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/ Outline of the Talk

First-Passage Algorithms
e Walk on Spheres (WOS)

e Greens Function First Passage (GFFP)
e Simulation-Tabulation (S-T)
e Walk on Subdomains (biochemistry)
e Walk on the Boundary
Applications
e Materials Science
e Biochemistry

Last-Passage Algorithms
\Conclusions and Future Work
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/ Stochastic Methods for Partial
Differential Equations (PDEs)

Examples for Solving Elliptic PDEs (Path Integrals)

e Exterior Laplace problems and electrostatics
e Electrical capacitance
e Charge density
Advantages of Stochastic Algorithms (Curse of Dimensionality)
e Can avoid complex discrete objects
e Can deal with complicated geometries/interfaces

e Can often cope with singular solutions

\_
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Brownian Motion and the

Diffusion /Laplace Equations

Cauchy problem for the diffusion equation:

1
Uy = §Au (1)
u(z,0) = f(x) (2)
in 1-D: o
wat) = [ wle—p.05w)dy 3
where
1 (z—y)?

N /
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Brownian Motion and the

Diffusion /Laplace Equations

u(z,t) = Eu[f(X*(1))]

e X*(t): a Brownian motion which has w(x — y,t) as the

transition probability of going from x to y in time ¢

e E.[.]: an expectation w.r.t. Brownian motion

B0 = [ wle—u 05wy

— 00

(6)

/
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KI‘he First Passage (FP) Probability is the\

Green’s Function

A related elliptic boundary value problem (Dirichlet problem):
Au(x) =0, xe
u(x) = f(x), x €N (7)
e Distribution of z is uniform on the sphere
e Mean of the values of u(z) over the sphere is u(x)
e u(x) has mean-value property and harmonic

e Also, u(x) satisfies the boundary condition

u(x) = o [f(X*(to0))] (8)
N a /
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The First Passage (FP) Probability is the

Green’s Function

Q

X*(t)

X7 (tag)
first—passage loc

~
N Z
\

. Xx; starting point

\_ /
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K]_“he First Passage (FP) Probability is the\

Green’s Function (Cont.)

Reinterpreting as an average of the boundary values

u) = [ plxy)F()dy 9
o2
Another representation in terms of an integral over the boundary
dg(x,y
u) = [ py)ay (10)
o0 n

g(x,y) — Green’s function of the Dirichlet problem in {2

fic/gc,Y) (11)
\_ /
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/ ‘Walk on Spheres’ (WOS) and Green’s
Function First Passage (GFFP)
Algorithms

e Green’s function is known
— direct simulation of exit points and computation of the
solution through averaging boundary values

e Green’s function is unknown
—> simulation of exit points from standard subdomains of €2

e.g. spheres
—> Markov chain of ‘Walk on Spheres’ (or GFFP algorithm)

{x0 = x,%x1,...}
x; — Of) and hits e-shell is N = O(In(e)) steps
K xN simulates exit point from 2 with O(e) accuracy

Y

~
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WOS:

Function First Passage (GFFP)
Algorithms

Shell thickness >~ .

/ ‘Walk on Spheres’ (WOS) and Green’s\

/
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running time (secs)
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/ Various Laplacian Green’s Functions: \

GFFP

(a) Putting back (b) Void space (c) Intersecting

N /
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/Geometry for Permeability Computations\

N /
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KThe Simulation-Tabulation (S-T) Method\

for Generalization

e Green’s function for the non-intersected surface of a sphere
located on the surface of a reflecting sphere
Absorbing Sphere

Q>

Reflecting Sphere

N /
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/ Example: Solc-Stockmayer Model

without Potential

»»»»»»»»

/ Reactive patch

\_

/
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/ Another S-T Application: Mean \
Trapping Rate

In a domain of nonoverlapping spherical traps :

N /
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/ Biological Electrostatics: Motivation \

Electrostatics are Extremely Important in Quantitative
Biochemistry:

e Ligand binding

e Protein-protein interactions

e Protein-nucleic acid interactions

e Prediction from primary structure information
In Vivo Electrostatics Must Include the Solvent

e Explicit solvent model: individual water/ions computed, often

with Molecular Dynamics

e Implicit solvent models: continuum model of water and

\ dissolved ions used, Poisson-Boltzmann equation /
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Molecular Electrostatics Problem

Implicit solvent model

Poisson equation for the electrostatic potential, ¢:
—Ve(z)Vo(x) = dmp(x) , x € R

dielectric permittivity, €, and charge density, p, are

position-dependent

molecule ) — a compact cavity in R? with low € = ¢,
surrounded by solvent with larger € = €,

point charges, q,,, at x,, inside molecule

Boltzmann distribution of mobile ions in solvent

~

/
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Molecular Electrostatics Problem (Cont.)

Explicit geometric models for solute molecule

e van der Waals surface:
union of intersecting spheres (atoms): 2 = U%:l B(x™) r(m))

point charges — at their centers, z,, = (™

e contact and reentrant surface, I':

02 smoothed by the probe molecule of the solute rolling on it

e ion-accessible surface 9€2':
=M  B(x(m) pm) o s

m=

ion-exclusion layer between 02" and I’

N /
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Mathematical model (one-surface geometry)

e Poisson equation for the electrostatic potential, ¢, inside a
molecule

_61A¢2 Z 47TQm o m) , T € Y/

A¢e(x) - ’i2¢e($) =0,
e Continuity condition on the boundary

8¢z . agbe yEFE(S’Q

¢’i — ¢€ ) Ezan(y) (971,( )

\_

e linearized Poisson-Boltzmann equation outside, z € R3 \ Q:

/Molecular Electrostatics Problem (Cont.)\

/
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lectrostatic Potential, Field and Energy

(Linear Problem)

e Point values of the potential: ¢(z) = ¢® (z) + g(=)
Here, singular part of ¢:

qu
€; CIZ—.CCm|

m=1

e Free electrostatic energy of a molecule = linear combination of

point values of the regular part of the electrostatic potential

¢(0);
1 M
_ E (0)

m=1

e Point values of the electrostatic field: V¢(x)

N /
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/ Monte Carlo Estimates for Point \

Potential Values

Two different approaches to constructing Monte Carlo algorithms
1. Probabilistic representation for the solution
2. Classical potential theory

First approach
Laplace equation for the regular part of the potential inside €2

A% =0

6\ (@) = Eo[!V (a)]
Kx* — exit point from 2 of Brownian motion starting at x /

Prof. Michael Mascagni: Stochastic Electrostatics Slide 21 of 56



/ ‘Walk on Spheres’ Algorithm \

x — center of a sphere = exit points are distributed isotropically.
Ball B(x, R) lies entirely in . Strong Markov property of
Brownian motion = probabilistic representation holds valid for exit

points.

Hence follows ‘random walk on spheres’ algorithm for general

domains with regular boundary:
o= dF Y x Wb, B=1,2,... .

Here
d(z*~1) — distance from x*~! to the boundary
{w*} — sequence of independent unit isotropic vectors

z* is exit point from the ball, B(z*~1, d(z*~1)), for Brownian

k—1

\motion starting at « /
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/ Green’s Function First Passage \

Simulation

Other domains with known Green’s function (G) <= one-step

simulation of exit points distributed on the boundary in accordance

with 0G/on

For general domains:
Efficient way to simulate x* — combination of ‘walk in subdomains’

approach and ‘walk on spheres’ algorithm

The whole domain, €2, is represented as a union of intersecting

subdomains:
M
Q=[] Qn
m=1
KSimulate exit point separately in every (1,, /
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Green’s Function First Passage

Simulation (cont.)

0 =z, 2!, ..., 2N — Markov chain, every z'1! is exit point from

the corresponding subdomain for Brownian motion starting at z*

For spherical subdomains, B(z? , R ), exit points are distributed
in accordance with the Poisson’s kernel

)

i i i )2 i
|ZE _:CmH'CE _xm‘ _Rm
. . 2
A7 Rt |zt —
r* = 2 is exit point of Brownian motion from 2

Schwartz lemma = Markov chain {z'} converges to z*

geometrically

N /
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‘Walk on Spheres’ and ‘Walk in

Subdomains’ Algorithms

Figure 1: Walk in subdomains example.

\_

/
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Monte Carlo Estimate for Point Potential
Value
On every step
¢V (") = E[p? (z"1)|2"]

Hence

¢\ (z) = E¢\”(z*) = E[p(z*) — g(z*)]

Values of the electrostatic potential on the boundary, ¢(x*), are

not known. We can use their Monte Carlo estimates instead

N /
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Monte Carlo Estimate for Boundary

Potential Values

Discretization and randomization of the boundary condition

(y € ', n = n(y) — normal vector);

o(y) = pip(y — hn) + ped(y + hn) + O(h?)

o(z7) = E(¢(25]27) + O(R7)

:L’g = x7 — hn with probability p; (reenter molecule)
x) = x* + hn with probability p, = 1 — p; (exit to solvent)
Di = 6 +c.

\_

~
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Exact treatment of boundary conditions (mean-value theorem

for boundary point, y, in the ball B(y,a) with surface S(y,a)):

P(y)

/ Monte Carlo Estimate for Boundary \

Potential Values (cont.)

B €e / 1 Ka 5
e te S.(y,a) 2ma? sinh(ka)

n €; / 1 Ka 5,
€c + € Js,(y.a) 2ma? sinh(ka)

(€c — €) / COS Py
T

€e t € JrBwaniy 27y — 2l
€4

[_2/432(1)/1]¢i
€e T € /Bxy,a)

(12)

QK,CL¢

/
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Monte Carlo Estimate for Boundary

Potential Values (cont.)

Here

@ye — angle between the normal n(y) and y — =
1 sinh(k(a — |z —yl|))

O (r—y) =
<@ = y) A7 |xr — y|sinh(ka)
— Green’s function for the Poisson-Boltzmann equation in B(y, a)

Qr,allr —y|) =

sinh(k(a — |x —y|)) + K|z — y| cosh(k(a — |z —y]|))

sinh(ka)

N /
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Monte Carlo Estimate for Boundary

Potential Values (cont.)

Randomization of approximation to (12), y = z%, v = :
¢(y) = Ed(z) + O(a/2R)°

Here

e with probability p. exit to solvent:
x is chosen isotropically on the surface of auxiliary sphere,

Sy (y,a), that lies above tangent plane; random walk survives

KaQ
with probability

sinh(ka)

N /
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Monte Carlo Estimate for Boundary

Potential Values (cont.)

e with probability p;
x is chosen isotropically in the solid angle below tangent plane;
with probability —2x?®, it is sampled in B;(y, a) (reenter
molecule);
with the complementary probability = is sampled on the surface
of auxiliary sphere, S_(y, a), that lies below tangent plane; x
reenters molecule with conditional probability 1 — a/2R and x
exits to solvent with conditional probability a/2R

Higher order of approximation!

N /
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Monte Carlo Algorithm (cont.)

o 1) inside

Return to the boundary at x5, the exit point of Brownian

motion (Markov chain) starting at z9, set

(x3) = E(d(23) — g(@3) + g(23)|3) (13)

Repeat the randomized treatment of the boundary condition at
the point x5

N /
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N

\

Monte Carlo Algorithm (cont.)

0

® I outside

“Walk on spheres’ algorithm
it = b 4+ w x d;, d; = distance from z% to 95
/ﬁ)di

sinh(kd;)

Terminates with probability 1 — on every step, or

when dy, < e.

x5 — the nearest to 3

(x2) = E(d(x3)]a2) + O(e) (14)

Repeat the randomized treatment of the boundary condition at

/

on the boundary

the point x5
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/Molecular Electrostatics Problem (cont.)\

In the exterior probability of terminating Markov chain depends
linearly on the initial distance to the boundary, dy =
Mean number of returns to the boundary is O(dy)™*

e Finite-difference approximation of boundary conditions, € = h?
Mean number of steps in the algorithm is O(h~1log(h) f(k)),
f is a decreasing function (f(x) = O(log(x)) for small k).

Estimates for point values of the potential and free energy are
O(h)-biased

e New treatment of boundary conditions provides O(a)?-biased
and more efficient Monte Carlo algorithm. Mean number of

steps is O((a) " tlog(a) f(k)), @ = a/2R.

The same simulations give point values of the gradient and free

\electrostatic energy /
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/Molecular Electrostatics Problem (cont.)\

Mathematical model (with ion-exclusion layer)

e Poisson equation inside a molecule

e Laplace equation in the ion-exclusion layer:
_A¢lay (ZI?) = O

e linearized Poisson-Boltzmann equation outside, x € R3 \ V':

e Continuity condition on the intermediate boundary, 0€2:

a¢z — . 8¢lay
on(y) " on(y)

e Continuity condition on the external boundary, 0€):

leay _ Qbea a(/blay _ a¢e

\ on(y)  On(y) /
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Molecular Electrostatics Problem (Cont.)

Mathematical model (nonlinear)

e nonlinear Poisson-Boltzmann equation outside (1-to-1

electrolyte):
A¢.(x) — k* sinh ¢ (z) = 0

Second order approximation to the non-linear term:

Ade(x) = Ke(a) = - 62(a)

N /
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Exit Point Probabilities

Figure 2: Exit points on the van der Waals surface for the first 12-

atom cluster from the Barnase molecule.

N /
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Exit Point Probabilities (Cont.)

Figure 3: Exit points on the van der Waals surface for the entire

Barnase molecule.
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/ Capacitance of a Conductor GG

1 ou
- [ &y
C 47T F@n %

u — solution of the external Dirichlet problem for the Laplace
equation

Au(z) =0, 2€G =R*\ G,
uly) =1, yel,

| 1|im u(x) =0.

By Green’s formula

C = 47Ru(R) = E (47u(Rw)) = E (47€(Rw))

@)here containing G.

\

¢ — Monte Carlo estimate for u, w — unit isotropic vector, S(0, R) —

/
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/ Monte Carlo Estimates Based on Integral\

Equations

Consider u(x) to be an integral functional of an integral equation
solution:

u(x) = /Y ha (y)(y)do (y)
uly) = /Y k(y, v )y )do(y') + f(y) = Kuly) + f(y)

Example:

In the energy calculation, assume there are no charges outside the
‘molecule’ G. The non-singular part of the solution can be
represented as a single-layer potential

w0 () = / L1 do(y)

27 |.91:—y|'u

N /

Prof. Michael Mascagni: Stochastic Electrostatics Slide 40 of 56




/ Integral Equations (Cont.)

Potential’s density satisfies the integral equation

u(y) = Ao / ! R u( o)) + £

2m |y —y
Here \g = — . The Neumann series
€e + 6Z
D (—MK)'f
i=0

for this equation converges, but slowly.

sz ~XK)'f +O(¢")

N

Substitution of spectral parameter to speed up the convergence:

\

/
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Integral Equations (Cont.)

Monte Carlo Estimate

Markov chain of random walk on the boundary:

po(y) — initial distribution density

1 cospy, 1y,
27 |yitr — il
— transition density (uniform in the solid angle)

P(yi — yz‘+1) =

The estimate (biased, for a convex I')

n

u(z) = le@”)uo)if(y“)hm(ya]

— Po(¥o)

\_

/
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Capacitance: Random Walk on the
Boundary

Capacitance
¢ = [ nly) doty)
r

Charge distribution

1 Ou

n(y) = —E%(y)

is the eigenfunction of the integral operator K:

COSgOyy/ / /
(Y =/ Yy )do(y
W) = | ey 0 )do(y)

\_

/
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/ Capacitance: Random Walk on the \
Boundary (Cont.)

For a convex (G, stationary distribution of isotropic random walk on

boundary:
1
Moo — 6 v
By the ergodic theorem

—1
C= (&Eﬂm_ )

(arbitrary x € (G), since inside G the potential

Mz

1
|z — y

for v(y) =

Ndo(y') =1 .
|z —y| v

(%)
- F /
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First-Passage Charge Density Calculation

Launch Sphere

Circular Disk

N /
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First-Passage Methods

T

. using w(6, @)

N /

Prof. Michael Mascagni: Stochastic Electrostatics Slide 46 of 56




4 N

First-Passage Results: Cumulative

Charge Distribution

0.5

04 r

o
w

total charge

o
N}

0.1

N /
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Charge Density on a Circular Disk via

Last-Passage

(4
K

From the top

From the side

~

/
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Approach from the Outside

e P(x): prob. of diffusing from e above lower FP surface to oo

P(z) = /m 9(z,y,€)p(y, 00)dS (15)
o@) = —pv| é@)=o——| P@ (0
0@ = 4 [ Gl (17)
where
d
Glz.y) = —| g(z.y.) (18)

e G(x,y) satisfies a point dipole problem

N /
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Unit Cube Edge Distribution

\_

/
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Unit Cube Edge Distribution (Cont.)

\

o(xz,0.) = 67 Lo () (19)

o(x,d.): charge on a curve parallel to the edge separated by d.

oe(x): edge distribution

a: angle between the two intersecting surfaces, here a = 37 /2

1

oe(z) = — lim 627"/ G(z,y)p(y,o0)dS (20)

47T 0e—0 00,

0€).: cylindrical surface that intersects the pair of absorbing

surfaces meeting at angle «

/
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/ Unit Cube Edge Distribution (Cont.) \
2 L ’ ‘ ‘O:
18 | O using last—passage simulation

X using o at (0.495,y) O 1
~ 1.6
% 14
1.2
0

y
Figure 4: First- and last-passage edge computations
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/ Unit Cube Edge Distribution (Cont.) \

In(o,)

Figure 5: The slope, that is, the exponent of the edge distribution
near the corner is approximately —0.20, that is, o, ~ 0. 1/5

-1.8 ¢
-1.9 -

-2.0 -

O edge distribution data
linear regerssion

-5 -4 -3 -2
In(3,)

/
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Conclusions and Future Work

Conclusions

e Stochastic algorithms are very effective in a wide range of partial

differential equation and integral equation settings

e Efficiency comes from choosing among the appropriate variant:
WOS, GFFP, S-T, "Walk on the Boundary,” or ’"Walk on

Subdomains’

e Many applications can be addresses, here the examples are related

through electrostatics

N /
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Conclusions and Future Work (Cont.)

Future Work

e Molecular Electrostatics
— More complicated functionals of the solution
— Derivatives (forces)

— Nonlinear problem via branching processes and expansions

e Multiscale Monte Carlo

N /
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