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ABSTRACT: To date, there has been considerable work on dynamic event trees and other areas related to dy-
namic probabilistic safety assessment (PSA). The counterpart to these efforts in human reliability analysis
(HRA) has centered on the development of specific methods to account for the dynamic nature of human per-
formance. In this paper, the author posits that the key to dynamic HRA is not in the development of specific
methods but in the utilization of cognitive modeling and simulation to produce a framework of data that may
be used in quantifying the likelihood of human error. This paper provides an overview of simulation ap-
proaches to HRA; reviews differences between first, second, and dynamic generation HRA; and outlines po-

tential benefits and challenges of this approach.

1 INTRODUCTION
1.1 The Emergence of Simulation and Modeling

Cacciabue (1998) and others (e.g., Liidke, 2004)
have outlined the importance of simulation and
modeling of human performance for the field of hu-
man reliability analysis (HRA). Specifically, simu-
lation and modeling address the dynamic nature of
human performance in a way that has not been found
in most HRA methods. Concurrent to the emer-
gence of simulation and modeling, several authors
(e.g., Jae & Park, 1994; Striter, 2000) have posited
the need for dynamic HRA and have begun develop-
ing new HRA methods or modifying existing HRA
methods to account for the dynamic progression of
human behavior leading up to and following human
failure events (HFEs). Currently, there is interest in
the fusion of simulation and modeling with HRA
(e.g., Mosleh & Chang, 2003; Reer, Dang & Hirsch-

berg, 2004; Striter, 2005; Boring, 2006; Trucco,
Leva & Striter, 2006).

This latter topic is the focus of the present paper.
This paper reviews recent developments in dynamic
HRA using simulation and modeling. The purpose
of this paper is not to paint an exhaustive review of
dynamic HRA methods, but rather to explore the
general benefits and challenges of this emerging
family of HRA approaches.

1.2 Simulation and Modeling in HRA

As depicted in Figure 1, simulation and modeling
may be used in three ways to capture and generate
data that are meaningful to HRA.

* The simulation runs produce logs, which may be
analyzed by subject matter experts and used to
inform an estimate of the likelihood of human
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Figure 1. The uses of simulation and modeling in HRA.



error. This approach builds heavily on expert
estimation techniques that are commonly used
in HRA. By providing a data basis for the
HRA, the simulation allows the expert to over-
come common shortcomings in expert estima-
tion such as a failure to draw on performance
data (Boring et al., 2005). However, the expert
estimation is still subject to estimation process
biases that may not have been controlled for in
the method. Nor is an expert estimate guaran-
teed to be a valid estimate.

* The simulation may be used to produce esti-
mates of performance shaping factors (PSFs),
which can be quantified to produce human er-
ror probabilities (HEPs) based on specific
HRA methods. The challenge of such an ap-
proach is to find a mapping of available per-
formance measures from the simulation to the
specific PSFs required by a method. For ex-
ample, Boring (2006) postulated a mapping of
performance measures produced by the MI-
DAS simulation system (Gore & Jarvis, 2005)
to the eight PSFs utilized by the SPAR-H HRA
method (Gertman et al., 2005). This mapping
was complicated by the facts that MIDAS did
not produce performance measures that were
analog to all SPAR-H PSFs and that SPAR-H
was not designed to model the continuous
stream of event data provided by MIDAS.
Notwithstanding these difficulties, the tech-
nique successfully produces a method-specific
HEP for those PSFs that are encompassed in
MIDAS modeling.

* A final approach is to set specific performance
criteria by which the virtual performers in the
simulation are able to succeed or fail at given
tasks. A common performance criterion is
time to complete a task, whereby failure to
complete the task within a prescribed limit is
considered unsatisfactory performance.
Through iterations of the task that systemati-
cally explore the range of human performance,
it is possible to arrive at a frequency of failure
(or success). This number may be used as a
frequentist approximation of an HEP.

It is important to note a key distinction here be-
tween simulation and simulator data. Simulations
utilize virtual environments and virtual performers
to model the tasks of interest. In contrast, simula-
tors utilize virtual environments with human per-
formers (Bye et al., 2006). In most cases and as
noted in Figure 1, simulations and simulators may
both be used to model dynamic human perform-
ance and reliability, as both produce a log of per-
formance over time and tasks. Because simulators
use real humans, it is possible to capture the full
spectrum of human PSFs for a given task, whereas
simulations must rely on those PSFs that can be

modeled virtually. However, simulations afford
the opportunity to perform a wider spectrum of
modeling and typically allow easier and more cost
effective repeated trials than those tasks involving
humans. A large number of trials involving hu-
mans is possible but typically requires seeding or
forcing an error likely situation in the simulator
runs, which may prevent a high level of scenario
realism.

1.3 First and Second Generation Human
Reliability

For a number of years, there has existed a distinc-
tion between first and second generation HRA
methods. The guidance for classifying a particular
method as first or second generation has not been
entirely consistent. For example, Hollnagel’s
(1998) CREAM HRA method makes a strong ar-
gument for considering the HRA methods’ use of
cognitive factors. Hollnagel argues that the so-
called first generation HRA methods did not con-
sider cognition among their PSFs. More modern
methods—the so-called second generation HRA
methods—explicitly consider and model cognitive
PSFs. The delineation fits nicely with the ascent
of the cognitive psychological movement. First
generation HRA methods coincided with pre-
cognitive movements in psychology; second gen-
eration HRA methods harnessed findings and in-
sights from the then nascent cognitive movement.

In contrast to CREAM, adherents of the AT-
HEANA HRA method (US Nuclear Regulatory
Commission, 2000) have in practice developed a
differentiation between first and second generation
HRA methods on other lines. In ATHEANA, con-
text becomes the key to demarcation between first
and second generation HRA. Earlier, first genera-
tion methods largely failed to consider the context
in which humans made errors, while later, second
generation methods carefully consider and model
the influences of context on the error.

Other distinctions have been drawn based on
the consideration of errors of commission in sec-
ond generation methods, as opposed to a heavy fo-
cus on errors of omission in first generation meth-
ods. More generally, the HRA community has
been inclined to refer to the HRA generational gap
simply in terms of chronology. The oldest, first
developed HRA methods are colloquially consid-
ered first generation methods, while subsequent
methods—the descendants of the earlier meth-
ods—are considered second generation methods.
Not so coincidentally, these latter or second gen-
eration methods tend to be easier to use and have a
broader coverage than earlier methods. Thus, the
de facto defining characteristics of second genera-
tion methods are the methods’ relative novelty (at



least chronologically speaking), their simplicity,
and their comprehensiveness.

The tidy distinctions of the four classificatory
Cs—cognition, context, commission, and chronol-
ogy—are blurred when one considers an HRA
method like SPAR-H (Gertman et al., 2005).
SPAR-H was developed as a simplified quantifica-
tion method built upon THERP (Swain & Gutt-
man, 1983), an unambiguously first generation
method. SPAR-H augments THERP with an in-
formation processing framework, a theoretical
model akin to cognitive psychology. Using the
cognitive definition of first and second generation,
one would clearly consider SPAR-H a second gen-
eration HRA method due to its consideration of
cognition. However, if one considers context as a
defining characteristic of second generation meth-
ods, SPAR-H falls short and might be considered a
first generation method or even a hybrid (1.5th
generation) method. SPAR-H as a method is
largely indifferent to errors of omission and com-
mission, suggesting it might be more a first genera-
tion method. Yet, SPAR-H is newer and repre-
sents at least an iterative modification to its first
generation ancestor. So, chronologically, it
doesn’t seem quite right to call SPAR-H a first
generation method, as one might if context or er-
rors of commission are the deciding factors.
Clearly there is room for debate, which may not
always prove an entirely illuminating endeavor in
terms of determining the suitability or quality of a
particular HRA method. First generation methods
like THERP are still widely and successfully em-
ployed, while some second generation methods
have remained underutilized.

1.4 Introduction to Dynamic Human Reliability

In the face of any unresolved debate over first and
second generation HRA methods, what advantage
can be had by positing a new—possibly a third
generation—of methods? My purpose is not po-
lemic. Instead, I wish to highlight significant re-
cent developments that render the distinction be-
tween first and second generation HRA methods
largely moot. There are more interesting and more
important developments in HRA on the horizon,
and it is time to augment first and second genera-
tion HRA methods. First and second generation
HRA methods do and will continue to play a role
in classifying and quantifying human performance.
First and second generation methods should con-
tinue to be implemented wherever needed; second
generation methods should continue to be re-
searched and improved to ensure an efficient, ac-
curate, and complete capture of human perform-
ance.

There exist developments—namely in human
performance simulation—that do not fit the classi-

fication of first or second generation HRA meth-
ods. Human performance simulation utilizes vir-
tual scenarios, virtual environments, and virtual
humans to mimic the performance of humans in
actual scenarios and environments. What sets this
form of HRA apart is that it provides a dynamic
basis for HRA modeling and quantification. First
and second generation methods, by any definition,
have featured largely static task analyses of operat-
ing events as the underlying basis of performance
modeling. These methods have also relied on per-
formance estimations mapped to similar previous
performance derived through empirical data or ex-
pert opinion. Simulation-based HRA differs from
its antecedents in that it is a dynamic modeling
system that reproduces human decisions and ac-
tions as the basis for its performance estimation.
As noted earlier, simulation-based HRA may util-
ize a frequentist approach for calculating HEPs, in
which varieties of human behaviors are modeled
across a series of Monte Carlo style replications,
thus producing an error rate over a denominator of
repeated trials. Simulation-based HRA may also
augment previous HRA methods by dynamically
computing PSF levels to arrive at HEPs for any
given point in time.

Simulation-based HRA may be called third
generation HRA on the basis of those features and
limitations that are unique to it. The remaining
sections of this paper recapture earlier published
research (Boring, 2006; Boring et al., 2006) that
has evolved into the present framework of simula-
tion-based HRA. The purpose of this paper is not
to wax prophetic about systems that have yet to be
developed. Indeed, there exists no modeling or
simulation tool that yet completely or perfectly
combines all elements of simulation-based HRA.
There is, however, significant work already un-
derway. For example, error modeling is already
found in the MIDAS simulation system. Further
efforts are being undertaken to infuse specific
HRA PSF modeling into MIDAS (Boring, 2006).
Another system, the Information, Decision, Action
in Crew context (IDAC) model (Chang & Mosleh,
in press), combines a realistic plant simulator with
a cognitive simulation system capable of modeling
PSFs. As these and other systems are fully imple-
mented, the path has been paved for the next gen-
eration of HRA through simulation and modeling.

2 SOME BENEFITS OF DYNAMIC HUMAN
RELIABILITY MODELING

2.1 Estimation of Human Error

The chief advantage of incorporating human error
modeling into a cognitive modeling system is the
ability to estimate the safety of novel equipment
and configurations. It is anticipated that in many



cases, there is a significant cost advantage in utiliz-
ing modeling to screen new equipment virtually vs.
the cost of configuring a simulator with new
equipment and enlisting appropriate personnel
(e.g., control room staff) to perform representative
tasks. The main costs associated with a modeling
implementation are those related to programming
the functionality of the novel equipment into the
simulation as well as those scripting efforts re-
quired to “train” the virtual personnel to interact
with the system. In contrast, an equal program-
ming effort would be required to incorporate the
novel equipment into a reconfigurable simulator,
plus, in many cases, there would be special train-
ing required for personnel to ensure their proper
interaction with the system. Cost savings are also
realized through the reduced time to run simula-
tions vs. simulator trials. Because modeling sys-
tems can be used to run an unlimited number of
scenarios virtually without actual humans, once
configuration of the simulations is initiated, results
may be produced on an almost instant basis. Fur-
ther, it is possible to run the simulation through a
broad range of scenarios (e.g., a variety of normal
and off-normal conditions) that would require ex-
tensive testing across multiple trials when using
actual personnel in a simulator.

Of course, modeling-based screening of novel
equipment and configurations is not a surrogate for
testing with actual personnel. The results pro-
duced by simulations are inherently limited by the
fidelity of the underlying modeling. While simula-
tions may represent a high-fidelity approximation
of the environment, equipment, and human opera-
tors involved in the scenario, the predictive ability
of simulation is hampered by epistemic and alea-
tory uncertainty—mismatches and shortcomings
attributable to lack of a full understanding of the
modeling parameters and random variance, respec-
tively. Ongoing improvements to the underlying
cognitive and human-human interactive modeling
included in simulation will mitigate epistemic un-
certainty, and repeated simulation trials in Monte
Carlo fashion can control for much aleatory uncer-
tainty. Nonetheless, it must be emphasized that
modeling can only be an approximation of actual
human performance. Simulation and modeling are
an especially effective tool to screen and rule out
novel equipment and configurations that are not
optimized for safe, efficient, and usable personnel
utilization. In identifying problem areas for human
performance, simulations complement simulator
studies by helping narrow the field of possible ar-
eas to investigate.

2.2 Determination of Risk Significance in
Retrospective Analyses

For infrequent occurrences, including incidents at
power plants, there is often inadequate operations
experience to provide data-based quantification of
human performance in HRA. Utilities, research-
ers, and regulators who wish to determine the risk
significance of such past events retrospectively
will utilize HRA estimation methods to the extent
that they encompass the PSFs and scenarios at play
in the event. However, because of the scarcity of
available data, it is often necessary to utilize expert
estimation techniques, which have historically
been fraught with poor inter-analyst reliability
(Boring et al., 2005).

Human performance simulation avoids the
shortcomings of applying an HRA quantification
method in a poorly suited domain or utilizing ex-
pert opinion to arrive at the human contribution to
the risk of an event. Instead, by scripting a sce-
nario that closely matches the past event, it is pos-
sible to generate simulation runs with the virtual
personnel to arrive at an estimate of the frequency
with which human performance elevated the risk
of the scenario. This approach increases the verac-
ity of risk estimation.

2.3 Certification of Novel Staffing Levels in
Control Rooms

Specific to the nuclear industry, currently regulated
staffing levels in plant control rooms are based on
the requirements of contemporary reactor designs.
With the advent of next-generation reactor and
control room designs, with a potentially greater
emphasis on passive safety systems and autono-
mously regulated control systems, the role of the
control room operators is significantly changed
(Boring et al., 2005). These updated control room
designs will likely decrease the number of simulta-
neous control room and plant staff required to
carry out the safe operation of the plant. Ultilities
and regulators are actively seeking ways to certify
that reduced staff can perform all required plant
operations within safe human performance levels
(Persensky et al., 2005).

While no control room design should be certi-
fied solely on the basis of simulation data, the in-
clusion of carefully and realistically modeled
simulations serves to validate data acquired using
human participants in research studies or opera-
tions logging. Factors of particular interest in con-
sidering reduced staffing levels include crew per-
formance in terms of cognitive workload, fatigue,
and stress during normal and off-normal opera-
tions. A simulation of these factors provides an
unambiguous mapping of staffing to performance.
The novel control room may thus be designed to



prevent circumstances in which a reduced crew
contributes to the risk of a plant. Demonstrated
problem areas may be effectively mitigated by ad-
ditional safety systems or by backup staff. The
flexible nature of simulations affords the opportu-
nity for efficient iteration of designs to arrive at the
optimal safe staffing level for novel control room
configurations.

3 SOME CHALLENGES OF DYNAMIC
HUMAN RELIABILITY MODELING

3.1 Static vs. Dynamic Human Reliability

Most HRA methods are designed to capture human
performance at a particular point in time. These
models can be considered static HRA models, in
that they do not explicate how a change in one PSF
affects PSFs and the event progression down-
stream. Of course, most HRA methods do account
for dependency, which is the effect of related
events on the HEP calculation. Generally, if two
events in a sequence are related, it is assumed the
dependent likelihood of the downstream errors is
greater if they were preceded or primed by an er-
ror-enhancing system. Dependency, however, is
typically based on an overall HEP and does not
systematically model the progression of PSF levels
across events. Dynamic HRA, as afforded by
simulation environments, needs to account for the
evolution of PSFs and their consequences to the
outcome of events.

An issue related to dependency in static HRA is
the level of granularity accounted for in the task
decomposition. In HRA, events are decomposed
into a series of subevents, steps, actions, or goals.
Most HRA methods follow general task analysis
guidelines for event decomposition, but there is
significant variability in the level of decomposition
adopted across analyses and analysts. While one
analysis may focus on a detailed step-by-step
breakdown of human actions and intentions (e.g.,
the approach adopted in GOMS-level task analy-
ses), another may cluster human actions at a high
level according to resultant errors (e.g., the ap-
proach often adopted in probabilistic safety as-
sessment). This inconsistency is particularly prob-
lematic in making headway on dynamic HRA,
because:

* Most simulation systems offer a highly detailed
level of task decomposition that may be in-
compatible with certain HRA approaches;

* Adjustments to HEPs for dependency based on
human action clusters may be artificially in-
flated when used with a highly detailed level of
task decomposition, because there is no granu-
larity adjustment on dependency calculations;

* No current HRA method offers guidance on the
treatment of continuous time-sliced HEP
calculation as is afforded by dynamic HRA.

Another important aspect of dynamic HRA is
the need to consider PSF latency and momentum.
PSF latency refers to the phenomenon that a PSF,
once activated, will retain some activation across
tasks in a scenario. The PSF activation may de-
grade over successive tasks, but the PSFs for a par-
ticular point in time cannot be determined without
consideration of the antecedent PSF states. Like-
wise, the dynamism of antecedent PSF states must
be considered. PSF momentum refers to the pro-
pensity of the antecedent PSF to change. A PSF
momentum may mean that the effects of a PSF
such as stress may actually continue to increase
when emerging from an increasingly stressful task
situation. This information can be accounted in
part by tracking the history of task outcomes in the
scenario. Positive actions and recovery are cred-
ited by a progressive decrease in the negative ef-
fect of a PSF. In contrast, unsuccessful actions and
human errors serve to increase the negative effect
of a PSF. Once a positive or negative effect of the
PSF is underway, a reverse in outcome will not in-
stantly wipe out the positive or negative momen-
tum of the PSFs.

3.2 Types of PSF Adjustments

As noted earlier, one way to map simulation data
to HRA is by dynamically calculating PSF levels.
In order to understand how PSFs may be adjusted
in a simulation, it is necessary to understand sce-
narios.  Modeling systems execute scenarios,
which are scripted to encompass the predictable as
well as unpredictable series and progression of
events. The simulated operators are equipped with
a rich collection of laws of human performance,
thereby closely approximating human behaviors
across all events that comprise a scenario. The
scenario simply serves as a figurative roadmap to
guide the activities of the simulated operators.
Operators respond to the scenarios according to
their defined behavioral repertoire, incorporating
minute variations in behavior in each run of a sce-
nario. To capture the breadth of human behavior,
it is therefore necessary to run multiple trials of
each scenario using the simulated operators.

Not only are the actions and outcomes by the
simulated operators important, it is also important
to capture and manipulate the PSFs that affect
those actions. A realistic simulation is comprised
not only of the normal aleatory span of human be-
havior for a given situation but also the range of
PSFs that influence and result from the situation
and the actions throughout the course of a scenario.



Table 1 depicts the three types of modifications
to PSFs that may occur throughout a particular
scenario. In a static condition, the PSFs remain
constant across the events or tasks in a scenario.
For example, in many scenarios, the person’s fit-
ness for duty—the person’s physical and emotional
health with regard to performing the required
tasks—is set at the onset of the scenario and is not
expected to change throughout the scenario.
Across the progression of the scenario, the person
is not expected to suffer a lapse in physical health
or psychological state of mind that would affect
the outcome of the scenario. In a dynamic pro-
gression, PSFs evolve naturally across events or
tasks in a scenario. Again, using the example of
fitness for duty, there are circumstances in which
fitness for duty would naturally degrade through-
out the scenario. Such would be the case, for ex-
ample, during an unusually long work shift, in
which fatigue—a negative contributor to fitness for
duty—would be expected to set in. Finally, when
there is a dynamic initiator (cf. “initiating event” in
the traditional parlance of HRA), in which a sud-
den change in the scenario causes changes in the
PSFs. A sudden change may be introduced into the
environment that would decrease the person’s fit-
ness for duty. For example, the person may be
physically injured, or the person may receive “bad
news” that interferes with his or her ability to con-
centrate on the tasks at hand. Note that while a
dynamic progression may encompass both positive
and negative outcomes on the PSF, the dynamic
initiator is assumed to have a negative outcome.
The likelihood and consequence of a sudden, unan-
ticipated hardware failure, for example, is assumed
to be greater than the likelihood and consequence
of the spontaneous recovery of a failed hardware
system.

Table 1. Types of PSF modifications.

Static Dynamic
Condition Progression

Dynamic
Initiator

PSFs remain con- A sudden change
PSFs evolve . 8
stant across the . in the scenario
. across events in a .
events in a sce- . causes changes in
scenario.

nario. the PSFs.

It is crucial in dynamic modeling of HRA to con-
sider all three types of PSF modifications. The
simulation must:

* Include the nominal effects of a PSF for static
conditions.

* Feature the full range of PSF effects, from per-
formance enhancing to performance decreasing
effects.

* Incorporate the natural cause-and-effect rela-
tionship of one task on another in terms of the
PSF progressions.

* Consider PSFs over time, in terms of diminish-
ing effects (i.e., the natural decay of an effect)
and effect proliferation (i.e., the natural in-
crease of a PSF over time, even if it begins as a
latent effect).

* Reconfigure PSFs in the face of changing sce-
narios while retaining PSF latency and momen-
tum states from the scenario forerunner for a
suitable refractory period (e.g., if the person is
stressed prior to a scenario switch, the “stress”
PSF should remain active despite the new sce-
nario because of the person’s inability to re-
lease built-up stress instantly).

4 DISCUSSION

As described in this paper, human performance
simulation reveals important new data sources and
possibilities for exploring human reliability. These
data sources hold tremendous promise for HRA,
but there are significant challenges to be resolved,
particularly with regard to the dynamic nature of
HRA vs. the mostly static nature of conventional
first and second generation HRA methods. Before
the benefits of simulation-based HRA may be real-
ized, these limitations need to be addressed. This
paper has endeavored to provide a prescriptive
course of research in the form of limitations to be
answered by the forthcoming generation of HRA.
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