
Classic Protocol for Clients
Network interface to IRMs

Tue, Mar 3, 1998

The Classic protocol is used for data acquisition across the network with Internet Rack
Monitor (IRM) front ends. It uses UDP port number 6800 (decimal) for all messages.
The UDP datagram may contain one or more messages. The generic Classic protocol
message layout is shown schematically as follows:

typedef struct { /* Classic protocol message structure */
int16 mSize; /* size of message including mSize field */
int16 dNode; /* destination node number--may be 0000 */
int16 mType; /* hi 4 bits = message type, lo 12 bits depends on type */
int16 mRest[]; /* rest of message depends upon type */
} CLASSIC_MSG;

typedef CLASSIC_MSG[] CLASSIC_DATAGRAM; /* one or more messages in datagram */

The mSize word is the total number of bytes covered by the message, including the
mSize word. It is always an even number. Multiple messages may be concatenated
within the datagram, each message beginning with its own mSize word. There is no
logical distinction made for messages that are delivered concatenated or in separate
datagrams. In any case, messages are processed in the order that datagrams are
received and in sequential order within the datagram.

The dNode is the target node# for the message. Each IRM is identified by a node#, an
example of which is 0562 (hex). (At Fermilab, each such node is registered with the
Domain Name Server as node0562.fnal.gov, for example, so that one can easily obtain
the IP address given its node number.) The dNode field value may also be zero.

The message type number is in the most significant 4 bits of the mType word. Here are
the values of message type number that are in use:

Msg type# Meaning
0 Data reply in response to data request
2 Data request
3 Data setting
4 Analog alarm
5 Digital alarm
6 Comment alarm

The format of the rest of the message, including the least significant 12 bits of the mType
field, depends upon the message type number. The data request and data reply
message formats are described first, followed by the setting message format, followed
by the alarm message formats.

Data request message
A data request message specifies a type of data requested for a list of devices. It

is possible to ask for an array of types of data for the same list of devices, in which the
reply returns a list of data for each type of data requested. Two words were coined to

characterize the parameters to such a request. A listype specifies the kind of data
requested. Each listype specification includes the listype number and the number of
bytes of data to be returned for each device in the list of devices. Listype numbers are in
the range 0–85 as of this writing.

An ident specifies a generic device. Its format comes in several types, each depending
upon the listype used, but its length is always an even number of bytes. The first two
bytes of any ident are the target node number for the device, so that the ident
specification is global. (The only exception is used with the listype that provides for
6–character analog device name look-up, in which the ident consists only of the ascii
6–character name.) The rest of the ident format depends upon the ident type. The most
common ident type is of length 4 bytes, where the last two bytes are an index number,
such as an analog channel number or a binary bit number. Another common ident form
is the 6-byte memory address ident, in which the 2-byte node number is followed by a
4-byte memory address. Note that whenever more than one listype is used, each must
imply the same ident type, since each listype applies to the entire ident array. See the
document called Listypes and Idents for more details.

The format of a request message includes a request id that is returned in any reply
message, the reply period, the number of listypes, and the number of idents. This
header is followed by the array of listype specifications and the common array of idents
to which each listype applies. The reply resulting from such a request includes an array
of data for each ident specified for the first listype, followed by an array of data for each
ident for the second listype, etc. In case the number of bytes requested for any listype in
the listype array is odd, and the number of idents is also odd, the array of data for that
listype would end on an odd byte boundary. In this case, the reply data for the
following listype is padded to an even byte boundary. As stated before, the total size of
any Classic protocol message is padded to an even byte boundary, if necessary.

The following structures illustrate the layout for a request that uses an analog channel
number ident:

typedef struct { /* listype array element structure */
int16 lType; /* listype#*256 */
int16 nByte; /* #bytes */
} LISTYPE_SPEC;

typedef struct { /* analog channel ident structure */
int16 node; /* node number */
int16 chan; /* analog channel number */
} CHAN_IDENT;

typedef struct { /* Data request message structure */
int16 mSize; /* Message size in bytes including mSize word */
int16 dNode; /* Destination node# may be zero */
int16 mType; /* 2000(F000) + servF(0800) + msgId(07FF) */

Classic Protocol for Clients p. 2

uint8 period; /* period in cycles, or zero for one-shot */
uint8 nLtypes; /* flags(F0) + #listypes(0F) */
int16 nIdents; /* #idents */
LISTYPE_SPEC listypes[]; /* array of listype specs */
CHAN_IDENT chans[]; /* array of idents */
} DATA_REQ_MSG;

In some cases where fields are packed together, each field is associated in the comment
with the relevant mask to indicate its placement. The servF bit is the server request flag
bit that will be described later. The 12-bit msgId field is used to identify the request as
distinct from any others sent by the same client. It is echoed in the reply message. More
on this is described later.

The period byte specifies the period between replies, expressed as a count of cycles. A
period value of zero implies a one-shot request, to which only a single reply is given.
The flags nibble is used for options, only one of which is presently used. The most
significant flags bit (mask=80), if set, indicates that the period byte is an 8-bit clock
event number, so that replies to the request are to be sent only when the clock event
occurs. (In practice, clock events are sampled once per 10–15 Hz cycle, so a reply can
occur no more often than every cycle no matter how frequently the clock event occurs.)
The number of listypes indicates the number of entries in the listype specs array. Note
that all listypes used in a single request must relate to the same ident type, since the
same ident array is used for processing each listype in the array.

When a request is initialized, it is "compiled" into a form that optimizes the speed of
building replies. The first reply occurs as soon as possible; subsequent replies occur in
synchronism with the cyclic operation of the system. (For the clock event case, there is
no immediate reply.) Normal system operation begins each 10–15 Hz interrupt-
triggered cycle by updating the local data pool, including executing any local
application activities appropriate for that cycle. After the data pool is updated, which
often takes only a few milliseconds, reply messages are built for each active data request
for which a reply is due on that cycle. All reply messages built for each requesting client
as can fit are concatenated into one or more datagrams for delivery.

For a one-shot request, as soon as the reply is delivered to the network, the request is
automatically cancelled, freeing all related resources. For a periodic or clock event
request, reply messages are delivered until the requester cancels the request. A cancel
message is formatted much like an invalid data request. Build a request that specifies
the same mType word, but that indicates a zero value for both nLtypes and nIdents. No
array of listypes or idents need be included. When such a cancel message is received, all
resources for that request are freed. It is possible that the requester will see one more
reply message if it has already been queued to the network.

Note that every data request sent from the same source socket must specify a different
request id, as long as it is active. A request id should not be re-used until some time
after cancellation of a request using that request id. This is because there may be a

Classic Protocol for Clients p. 3

lagging reply message yet to be delivered to the client, or replies may continue to be
sent if the cancel was unsuccessful. If a request id is re-used in a new request message
too soon after a cancel message for a previous request is sent, a reply to the previous
request may be misinterpreted as a reply to the new request. Use request ids in the
range 0001–07EF only.

If the client receives a reply message for which the request id is unknown, a cancel
message should be sent to the socket that sourced the reply message. This technique
covers the case that a cancel message was lost, or the case that a host client "went away"
without delivering a cancel to an active request. In case the client host receives a reply
destined to an unknown socket, the host system is expected to deliver a "port
unreachable" ICMP error message. Upon reception by the server, this will cause all active
requests from that client socket to be cancelled.

Data request message—server style
The servF bit in the mType word, when set, indicates a server-style request, which

is used when a data request includes an array of idents that may include at least one
node number that is not the server node number. Upon reception of a data request with
the server flag bit set, the server will act as a client and forward the request to a
multicast destination, if appropriate, collect the replies from any nodes represented in
the ident array, arrange the reply data in order appropriate for the original request
message, and deliver the complete reply to the original client. In order for periodic
replies to server-style requests to be valid, the nodes participating in such requests must
be operating synchronously, driven by the same cyclic interrupt, normally decoded
from a suitable clock event. Operating synchronously, all nodes will update their
respective data pools simultaneously, and all will deliver replies to active requests at
about the same time. A server node, acting to fulfill a server-style request from a client,
receives all related partial replies and inserts the data according to the original request
order. At a certain time in the cycle, traditionally at 40 ms past the beginning of the
cycle, all active server-style requests for which replies are due are delivered. At this
deadline, by which time all partial replies for a given request must be received by the
server node, the server node can deliver a coherent reply to the original client. The
purpose of this server-style support is to make it easier for a host to process requests
that cross multiple nodes.

Upon reception of a server-style request, the server node examines the request,
separates out the part of the ident array that matches its own node number, and
forwards the abbreviated request to a destination that depends upon the number of
non-local nodes it finds in the ident array. If there is only one such, it forwards the
request to that specific node; if there is more than one, it forwards to a multicast IP
address that will reach all nodes that are part of one project. The forwarded request
message does not have the server bit set. (It also uses a new request id established by
the server node.) Each node in the project that receives this forwarded request message
checks for any node numbers in the ident array for which the node number matches the
local node number. If any matches, a request is initialized to deliver replies for its own

Classic Protocol for Clients p. 4

idents; all non-local idents are ignored. (If there are no matches, the receiving node
ignores the entire request.) The partial replies are delivered at the usual time early in
the cycle, to be received by the server node before the deadline, at which time the server
node delivers the composite reply, using the original client's request id in the reply
message. Thus, a number of nodes may operate synchronously to produce the
aggregate reply returned to the client by the server node.

For a one-shot server-style request, or for the first reply due from a periodic (but non-
clock event) request, there is no delay of the reply until the deadline time. As soon as
the first partial reply has been received from all nodes participating in the request, the
server node delivers the reply to the client. When a server-style request is cancelled, the
server flag bit is included in the cancel message. When the server node sees such a
cancel request message, it forwards it to the other nodes participating in the request so
that all partial replies cease and all appropriate resources are freed. There is no reply to
a cancel request message. If the cancel is unsuccessful, replies will continue to be
delivered to the host, each of which should prompt a cancel response from the host.
Very soon all communications for that request should stop.

For a data request to be considered valid, its parameters should pass some tests of
reasonableness. The number of listypes may range from 1–15, the number of idents may
range from 1–1024, and the product of the two is also limited to 1024. The size of a reply
is limited to the maximum datagram size supported, about 9000 bytes.

Data reply message
The format for a data reply message layout is as follows:

typedef struct { /* Data reply message structure */
int16 mSize; /* Message size in bytes including mSize word */
int16 dNode; /* Destination node# may be zero */
int16 mType; /* 0000(F000) + servF(0800) + msgId(07FF) */
int16 rStat; /* reply message status */
int16 data[]; /* reply data in request-implied order */
} DATA_RPY_MSG;

The low 12 bits of the mType word, including the server bit flag, are exactly the same as
those of the request message mType word. The status word applies to the entire request
and may have the following values:

Reply status Server Meaning
0 — No error
1 — Internal error—should not occur.
2 — Internal error—should not occur.
3 — Internal error—should not occur.
4 — Bus error detected in building reply.
5 S Internal error—should not occur.
6 S Internal error—should not occur.

Classic Protocol for Clients p. 5

7 S Partial reply tardy or missing
8 S Partial reply non-existent.

A non-server request that is judged invalid when received is simply ignored, and no
reply is sent. A server request that is invalid may be ignored, unless only the
contributing node can detect its validity. Some error codes apply only for server-style
requests. Bus error status may be returned for both request types.

Since only a single status value is included in a reply message, a priority system is used
to determine which nonzero value to return, in case more than one applies. Bus error
status is shown if building any part of the reply produced a bus error. Without a bus
error, an 8 takes precedence over a 7. If a 7 is received, it means that all nodes
participating in a server request have replied to the server node at least once since the
request was initialized, but that at least one node has died or is tardy in delivering its
partial reply by the deadline. An error 7 can occur when the participating nodes are not
all running synchronously, such as may occur when the interrupt trigger (or clock
signal) is removed from a node, so that it runs at a slightly slower internally-triggered
(and asynchronous) cycle rate. An 8 error means that at least one node referenced in the
ident array is not responding at all.

For a non-server request, a reply status that is nonzero is likely to mean only bus error.
For a server request, one will likely only find nonzero status values of 4, 7, 8.

Data request/reply/cancel example
The following example shows a data request sent to a node 0562 for 15 Hz analog

channel readings and settings for its own analog channels 0100, 0102, and 0107. It
includes an example reply message and a suitable cancel message. The message is
shown in integer words. Internet byte order is such that the most significant (left-hand)
byte of each word occurs first on the network.

Data request message sent from host to node 0562
001E Message size = 30 bytes.
0000 Destination node may be zero.
2001 Request message, non-server, request id = 1.
0102 Request period = 1 cycle, #listypes = 2.
0003 #idents = 3.
0000 Listype 0 = analog reading
0002 2 bytes
0100 Listype 1 = analog setting
0002 2 bytes
0562 Ident #1
0100
0562 Ident #2
0102
0562 Ident #3

Classic Protocol for Clients p. 6

0107

Data reply message returned at 15 Hz from node 0562 to host
0014 Message size = 20 bytes
0000 Destination node may be zero
0001 Reply message type, request id = 1.
0000 Status = 0. No errors.
FFFE Chan 0100 reading
0047 Chan 0102 reading
00A5 Chan 0107 reading
472D Chan 0100 setting
0040 Chan 0102 setting
00B4 Chan 0107 setting

Cancel message sent from host to node 0562
000A Message size = 10 bytes.
0000 Destination node may be zero
2001 Request message type, request id = 1.
0000 #listypes = 0.
0000 #idents = 0.

Data setting message
A data setting message uses the same listype and ident reference as used for a

data request. Some listypes, however, are not settable, such as an analog reading. A
setting command only includes one listype and one ident. One or more concatenated
setting commands comprise a setting message. Of course, one can include more than
one setting message, or any Classic protocol message, within the same datagram.

The following structure definitions show the format of a setting message for an analog
setting following the generic Classic protocol message header:

typedef struct { /* analog channel ident structure */
int16 node; /* node number */
int16 chan; /* analog channel number */
} CHAN_IDENT;

typedef struct { /* Data setting message structure */
int16 mType; /* 3000(F000) + servF(0800) + ident size in words(000F)*/
LISTYPE_SPEC listype; /* listype spec */
CHAN_IDENT chan; /* analog channel ident */
int16 data; /* setting data */
} DATA_SET_CMD;

typedef struct { /* Data setting message structure */
int16 mSize; /* Message size in bytes including mSize word */
int16 dNode; /* Destination node# may be zero */
DATA_SET_CMD setCmds[]; /* array of setting commands */
} DATA_SET_MSG;

Classic Protocol for Clients p. 7

In the mType word is the message type number, a server flag bit, and the ident size in
units of 16-bit words, not bytes. The ident size must be nonzero and serves to locate the
position of the setting data within the setting command. The format of a listype spec is
the same as before in the description of the data request message format.

The server flag bit, used to identify a server-style setting message, is analogous to that
used in the server-style request message. It allows sending a setting message to a node
other than the node that must perform the setting. When a node receives a server-style
setting message, it forwards it (with the setting flag bit not set) to the node whose node
number it finds in the first word of the ident.

When a setting message is received for which the server flag bit is not set, the Classic
protocol server invokes the appropriate setting handler that is indicated by the listype
number specified. No setting acknowledgment message is returned to the client to
indicate the success of the setting operation. (With a suitable definition of a new
message type, this could probably be easily added.) When it is vital to determine
whether the setting "worked," one may issue a data request to see whether the data was
changed. In the case of an analog channel setting, for example, one can follow the
setting message with a one-shot data request message to read the current analog setting
value. If the setting value returned matches the value that was sent in the setting
command, then the setting operation was successful. (When a setting handler processes
analog control settings, it updates the setting value only if no errors were detected in
performing the setting.) Note that in using this technique to verify the success of a
setting operation, one may include the data request message inside the same datagram
as the setting message, as long as the data request follows the setting message. All
Classic messages in a datagram are processed in sequence.

Data setting message example
The following example illustrates an analog control setting message sent to node

0508 that sets its analog control channel 0007 to 5 volts (4000):
Data setting

0010 Message size = 16.
0000 (Dest node may be zero)
3002 Setting message, non-server, ident size = 2 words.
0100 Listype 1 = analog setting.
0002 2 bytes
0508 Ident
0007
4000 Data

The following data request message and reply message would serve to verify the
success of the above setting in reading back the current value of the setting word.

Data request Data reply
0012 Message size = 18. 000A Msg size = 10.
0000 0000

Classic Protocol for Clients p. 8

2002 Request message,request id = 2. 0002 Reply msg, req id = 2.
0001 One-shot request, one listype. 0000 Reply status = 0.
0001 One ident 4000 Reply data
0100 Listype 1 = analog setting
0002 2 bytes
0508 Ident
0007

Alarm message
The alarm message format is used when a node detects a change in alarm

conditions for some analog channel or digital bit during its alarm scan that it performs
every 10–15 Hz operating cycle. A separate message type number is used for each of the
three variations of alarm messages, which include analog alarms, digital (bit) alarms,
and comment alarms. Each message format is described in turn.

typedef char[6] NAME6; /* 6-character text */
typedef char[4] UNIT4; /* 4-character text */

typedef struct { /* Time-of-day in BCD */
byte yr; /* 2-digit BCD year, range 00-99 */
byte mo; /* 2-digit BCD month, range 01-12 */
byte da; /* 2-digit BCD day, range 01-31 */
byte hr; /* 2-digit BCD hour, range 00-23 */
byte mn; /* 2-digit BCD minute, range 00-59 */
byte sc; /* 2-digit BCD second, range 00-59 */
byte cy; /* 2-digit BCD cycle, range 00-14 */
byte fill; /* filler byte */
} TOD_BCD;

typedef struct { /* analog alarm message structure */
int16 mSize; /* Message size in bytes including mSize word */
int16 dNode; /* Destination node# may be zero */
int16 mType; /* 4000 */
int16 chan; /* analog channel number */
int16 aFlags; /* alarm flags word */
int16 reading; /* analog reading prompting alarm */
int16 setting; /* analog setting */
int16 nominal; /* analog nominal used in alarm scan */
int16 tolerance; /* analog tolerance used in alarm scan */
int16 spare; /* spare word */
NAME6 name; /* 6-character ascii name text */
TOD_BCD time; /* 8-byte time-of-day in BCD */
float fScale; /* reading full scale conversion constant */
float offset; /* reading offset conversion constant */
UNIT4 units; /* 4-character ascii engineering units text */
} ANALOG_ALARM_MSG;

A node emits an analog alarm message for every change in good/bad state of an analog

Classic Protocol for Clients p. 9

channel that is enabled for alarm scanning. Analog alarm scanning includes a hysteresis
logic to prevent alarm message chatter when a reading is near the nominal-tolerance
window, defined as the range between (nom–tol) and (nom+tol). Once a channel enters
the "bad" state by its reading being found outside this window, the reading must be
found inside the half-size range of (nom-tol/2) to (nom+tol/2) for it to change to the
"good" state.

The alarm flags word modifies how the alarm scan logic proceeds for each analog
channel. Here is a list of the bits in the flags word and their meanings when set:

Bit mask Meaning
8000 Active bit. Channel enabled for alarm scanning
4000 Pattern bit. Digital logic used rather than range logic.
2000 Inhibit bit. Beam inhibit control line asserted when in bad state.
1000 spare.
0800 Beam bit. Alarm scan enabled for beam cycles only.
0400 Bypass bit. Turn off Active bit, emit good message if bad.
0200 Alarm clear bit. Used obscurely internally.
0100 Bad bit. 0=good, 1=bad.
0080 Silent bit. Inhibit sending alarm message, but keep counts.
0040 Invalid bit. Inhibits scan this time. Set if data acquisition error.
0020 spare
0010 spare
000F Tries needed count. #times needed to switch good/bad state.

The pattern flag bit modifies the analog alarm scan to perform a digital check on an
entire digital status word, as opposed to a single bit as the digital alarm scan does.
When this pattern flag bit is set, the nominal value is taken as a nominal bit pattern, and
the tolerance value is taken as a mask. The logic then exclusive-ORs the present reading
with the nominal bit pattern and ANDs with the mask. If the result is zero, the channel
is in the "good" state; otherwise, the channel is in the bad state. This logic allows
declaring an alarm condition if any selected set of bits in a digital status word deviates
from a nominal pattern. Such digital status words are built by specifications in a system
table that prescribe how to combine digital status bits into composite status words to
update a set of "analog" channel readings.

The reading scale factors are included in the analog alarm message structure so that all
information required to convert the reading value into engineering units is available
within the alarm message itself.

To determine the node number of the node reporting the alarm message, one must
obtain it from the socket that sent it. The node's name as registered with the Domain
Name Server includes the node number, as in node0562, for example. Also, one could
send a data request to the node and ask for the node number from its global system
variables—and presumably cache such results.
An example analog alarm message is as follows:

Analog alarm

Classic Protocol for Clients p. 10

002E Message size = 46.
0000 (Dest node may be zero)
4000 Analog alarm message
0107 Analog channel#
8109 Alarm flags (bad state)
438E Reading
0000 Setting
6146 Nominal
1999 Tolerance
0000 spare
4356 Device name 'CV01W '
3031
5720
9803 03/02/98 1529:47, cycle 11
0215
2947
1100
41C8 fScale = 25.0
0000
0000 offset = 0.0
0000
4750 eng units text 'GPM '
4D20

The alarm message shows that device CV01W became 'bad' as a result of its reading being
found outside its tolerance window. The time-of-day is included, down to the operating
cycle on which the alarm scan detected this condition. The scale factors and engineering
units text permit the alarm handler to announce the reading value in engineering units
by performing the linear scaling using the standard formula

eng = raw/32768*fScale + offset;
In this formula, raw is the reading taken as an integer value, and eng is the result in
engineering units, in this case in GPM.

Digital alarm message
The digital alarm message is reported by a node when a digital status bit changes

state. Each digital status bit has an associated set of alarm flags that have the same
meanings as those described in the analog alarm message section, but with one
difference. The Pattern bit is replaced by a Nominal bit that indicates the nominal bit
state, which is the state corresponding to the "good" alarm state. The opposite state is
the "bad" state. The digital alarm message format is as follows:

typedef char[16] TEXT16;

typedef struct { /* Digital alarm message structure */
int16 mSize; /* Message size in bytes including mSize word */
int16 dNode; /* Destination node# may be zero */
int16 mType; /* 5000(F000) */

Classic Protocol for Clients p. 11

int16 bit; /* digital bit number */
int16 bFlags; /* alarm flags word */
TEXT16 bitText; /* 16-character ascii bit text */
TOD_BCD time; /* 8-byte time-of-day in BCD */
} DIGITAL_ALARM_MSG;

During the alarm scan each cycle, every binary status bit is checked for a change in its
alarm state, if it is enabled by the active bit in its alarm flags word. Each change in
alarm state provokes a response. Here is an example of a digital alarm message:

Digital alarm
0022 Message size = 34.
0000 (Dest node may be zero)
5000 Digital alarm message
010C Digital bit#
9180 Alarm flags (bad state, silent)
5246 Bit text = 'RF3 DRIVER PA OL'
3320
4452
4956
4552
2050
4120
4F4C
9803 03/02/98 1611:32, cycle 5
0216
1132
0500

Comment alarm message
The comment alarm message is reported by a node for the purpose of

announcing that some remarkable event has occurred. There is no associated good/bad
state of a comment alarm. Only two comment alarms are traditionally supported. One is
emitted when a system reset occurs. The other is emitted when an alarms reset is
performed. An alarms reset means that the good/bad alarm flag bits for all analog
channels and all digital bits are reset. On the next alarm scan, then, new bad messages
will be issued for all channels and bits found to be in the bad state. The comment alarm
message layout is as follows:

typedef struct { /* Comment alarm message structure */
int16 mSize; /* Message size in bytes including mSize word */
int16 dNode; /* Destination node# may be zero */
int16 mType; /* 6000(F000) */
int16 comment; /* comment number */
int16 cFlags; /* alarm flags word */
TEXT16 commentText; /* 16-character ascii comment text */
TOD_BCD time; /* 8-byte time-of-day in BCD */
} COMMENT_ALARM_MSG;

Classic Protocol for Clients p. 12

During the alarm scan, the good/bad bit is checked in the alarm flags word for each
comment alarm that is enabled for such checking. If it is set, a message is emitted.
Comments do not really have good/bad status. That flag bit is merely used internally
by logic that wants to cause a comment message to be emitted, in order to get the alarm
scanning task to build the comment message for queuing to the network. Here is an
example comment message that occurs following a system reset:

Comment alarm
0022 Message size = 34.
0000 (Dest node may be zero)
6000 Comment alarm message
0000 Comment index#
8000 Alarm flags (active)
564D Comment text = 'VME SYSTEM RESET'
4520
5359
5354
454D
2052
4553
4554
9803 03/02/98 1627:02, cycle 1
0216
2702
0100

Summary
A host implementation for Classic protocol data request support will need to

manage request ids so that multiple requests made by clients do not conflict. One way
to do this is to allow each client to claim a separate client socket from the underlying
system. Then each client only needs to choose request ids that are different across its
own requests. This approach is simple, but it means that the same host may have
multiple client sockets issuing requests to the same target nodes, which means that
replies must be built into separate datagrams for delivery, even though they are being
sent to the same host.

A second approach is to implement host server support that uses a common source
socket to communicate with the server front ends on behalf of any number of host-
based clients. A client issues its request for data to the host server who constructs a data
request message, including allocating a request id to use for the duration of that
request's activity. When replies are received by the host server, it uses the request id in
the reply header to determine to which client it should deliver the reply data. This
approach may be more complex, but it means that the front ends send replies to only
one target socket at the host end, which in turn means that the network can be used
more efficiently, as the front end can return multiple replies in the same datagram, even
when they are destined for different clients on the same host node.

Classic Protocol for Clients p. 13

No matter what method is chosen, if a reply message is received that, according to the
request id found in the reply message, cannot be delivered to any client, then the
support should return a cancel message. Here is an example of a reply message and the
associated cancel message to be used to get the front end to cease replying.

Reply message Cancel message
000C mSize 000A mSize
0000 dNode 0000 dNode
0855 reply, servF, req id = 85 2855 request, servF, req id = 85
0000 status = 0 0000 #listypes = 0
1234 data[1] 0000 #idents = 0
5678 data[2]

Another reason for implementing this cancel support is to allow the front end to
monitor its own clients, so that it will time out delivering replies to clients that no
longer exist, perhaps because someone else in the house picked up the extension phone,
or for any other reason. Periodically, the front end may deliver a reply message to a
host socket with a request id that doesn't exist, such as 0000 or 07FF, either of which is
an invalid request id. If the front end receives a response (the cancel message), it knows
that the host socket connection still exists. If it does not, after repeated attempts to
provoke one, it may cancel the host's requests.

IRM front ends are typically configured to send alarm messages to a multicast
destination, so that multiple hosts that desire to receive alarm messages may do so
without requiring additional network activity. Alarm message host support may be
implemented by a separate program that listens to the same multicast port (#6800).

IRMs include alarm message support that permits any IRM to generate encoded alarm
messages for printing via its serial port. If the serial port is connected to a computer's
serial input, an easy alarm log can be constructed by passing the serial input data to a
capture file.

Classic Protocol for Clients p. 14

