 4.65

2.0 0.6890 24.09 4.59

4.0 16.60 – –

Table A.1: Accuracy of numerical integration of Euler’s
Eqs. of motion for coupled rotation of a cylinder.

semi-major axis will excite rotation about the oth-
ers (cf. Thomson[2]). With I1 = 1, I2 = 10, and
I3 = 100, the 6-DOF model was initialized with
ω = (0, 0, 1), prescribing rotation around the ma-
jor axis. The system was perturbed by imposing
a moment with magnitude 0.01 about the minor
axis over the first time step (∆t = 0.1). Figure A.5
shows the system response in terms of the angular
rates around the minor and semi-major axis. As ex-
pected, the initial perturbation excites oscillations
around both of these axes, but these oscillations
disappear rapidly as the system stabilizes. Since
the system is lossless (i.e. contains no physical dis-
sipation), the rotational energy of the system must
be conserved. Figure A.6 shows the Euler angles
of the object, revealing that the initial oscillations
are transformed into a steady, but extremely small,
oscillation about both the minor and semi-major
axes. Figure A.7 shows that this oscillation persists
undamped, as expected from a lossless system.

Contrast the results of Figs. A.5-A.7 with those
shown in Fig. A.8. In the example shown in
Fig. A.8, the initial angular velocity is prescribed
as ω = (0, 1, 0) and the moments of inertia are un-
changed from the previous example. Spin is there-
fore around the semi-major axis. When the same
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Figure A.5: Time evolution of angular velocity around
minor and semi-major axes for a system initially spinning
around the major axis. System is perturbed at t = 0 with
an impulsive couple around the minor axis.
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Figure A.6: Time evolution of Euler angles showing small
oscillation excited by perturbation of system initially spin-
ning around major axis. System is perturbed at t = 0 with
an impulsive couple around the minor axis.
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Figure A.7: Late time response of system in Fig. A.6,
showing undamped response. System is perturbed at t = 0
with an impulsive couple around the minor axis.

initial perturbation is applied, the perturbation is
amplified, resulting in spin around all three axes.
It’s clear from the plot that the magnitude of the

resulting angular rates is proportional to the mo-
ments of inertia around these axes. Again, since the
system is lossless, this tumbling behavior persists
undamped.
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Figure A.8: Angular rate response to an initial perturba-
tion for an object initially spinning around its semi-major
axis at rate ω2 = 1. Coupling quickly leads to a tumbling
motion.
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