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1.0 INTRODUCTION AND RATIONALE FOR THE PROPOSED USE OF IN 
VITRO TEST METHODS TO IDENTIFY OCULAR CORROSIVES AND 
SEVERE IRRITANTS 

 
1.1 Introduction 
 
1.1.1 Historical Background of In Vitro Ocular Irritation/Corrosion Test Methods and 

Rationale for Their Development 
The location of the eye and its anatomy predisposes it to exposure to a variety of 
environmental conditions (e.g., ozone, pollen) and substances on a daily basis.  Injury from 
ocular exposure to a variety of chemical agents can lead to a range of adverse effects with the 
most extreme being blindness.  Societal concern for evaluating consumer products for ocular 
irritation and/or corrosion was heightened in 1933 when a 38 year old woman went blind 
after her eyelashes and eyebrows were tinted with a product containing 
paraphenylenediamine, a chemical with the potential to cause allergic blepharitis, toxic 
keratoconjunctivitis, and secondary bacterial keratitis1 (Wilhelmus 2001). 
 
In 1938, the U.S. Congress responded to these concerns by enacting the Federal Food, Drug, 
and Cosmetic Act of 1938, which included extending the regulatory control of the U.S. Food 
and Drug Administration (FDA) to cosmetics (FDA 1938).  This legislation required 
manufacturers to evaluate product safety before marketing their products (Wilhelmus 2001).  
Several additional legislative statutes were later enacted to enable government agencies to 
regulate a variety of substances that could pose a risk to ocular health.  Table 1-1 provides a 
synopsis of current U.S. regulatory laws that pertain to eye irritation and corrosion. 

Table 1-1 Summary of Current U.S. Legislation Related to Ocular Health1 

Legislation 
(Year of Initial Enactment) 

Agency Substance 

Food, Drug and Cosmetic Act (1938) FDA 
Pharmaceuticals and 
cosmetics 

FIFRA (1947) and Federal Environmental 
Pesticide Control Act (1972) 

EPA Pesticides 

FHSA (1964) CPSC Household products 

FHSA (1964) and TSCA (1976) 
Department of Agriculture and 
EPA  

Agricultural and 
industrial chemicals 

Occupational Safety and Health Act (1970) OSHA Occupational materials 

Clean Air Act Amendments (1990) 
Chemical Safety and Hazard 
Investigation Board and EPA 

Accidentally released 
chemicals and air 
pollutants 

1Adapted from Wilhelmus (2001). 
Abbreviations: CPSC = U.S. Consumer Product Safety Commission; EPA = U.S. Environmental Protection 
Agency; FDA = U.S. Food and Drug Administration; FHSA = Federal Hazardous Substances Act; FIFRA = 
Federal Insecticide, Fungicide, and Rodenticide Act; TSCA = Toxic Substances Control Act.  

                                                
1 Allergic blepharitis (also referred to as blepharitis): inflammation of the eyelids; Toxic keratocojunctivitis 
(also referred to as contact, irritative, or chemical keratoconjuctivitis): inflammation of the cornea and 
conjunctiva due to contact with an exogenous agent; Secondary bacterial keratitis: inflammation of the cornea 
that occurs secondary to another insult that compromised the integrity of the eye (Vaughn et al. 1999; Chambers 
W, personal communication). 
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Exposure of the eye of a rabbit to a test substance is the primary method for assessing the 
hazard potential of substances that may come in contact with or be placed near the eye of a 
human.  The rabbit eye test method currently accepted by U.S. Federal and international 
regulatory agencies (CPSC 1995; EPA 1998; OECD 2002) is based on a method developed 
by Draize and colleagues in 1944 (Draize et al. 1944).  This technique involves placing a test 
substance into the lower conjunctival sac of one eye of a rabbit.  The contralateral eye serves 
as a negative control.  The rabbit is then observed at selected intervals for up to 21 days after 
exposure for adverse effects to the conjunctiva, cornea, and iris.   
 
The current rabbit eye test method identifies both irreversible (e.g., corrosion) and reversible 
ocular effects.  It also provides scoring that allows for relative categorization of severity for 
reversible effects such as mild, moderate, or severe irritants (e.g., see U.S. Environmental 
Protection Agency [EPA] Ocular Classification System discussed below).  Current EPA 
ocular testing guidelines and the United Nations (UN) Globally Harmonized System (GHS) 
of Classification and Labeling of Chemicals (UN 2003) indicate that if serious ocular damage 
is anticipated (e.g., irreversible adverse effects on day 21), then a test on a single animal may 
be considered.  If serious damage is observed, then no further animal testing is necessary 
(EPA 1998; UN 2003).  If serious damage is not observed, additional test animals (one or 
two rabbits) may be evaluated sequentially until concordant irritant or nonirritant responses 
are observed (UN 2003).   
 
Depending on the legislative mandate of various regulatory agencies and their goals for 
protecting human health, the classification of irritant responses evaluated by each agency 
varies (Table 1-2).  The EPA ocular irritation classification regulation and testing guidelines 
(EPA 1996, 1998) are based on the most severe response in one animal in a group of three or 
more animals.  This classification system takes into consideration the kinds of ocular effects 
produced, as well as the reversibility and the severity of the effects.  The EPA classifies 
substances into four ocular irritant categories, ranging from I to IV (Table 1-2) (EPA 1996).  
Category I substances are defined as corrosive or severe irritants, while classification from II 
to IV is based on decreasing irritation severity, as well as the time required for irritation to 
clear.  Irritation that clears in 8 to 21 days is classified as Category II, while irritation that 
clears within seven days is classified as Category III.  For Category IV substances, irritation 
clears within 24 hours.  The U.S. Federal Hazardous Substances Act (FHSA) guideline for 
ocular irritation classification (CPSC 1995) categorizes a test substance as corrosive, irritant, 
or nonirritant.  The definition of a corrosive, according to the FHSA, is a substance that 
causes visible destruction or irreversible alterations in the tissue at the site of contact (CPSC 
2004).  FHSA classification depends on the incidence of test animals exhibiting a positive 
ocular response within 72 hours after application of the test substance in the conjunctival sac.  
Hazard classification of ocular irritants in the European Union (EU) corresponds to two risk 
phrases: 1) R36 denotes “Irritating to eyes”; 2) R41 denotes “Risk of serious damage to the 
eyes” (EU 2001).  These risk phrases are based on whether the levels of damage, averaged 
across the 24-, 48- and 72-hour observation times for each ocular lesion, fall within or above 
certain ranges of scores.  For the purpose of harmonizing the classification of ocular irritants 
internationally, the GHS (UN 2003) includes two harmonized categories, one for irreversible 
effects on the eye/serious damage to the eye (Category 1), and one for reversible effects on 
the eye (Category 2).  Reversible effects are further subclassified, based on the duration of 
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persistence as Category 2A (“irritating to eyes”) (reverses within 21 days) and Category 2B 
(“mildly irritating to eyes”) (reverses within 7 days).  The GHS (UN 2003) categories are 
based on severity of the lesions and/or the duration of persistence.  The GHS, the US, and the 
EU in vivo ocular irritancy classification systems are described in greater detail in Section 
4.1.3. 
 
Concerns about animal welfare, the cost and time to conduct ocular irritation assessments, 
the reproducibility of the currently used in vivo rabbit eye test, as well as scientific interest in 
understanding eye injury at the tissue and cellular level have led researchers to develop and 
evaluate alternative in vitro test methods.  Recently, the EPA requested the evaluation of four 
in vitro test methods -- Isolated Chicken Eye (ICE), Isolated Rabbit Eye (IRE), Hen’s Egg 
Test – Chorioallantoic Membrane (HET-CAM) and Bovine Corneal Opacity and 
Permeability (BCOP) -- for their ability to identify ocular corrosives and severe irritants.  As 
part of this evaluation process, a Background Review Document (BRD) has been prepared 
for each test method that describes the current validation status of the in vitro test method, 
including what is known about its reliability and accuracy, its applicability domain, the 
numbers and types of substances tested, and the availability of a standardized protocol. 
 
This BRD evaluates the ability of the HET-CAM test method to identify severe ocular 
irritants and corrosives.  The HET-CAM test method was developed by Luepke (1985) and 
Luepke and Kemper (1986).  The chorioallantoic membrane (CAM) is a vascularized 
respiratory membrane that surrounds the embryonic bird within an egg.  The test method is 
based on the observation that the CAM of an embryonated hen’s egg is similar to the 
vascularized mucosal tissues of the eye.  The test method developers assumed that acute 
effects induced by a test substance on the small blood vessels and proteins of this soft tissue 
membrane would be similar to effects induced by the same test substance in the eye of a 
treated rabbit.  Thus, it was proposed that adverse effects on the CAM induced by a test 
substance would correlate to irritation and/or corrosion in human eyes.   
 
For current regulatory applications, the HET-CAM test method could potentially be used to 
identify the irreversible, corrosive, and severe irritation potential of products, product 
components, individual chemicals, or substances in a tiered testing strategy (UN 2003).  In 
the GHS stepwise approach, substances that are predicted by HET-CAM as ocular corrosives 
or severe irritants could be classified as Category 1 eye irritants without the need for animal 
testing.  Substances that are negative in HET-CAM for severe/irreversible effects would then 
undergo additional testing to confirm that they are not false negatives and to determine the 
type, if any, of reversible effects that may occur.  The test method also may be useful in a 
battery of in vitro eye irritation methods that collectively predicts the eye irritation potential 
of a substance in vivo.  However, the predictivity of a battery approach will first require the 
assessment of the performance of each individual component.  
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Table 1-2 In Vivo Ocular Irritancy Classification Systems 

Regulatory 
Agency 

(Authorizing 
Act) 

Number 
of 

Animals 

Minimum 
Observation 
Times (after 
treatment) 

Mean 
Score 

Taken? 
Positive Response Irritant/Nonirritant Classification 

EPA  
(FIFRA; TSCA; 
and The Federal 
Environmental 
Pesticide Control 
Act) 

At least 3 1 hour, 1, 2, 3, 
7, 14, and 21 
days 

No - Maximum score in an 
animal used for 
classification 
 
- Opacity or Iritis ≥ 1 or 
Redness or Chemosis ≥ 2 

One or more positive animals needed for classification in 
categories below. 
 
Category: 
I = Corrosive, corneal involvement, or irritation persisting 
more than 21 days 
II= Corneal involvement or irritation clearing in 8-21 days 
III = Corneal involvement or irritation clearing in 7 days or 
less 
IV = Minimal effects clearing in less than 24 hours 

European Union Current 
Directive: 
1 if severe 
effects are 
suspected 
or 3 if no 
severe 
effects are 
suspected 
 
Prior 
Directive: 
3 or 6 
animals 
used to 
assign risk 
phrases 

1, 2, 3 days 
(observation 
until Day 21) 

Yes (1) 6 animals 
Mean study values (scores 
averaged over all animals 
in study over Days 1, 2, 
and 3) of: 
Opacity or Chemosis ≥ 2, 
Redness ≥ 2.5, or 
Iritis ≥ 1 
 
OR 
 
(2) 3 animals 
Individual animal mean 
values (scores for each 
endpoint are averaged for 
each animal over Days 1, 
2, and 3) of: 
Opacity or Chemosis ≥ 2, 
Redness ≥ 2.5, or 
Iritis ≥ 1 
 

R36 Classification 
(1) Mean study value (when more than 3 animals are tested) 
where: 
2 ≤ Opacity < 3 or 
1 ≤ Iritis < 1.5 or 
Redness ≥ 2.5 or 
Chemosis ≥ 2 
(2) If 2 of 3 tested animals have individual animal mean values 
that falls into one of the following categories: 
2 ≤ Opacity < 3          1 ≤ Iritis < 2 
Redness ≥ 2.5             Chemosis ≥ 2 
 
R41 Classification 
(1) Mean study value (when more than three animals are 
tested) where: 
Opacity ≥ 3      or      Iritis > 1.5 
(2) If 2 of 3 tested animals have individual animal mean values 
that fall into one of the following categories: 
Opacity ≥ 3      or      Iritis = 2 
(3) At least one animal where ocular lesions are still present at 
the end of the observation period, typically Day 21 
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Regulatory 
Agency 

(Authorizing 
Act) 

Number 
of 

Animals 

Minimum 
Observation 
Times (after 
treatment) 

Mean 
Score 

Taken? 
Positive Response Irritant/Nonirritant Classification 

GHS-Irreversible 
Eye Effects 

3 1, 2, 3 days 
(observation 
until Day 21) 

Yes Mean animal values (over 
Days 1, 2, and 3) of: 
Opacity ≥ 3 and/or Iritis ≥ 
1.5 

- At least 2 positive response animals = Eye Irritant Category 1 
- At least 1 animal where Opacity, Chemosis, Redness, or Iritis 
> 0 on Day 21 = Eye Irritant Category 1 

GHS-Reversible 
Eye Effects 

3 1, 2, 3 days 
(observation 
until Day 21) 

Yes Mean animal values (over 
Days 1, 2, and 3) of: 
Opacity or Iritis ≥ 1 or 
Redness or Chemosis ≥ 2  
and the effect fully 
reverses in 7 or 21 days 

- At least 2 positive response animals and the effect fully 
reverses in 21 days = Eye Irritant Category 2A 
- At least 2 positive response animals and effect fully reverses 
in 7 days = Eye Irritant Category 2B 

CPSC (FHSA 
[provided under 
the authority of 
the Consumer 
Products Safety 
Act]), FDA 
(Food, Drug, and 
Cosmetics Act), 
and OSHA 
(Occupational 
Safety and 
Health Act) 

6 (12, 18 
possible) 

1, 2, 3 days 
(observation 
may be 
extended to 7 
days) 

No Opacity or Iritis ≥ 1 or 
Redness or Chemosis ≥ 2 
for any animal on any day 

1 or more animals with destruction or irreversible alterations in 
the tissue at the site of contact = Corrosive 
 
1st Tier: 
4 or more positive animals = Irritant 
2-3 positive animals = Go to 2nd Tier 
1 positive animal = Negative 
 
2nd Tier 
3 or more positive animals = Irritant 
1-2 positive animals = Go to 3rd Tier 
 
3rd Tier 
1 positive animal = Irritant 

Abbreviations: CPSC = U.S. Consumer Products Safety Commission; EPA = U.S. Environmental Protection Agency; FDA = U.S. Food and Drug 
Administration; FIFRA = Federal Insecticide, Fungicide, and Rodenticide Act; GHS = United Nations Globally Harmonized System; OSHA = Occupational 
Safety and Health Administration; TSCA = Toxic Substances Control Act 
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The HET-CAM test method is currently used in some U.S. and European companies (e.g., 
pharmaceutical, cosmetic, and personal care product companies) as an in-house screen to 
assess the ocular irritation potential of a wide range of substances or products.  Substances 
are tested either individually, as mixtures, or in product formulations.  The test method is 
used in the following ways: (1) for classification of industrial chemicals as severe eye 
irritants for labeling purposes, and (2) for safety assessment of raw materials, new 
ingredients, and formulations (Spielmann H, personal communication).  
Although the HET-CAM test method is not yet validated, the EU national regulatory 
authorities accept positive outcomes from this test method for classifying and labeling severe 
eye irritants (R41).  Where a negative result is obtained, an in vivo test is subsequently 
required, as the HET-CAM test method has not been shown to adequately discriminate 
between eye irritants and nonirritants (Liebsch and Spielmann 2002; European Communities 
2004).   
 
1.1.2 Peer Reviews of the HET-CAM Test Method 
Studies have been conducted in recent years to assess the validity of the HET-CAM test 
method as a complete replacement for the in vivo ocular irritation and corrosion test method 
(e.g., Balls et al. 1995).  Additionally, Spielmann et al. (1996) assessed the ability of the 
HET-CAM test method to identify severe ocular irritants as classified by the EU 
classification system (EU 1992).  Previous validation efforts for the HET-CAM test method 
may have failed because: 1) they attempted to support the utility of an in vitro alternative as a 
full replacement for the in vivo rabbit test, rather than as a component in a tiered testing 
strategy; and/or 2) data generated with the in vitro test method(s) have typically been 
compared to in vivo Maximum Average Scores (MAS).   
 
However, there have been no formal evaluations of the ability of the HET-CAM test method 
to identify ocular corrosives and severe irritants, as defined by the GHS (UN 2003) and the 
EPA (1996).  This BRD was prepared for use by an Interagency Coordinating Committee on 
the Validation of Alternative Methods (ICCVAM) expert panel review of HET-CAM as a 
method to identify ocular corrosives and severe irritants.  Parallel reviews of the ICE, IRE, 
and BCOP test methods were conducted.  Results of the Expert Panel Report, combined with 
the analyses presented in the BRDs, were used to support ICCVAM recommendations on the 
proposed standardized test method protocols, proposed list of recommended reference 
substances, and additional optimization and/or validation studies that may be necessary to 
further develop and characterize the usefulness and limitations of these methods. 
 
1.2 Scientific Basis for the HET-CAM Test Method  
 
1.2.1 Purpose and Mechanistic Basis of the HET-CAM Test Method 
The HET-CAM is proposed to provide information on the effects that may occur in the 
conjunctiva following exposure to a test substance.  Chicken-embryo models have long been 
used as models for embryotoxicity by virologists (Parish 1985; Luepke and Kemper 1986).  
Extending the use of chicken-embryos, the HET-CAM test method was proposed by Luepke 
(1985) and Luepke and Kemper (1986).   
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The CAM is a vascularized respiratory membrane that surrounds the developing bird 
embryo.  The CAM is composed of an ectodermal layer that consists of epithelium that is 
two to three cells thick; a mesodermal layer that consists of connective tissue, ground 
substance, and blood vessels, and an endodermal layer (Parish 1985; Bruner 1992).  The 
blood vessels that are present in the mesodermal layer of the CAM are branches from the 
embryo-allantoic arteries and veins.  These vessels contain erythrocytes and leukocytes that 
are believed to be involved in the inflammatory response following exposure to external 
stimuli (Parish 1985).  It was assumed that acute effects induced by a test substance on the 
small blood vessels and proteins of this soft tissue membrane are similar to effects induced 
by the same test substance in the eye of a treated rabbit (Luepke 1985; Luepke and Kemper 
1986).  The denaturation of proteins (observed as coagulation) is proposed to be an indicator 
of effects on epithelial cells in the CAM.  Such effects are proposed to relate to adverse 
effects on the cornea of the eye.  Alterations on the CAM blood vessels are a proposed 
predictor of overall toxicity and conjunctival damage in the eye.   
 
1.2.2 Similarities and Differences of Modes and Mechanisms of Action Between the 

HET-CAM Test Method and Human Ocular Irritancy  
1.2.2.1 The Mammalian Eye: Common Anatomy of the Human and Rabbit Eye 
The eyeball is a fibrovascular globe, which is surrounded by a bony orbit that is impenetrable 
to light (Bruner 1992).  The anterior portion of the eyeball is the only portion that is exposed 
to the environment, while the remainder of the eye is protected by the eyelids and the bony 
orbit.  The eyeball is composed of three concentric tunics (the fibrous tunic, the vascular 
tunic, and the neuroectodermal tunic) that can be further subdivided.  The fibrous tunic is the 
outermost layer of the eye comprised of the transparent cornea and the opaque sclera.  The 
middle vascular tunic is comprised of the choroids, the ciliary body, and the iris (which can 
be referred to as the uvea).  The neuroectodermal tunic is the innermost layer and is 
comprised of the retina, which contains photoreceptors and is connected to the central 
nervous system (Wilkie and Wyman 1991; Bruner 1992). 

 
The fibrous tunic provides the primary framework for the eye.  The cornea is the transparent 
surface of the eye, and is comprised of three major layers: the epithelium, the stroma, and the 
endothelium (Figure 1-1).  The human cornea is a hydrated, nonvascularized structure.  
Corneal stroma contains 78% water and hydration is a requisite for the capacity of the stroma 
to swell in response to an irritant (Duane 1949).  The cornea is nutritionally maintained in a 
homeostatic state by the aqueous humor, tear film, and the surrounding vascularized tissues.  
Proper function of squamous or cuboidal cells in the endothelial layer is required to remove 
water from the cornea. 
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Figure 1-1 Anatomy of the Human Eye 

 

Figure obtained at http://www.nei.nih.gov/photo/eyean/index.asp 

The cornea is the major refracting element in the optical path, which flows from the light 
source through the cornea (70% of refractive power) to the lens (30% of refractive power) 
and into the retina (Duane 1949; Mishima and Hedbys 1968a).  Therefore, corneal 
transparency is an important factor in optimal eye functioning.  For maximum refractive 
power, the anterior surface of the cornea, composed of layers of translucent epithelial cells, is 
maintained in a smooth configuration by the tear film.  The corneal stroma, composed of 
translucent keratocytes interspersed with collagen fibrils, requires uniformity and proper 
spacing of the collagen fibrils to maintain an appropriate corneal refractive index with 
minimal light scattering (Maurice 1957).  This combination of structure and cellular 
morphology serves to maintain corneal transparency. 
 
The eye is critically dependent on the highly vascularized middle coat (uvea) for regulation 
of blood and ocular permeability barriers, maintenance of intraocular pressure in the aqueous 
humor, and drainage of ocular fluid (Unger 1992).  The uveal tract is richly innervated by 
somatic sensory neurons, derived from the ophthalmic division of the trigeminal nerve.  
Importantly, alterations to any of these features (e.g., edema, cell destruction, vascularization, 
cell proliferation) can cause corneal opacity and concomitant loss of function (Parish 1985; 
Wilkie and Wyman 1991; Bruner 1992). 
 
The sclera is comprised primarily of three layers of irregularly arranged collagen fibrils of 
varying diameter.  The irregular arrangement of the fibrils produces the white color that is 
seen on eyeballs.  The conjunctiva is a mucous membrane that covers the exposed scleral 
surface (bulbar conjunctiva) and the inner surface of the eyelids (palpebral conjunctiva).  The 
conjunctiva contains blood vessels, nerves, conjunctival glands, and inflammatory cells.  As 

http://www.nei.nih.gov/photo/eyean/index.asp
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part of the inflammatory response in the conjunctiva, dilation of the blood vessels, fluid 
leakage, and cellular leakage occurs (Bruner 1992). 

 
The major component of the vascular tunic is the iris.  The iris sits in front of the lens and the 
ciliary body, which also are considered part of the vascular tunic.  Contraction of the iridal 
muscles alters the diameter of the pupil and thus regulates the amount of light entering the 
eye (Bruner 1992). 
 
1.2.2.2 Differences Between Human and Rabbit Eyes 
There are several anatomical and physiological differences between the rabbit eye and the 
human eye.  One difference is the presence of a nictitating membrane, or third eyelid, in the 
rabbit.  As this membrane slides horizontally across the eye, it is proposed that it aids 
removing and/or excluding irritating substances from the corneal surface (Calabrese 1983).  
It also is proposed that the kinetic removal of a substance from a rabbit eye may occur at a 
rate different than in humans, due to the presence of the nictitating membrane, although this 
has not been documented in comparative studies (Curren and Harbell 1998).  Another 
difference is the larger conjunctival sac in the rabbit, which allows for larger test volumes to 
be instilled, perhaps more than could be accounted for on accidental exposure (Curren and 
Harbell 1998). 
 
The rabbit cornea is thinner than that found in humans, and rabbits tend to have less tear 
production (Curren and Harbell 1998; Cooper et al. 2001).  The thicknesses of structural 
components of the cornea also are different between the two species.  For example, 
Descemet’s membrane is proposed to be about 5 to 10 µm in humans and 7 to 8 µm in 
rabbits (Calabrese 1983).  Furthermore, the area of the cornea in relation to the total surface 
of the globe varies significantly between species; in humans the relationship is 7%, while in 
rabbits the relationship is 25% (Swanston 1985).  Finally, young rabbits have the ability to 
regenerate damaged corneal endothelium, while humans do not (Chambers W, personal 
communication).   
 
The relationship between species differences in eye anatomy and physiology and the 
sensitivity to ocular irritants has not been clearly established.  It has been proposed that the 
larger conjunctival sac, thinner cornea, larger proportion of the cornea to the eyeball as well 
as other differences in the rabbit eye lead to an increased sensitivity to irritants (Calabrese 
1983; Swanston 1985).  However, other differences (e.g., the presence of the nictitating 
membrane, low blink frequency rate) indicate that the rabbit is as sensitive as a human to 
irritants.  Comparisons of human exposure experiences to results in the in vivo test method 
indicate that in some cases the rabbit eye is more sensitive to some irritants, while in other 
cases the human eye is more sensitive (McDonald et al. 1987).  
 
1.2.2.3 The In Vivo Rabbit Eye Test Method 
The current in vivo rabbit eye irritation test method evaluates the cornea, the iris, and the 
conjunctiva for adverse effects after exposure to a potential irritant (see Section 4.0 for a 
discussion of the in vivo scoring system for lesions at these sites).  The cornea is visually 
observed both for the degree of corneal opacity and the area of the cornea in which opacity is 
involved.  The iris is assessed for inflammation, iridal folds, congestion, swelling, 
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circumcorneal injection, reaction to light, hemorrhage, and gross destruction.  The 
conjunctiva is evaluated for the degree of redness, chemosis (swelling), and discharge 
(Draize et al. 1944).  Draize and colleagues (1944) developed an analysis method where the 
severities of the effects are weighted differently, with corneal effect being weighted the most.  
The effects of a test substance on the cornea, conjunctiva, and iris play a role in severe ocular 
irritant and corrosive labeling and classification in classification systems used by some 
regulatory agencies (CPSC 1995; EPA 1998; EU 2001; UN 2003).   
 
Irritation responses and the degree of the response in the cornea, iris, and conjunctiva differ 
due to the specific functions and anatomy of each structure.  Development of slight corneal 
opacity can be due to loss of superficial epithelial cells and epithelial edema.  Comparatively, 
more severe corneal opacity may be observed if an ocular irritant produces its effects deeper 
in the cornea.  The ensuing repair process can lead to scar development in the cornea and 
vision impairment.  Irritation responses in the iris are typically due to direct exposure to a 
substance, which has passed through the cornea and sclera, or due to extension of significant 
surface inflammation.  Acute inflammation of the uvea tract is characterized by edema, 
vessel dilation, and the presence of exudates, while severe inflammation of the uvea tract is 
characterized by accumulation of blood or leukocytes in the anterior chamber.  Conjunctival 
inflammatory responses can produce vasodilation, edema, subconjunctival hemorrhage, and 
lacrimal secretions (Bruner 1992). 
 
The extent of corneal injury resulting from an ocular irritant also is dependent on the 
physicochemical characteristics (e.g., acids and bases with pH extremes, solvent-induced 
protein or DNA precipitation, surfactant-induced saponification of membranes), and 
chemical reactivity of the substances when in contact with individual ocular cells or 
structures (e.g., alkylation, hydrolysis, oxidation, reduction, hydroxylation) (Grant 1974; 
McCulley 1987; Berta 1992; Nourse et al. 1995; Fox and Boyes 2001).  Direct or indirect 
ocular injury may result from the impact of these physicochemical effects on normal 
homeostatic cellular mechanisms and from consequent edema, inflammation, apoptosis, 
necrosis, and reparative processes (e.g., collagen deposition and scarring) (Unger 1992; 
Pfister 2005).  In the normal eye, test substances may disrupt the tear film, reach the 
epithelium, and penetrate through Bowman’s layer into the stroma, through Descemet’s 
membrane, and into the endothelium (Pasquale and Hayes 2001).  Damage to the 
endothelium may be irreparable.  
 
The tear film consists of an inner layer of mucous, a middle layer of water, and an outer film 
of oil.  The tear film contains lactoferrin, peroxidase, lysozyme, immunoglobulins, and 
complement factors to eliminate potentially offensive material (Unger 1992).  In conjunction 
with the neurogenically controlled blink reflex and tear producing cells, the tear film serves 
as a protective barrier against an ocular irritant for the corneal epithelium.  The 
physicochemical properties (e.g., hydrophilicity, hydrophobicity, hypertonicity, hypotonicity, 
oxididation, reduction) in addition to the chemical and biochemical properties of an applied 
test substance impact its ability to breach the tear film, or interact with its components and 
impact the corneal epithelium.  The tear film and the aqueous humor also provide 
nourishment (e.g., glucose and oxygen) to the nonvascularized cornea.  The extent of damage 
to the tear film by an applied substance therefore impacts the ability of the tear film to 
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nourish dependent corneal tissue.  Changes in the distribution, physical structure, or secretion 
rate of the tear film by an applied test substance might have significant nutritional, refractory, 
chemical and physical impacts on corneal tissue (Mishima and Hedbys 1968a, 1968b). 
 
Either direct (e.g., caustic or corrosive) or indirect (e.g., inflammatory mediator release) 
effects of chemicals in contact with the anterior corneal surface may result in perturbation of 
the optical elements needed to maintain the appropriate index of refraction in the cornea 
(e.g., uniformity and proper spacing of collagen fibrils), resulting in significant light 
scattering and impairment of vision (McCulley 1987; Berta 1992; Nourse et al. 1995; Wilson 
et al. 2001).  Corneal injury may result in opacification, swelling, damage extending from the 
epithelium into the stroma and possibly through the endothelium, and changes in corneal 
morphology (e.g., ulceration, scarring, pitting, mottling).  
 
Opacification of the cornea may result from: 1) direct or indirect damage to the epithelial 
cells with or without penetration into the stroma; 2) protein denaturation of the epithelial 
cells such as that produced by alcohols, alkalis, or organic solvents; 3) alkylation of protein 
or DNA; 4) membrane saponification by surfactants; 5) inflammatory cell infiltration; 6) 
collagen deposition; 7) swelling of corneal epithelial cells or corneal stroma; 8) displacement 
or rearrangement of collagen fibrils; or 9) degradation of the extracellular matrix  
(Grant 1974; Thoft 1979; York et al. 1982; McCulley 1987; Fox and Boyes 2001; 
Kuckelkorn et al. 2002; Eskes et al. 2005; Pfister 2005). 
 
Corneal swelling results from disruption of the anterior barrier membrane formed by the 
epithelial cell layer and Bowman’s layer.  This results in disruption of stromal collagen fibril 
uniformity, loss of proteoglycans, cell death, which leads to bullae formation, stromal 
cloudiness, and increased hydrostatic pressure (which may extend posteriorly throughout the 
corneal stroma, penetrating into Descemet’s layer and into the endothelium) (Mishima and 
Hedbys 1968a, 1968b).  Osmotic changes induced by these effects may further damage 
keratocytes and the collagen matrix.  
 
Corneal damage also may be characterized by morphological changes (e.g., described as 
stippling, ulceration, mottling, pannus, neovascularization). 
 
Corneal injury also is dependent on the type and concentration of applied chemical.  Alkalis 
penetrate more readily than acids do, and the depth of penetration is dependent on alkali 
concentration (McCulley 1987).  With alkali injury, the hydroxyl ion saponifies the fatty acid 
components of the cell membrane, disrupting cellular contents and resulting in cell death.  
The cation is responsible for the penetration process (Grant 1974).  Acids tend to penetrate 
less deeply than alkalis, with the exception of hydrofluoric and sulfuric acids.  The hydrogen 
ion causes damage due to pH alteration, while the anion precipitates and denatures protein in 
the corneal epithelium and superficial stroma (Freidenwald et al. 1946).  Limbal ischemia is a 
significant consequence of even mild alkali or acid burns (Kuckelkorn et al. 2002). 
 
While not in the direct optical path, the Palisades of Vogt, located in the sclero-corneal 
limbus, are thought to house corneal stem cells and serve as a generative organ for normal 
replacement of dead corneal epithelial cells for re-epithelialization during repair of corneal 
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injury.  Depletion or partial loss of the limbal stem cell population may result in corneal 
vascularization due to loss of the barrier function of the limbus, which serves to prevent 
conjunctival epithelial cells from migrating to the corneal surface (Dua and Azuara-Blanco 
2000).   
 
Neutrophils are recruited in response to acid and alkali injury as well as in response to other 
ocular toxicants (Pfister 2005).  Neutrophil migration is stimulated by the release of 
chemotatic factors (e.g., interleukins, growth factors, etc.) from damaged or chemically 
activated local resident epithelial cells or stromal keratocytes (Wilson et al. 2001).  Loss of 
keratocytes following either chemical or mechanical epithelial injury may be mediated by 
apoptosis, perhaps by release of IL-1 and TNFα (Wilson et al. 2001).  Resident mast cells 
may release biogenic amines that perturb the hydrostatic balance and permit inflammatory or 
edemagenic mediators into the locally inflamed area.  Migrated neutrophils release additional 
cytokines (e.g., IL-1 and TNF-α) and enzymes such as proteases, collagenases, kinases, and 
phospholipaseA2 (PLA2).  PLA2 produces edemagenic and vasoactive mediators such as 
prostaglandins and leukotrienes from arachidonic acid in cellular membranes.   
 
This cascade of events ultimately facilitates repair by stimulating fibrin deposition and 
granuloma formation.  However, migrating inflammatory cells such as neutrophils also may 
be involved in the release of collagenases (e.g., matrix metalloproteinases [MMPs]), which 
have been implicated in corneal ulcer formation.  Acetylcysteine, L-cysteine, and EDTA 
have been shown to reduce corneal ulceration in response to alkali injury, while inhibiting 
MMPs (Pfister 2005).  Other inflammatory cells such as macrophages and T-lymphocytes 
may be found up to 24 hours after injury.  Once an area is damaged and devoid of 
keratocytes, proliferation and migration occurs as part of the wound healing process.  This 
process may be mediated in part by numerous growth factors (Wilson et al. 2001).  
 
Although variable responses occur among species, neuropeptides (e.g., Calcitonin Gene 
Related Peptide [CGRP] and substance P) have profound effects on the anterior portion of 
the highly innervated eye, particularly in lower mammals such as the rabbit (Unger 1992).  
CGRP appears to affect vascular smooth muscle (Oksala and Stjernschantz 1988) whereas 
substance P may be involved in meiosis (Unger 1990).  Loss of functional sympathetic 
innervation reduces or eliminates presynaptic catecholamine reuptake sites resulting in 
denervation supersensitivity.  This also may result in enhanced sensitivity to noxious stimuli.  
 
Applied test substances also can adversely affect homeostasis within the cornea.  As oxygen 
is absorbed into the cornea from the atmosphere, interference with oxygen uptake may lead 
to corneal swelling (Mishima and Hedbys 1968a).  The cellular respiratory needs of the 
endothelium and epithelium are similar, both requiring carbohydrate metabolism.  Glucose 
metabolism in the cornea occurs by glycolysis and oxidation through the tricarboxylic acid 
cycle as well as through the hexose-monophosphate shunt (Kinoshita 1962).  Glucose within 
the cornea is used to supply glycogen, which is stored in the epithelium.  Applied substances 
that modulate any of these processes may be associated with ocular toxicity.   
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1.2.2.4 The Chorioallantoic Membrane (CAM) 
The HET-CAM test method uses the CAM, which is a vascular fetal membrane, composed of 
the fused chorion and adjacent wall of the allantois.  The chorion is the outermost sac that 
contains the embryo.  It is found in most high-level vertebrates, and in the chicken it serves 
to contain the amnion and yolk sac.  The CAM is composed of three layers.  The layer first 
seen when the eggshell is opened is the ectodermal layer, which is two to three cells thick.  
The next layer, a mesodermal layer, is comprised of blood vessels, connective tissues, and 
ground substance.  The inner layer is referred to as the endodermal layer and is composed of 
squamous cells (Parish 1985).  
 
The allantois develops appears from the hindgut, as an outgrowth, starting at about 60 hours 
of incubation (Tufan and Satiroglu-Tufan 2005).  The allantois then pushes out from the 
hindgut of the chick embryo on incubation day 4 or 5 (Tufan and Satiroglu-Tufan 2005).  It is 
composed of endoderm and splanchnic mesoderm (Sinn-Harlon 1998a).  The allantois has 
four major functions in maintaining chick embryo viability: 1) serve as an embryonic 
respiratory organ; 2) store kidney excretions; 3) absorb albumen for the embryo; and 4) 
absorb calcium from the eggshell for the embryo (Clauer 2002).  As the allantois increases in 
size, between incubation days four and 10, it wraps around the embryo and fuses with the 
chorion to form the CAM (Tufan and Satiroglu-Tufan 2005).  The fusion of the two 
membranes allows for a free exchange of gases between the embryo and the outside 
environment (Sinn-Harlon 1998a).  After formation of the CAM, there is rapid growth in the 
surface area until incubation day nine (Tufan and Satiroglu-Tufan 2005). 
 
Irritation responses in the CAM are limited, likely due to the immaturity of the immune 
system in the embryo (Bruner 1992).  Studies indicate that there are few heterophils 
(neutrophils in chickens) and macrophages in the chick embryo.  Additionally, the 
macrophages that are present in the embryo do not accumulate in damaged tissue as is seen in 
mammals (Lawrence et al. 1986).  Lesions on the CAM appear to be due to necrosis in the 
area of application of the test substance (Parish 1985). 
 
1.2.2.5 Comparison of the HET-CAM Test Method with the In Vivo Rabbit Eye Test 

Method  
Comparison of the HET-CAM and in vivo rabbit eye test methods focuses on a comparison 
of the CAM to the mammalian eye.  Comparison of the CAM to the structures of the eye 
indicates that it is most similar to the conjunctiva.  Both structures are mucous membranes 
that contain a functional vascular system.  However, the CAM is much thinner than the 
conjunctiva and contains an ectodermal layer that is more primitive than the conjunctiva 
(Parish 1985).  Unlike organotypic test methods (e.g., IRE, ICE, and BCOP), corneal 
responses such as opacification and swelling are not evaluated in the HET-CAM test method. 
 
Irritation responses in the CAM and conjunctiva are shown to occur upon exposure to 
irritants.  However, the actual responses of the CAM and conjunctiva to irritants are 
significantly different.  Conjunctival irritation typically leads to neutrophil infiltration and 
macrophage accumulation.  Comparatively, CAM irritation leads to cell death in the area of 
the insult (i.e., location of test substance application).  Anatomical differences and relative 
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immaturity of the immune system in the egg (and thus the CAM) are proposed to contribute 
to these different responses.   
 
In addition to subjectively evaluating corneal opacity and effects on the iris and conjunctiva, 
the in vivo rabbit eye test evaluates the delayed onset and/or reversibility of any ocular 
effects detected.  The HET-CAM assay does not take into account effects on these other 
structures in the eye, assess reversibility, or attempt to identify slow-acting irritants.  
 
Finally, HET-CAM does not account for systemic effects following ocular instillation that 
may be noted with the in vivo rabbit eye test (e.g., toxicity or lethality as in the case of certain 
pesticides). 
 
1.2.3 Intended Range of Substances Amenable to the HET-CAM Test Method and/or 

Limits of the HET-CAM Test Method  
Studies indicate that the HET-CAM test method is amenable for use with a broad range of 
solid and liquid substances with few limitations.  Substances amenable to testing include, but 
are not limited to, inorganic chemicals; aliphatic, aromatic, and heterocyclic chemicals; 
surfactants; polymers; and mixtures/formulations.   
 
One limitation of the test method is that test substances that are colored, turbid, or adhere to 
the CAM may inhibit visualization of the CAM.  In some currently used HET-CAM 
protocols, the CAM is exposed to test substances and the CAM is observed during that entire 
exposure period.  However, colored test substances may not allow for clear and complete 
evaluation of an adverse effect.  To allow for a clear assessment, such substances may be 
rinsed off the CAM or diluted to a concentration that allows for clear and complete 
evaluation of the CAM.  The rinsing procedure would therefore not allow for a continuous 
exposure and observation, as is performed for non-colored test substances.  
 
Another potential limitation of the test method is that it can be used only for short-term 
assessments of the irritancy of a test substance.  The currently accepted in vivo test method 
usually observes the rabbits for up to 21 days after treatment to assess reversibility of any of 
the observed endpoints and to evaluate test substances that produce eye effects over an 
extended time period.  Comparatively, the observation period for evaluating effects in the 
HET-CAM test method post-treatment is up to five minutes.  Therefore, potential 
reversibility of the affected endpoint beyond five minutes or an effect with a delayed onset 
(e.g., slow-acting irritants) cannot be adequately evaluated with this test method. 
 
1.3 Regulatory Rationale and Applicability 
 
1.3.1 Current Regulatory Testing Requirements and ICCVAM Prioritization Criteria 
The following section reviews and summarizes the extent to which HET-CAM addresses the 
five ICCVAM prioritization criteria apply to the HET-CAM test method (ICCVAM 2003). 
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Criteria 1.  The extent to which the proposed test method is (a) applicable to regulatory 
testing needs, and (b) applicable to multiple agencies/programs. 
The HET-CAM assay has been proposed as a method to identify ocular corrosives or severe 
irritants, as is required by several U.S. laws.  Table 1-1 identifies the U.S. agencies and 
programs that classify and label substances for eye irritation and corrosion.  These agencies 
include the FDA, EPA, Department of Agriculture, Department of Labor, the Consumer 
Products Safety Commission (CPSC), and the Chemical Safety and Hazard Investigation 
Board.  Therefore, the HET-CAM test method is applicable to the regulatory testing needs of 
multiple U.S. Federal agencies and programs. 
 
Criteria 2.  Warranted, based on the extent of expected use or application and impact 
on human, animal, or ecological health. 
Current regulatory testing needs require the in vivo assessment of the eye irritancy or 
corrosivity hazard associated with the use of chemicals/products for labeling purposes.  
These testing needs require the use of laboratory rabbits.  Alternative in vitro eye irritation 
and corrosion test methods could be applied to these testing needs. 
 
Criteria 3.  The potential for the proposed test method, compared to current test 
methods accepted by regulatory agencies, to (a) refine animal use (decreases or 
eliminates pain and distress), (b) reduce animal use, or (c) replace animal use.2 
The HET-CAM test method has the potential to refine or reduce animal use in eye irritation 
testing.  Substances that are identified as ocular corrosives or severe irritants would be 
excluded from testing in vivo, which would reduce the number of rabbits used for ocular 
testing.  The HET-CAM method also would spare animals the pain and distress of exposure 
to severe eye irritants.   
 
Criteria 4.  The potential for the proposed test method to provide improved prediction 
of adverse health or environmental effects, compared to current test methods accepted 
by regulatory agencies. 
Based on its long history of use and acceptance by U.S. Federal and international regulatory 
agencies, the current system of ocular hazard assessment, which is based on the rabbit eye 
test (i.e., CPSC 1995; EPA 1998; OECD 2002), appears to have adequately protected public 
health.  However, use of the rabbit eye test to predict the ocular irritation potential of 
substances for humans is not without controversy (e.g., intra- and inter-laboratory variability, 
qualitative evaluation of ocular lesions).  The accuracy of the currently used in vivo rabbit 
eye test for predicting severe eye irritants in humans and the limitations of the method for 
predicting the irritancy of specific chemical and/or product classes are not known due to the 
lack of comparative data.  Therefore, the potential of the proposed test method to provide 
improved prediction of adverse human health effects is unknown 

                                                
2 Refinement alternative is defined as a new or revised test method that refines procedures to lessen or eliminate 
pain or distress to animals, or enhances animal well-being; Reduction alternative is defined as a new or revised 
test method that reduces the number of animals required; Replacement alternative is defined as a new or revised 
test method that replaces animals with non-animal systems or one animal species with a phylogenetically lower 
one (e.g., a mammal with an invertebrate) (ICCVAM 1997). 
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Criteria 5.  The extent to which the test method provides other advantages (e.g., 
reduced cost and time to perform) compared to current methods. 
The HET-CAM test method could reduce the time needed to assess a substance, when 
compared to the currently accepted in vivo rabbit eye test method.  The in vivo Draize rabbit 
eye test is typically carried out for a minimum of one to three days and can be extended for 
up to 21 days.  It is noted that for some substances (i.e., severes) the test may be completed 
within an hour after application of a test substance.  Completion of the HET-CAM test 
method requires a nine-day pre-treatment incubation period, followed by approximately one 
hour for the treatment and observation/measurement period.  The current cost of a GLP 
compliant EPA OPPTS Series 870 Acute Eye Irritation (EPA 1998) or Organization for 
Economic Cooperation and Development (OECD) Test Guideline (TG) 405 test (OECD 
2002) at MB Research Laboratories (Spinnerstown, PA) ranges from $765 for a three 
day/three animal study up to $1,665 for a 21 day/three animal study (MB Research 
Laboratories, personal communication).  The current costs of performing a GLP-compliant 
HET-CAM test have not yet been identified but are expected to be equivalent to or lower 
than the cost of an in vivo rabbit eye test. 
 
1.3.2 Intended Uses of the Proposed HET-CAM Test Method 
In vitro ocular irritation testing methods (e.g., ICE, IRE, BCOP, and HET-CAM) have been 
proposed for identification of ocular corrosives and severe irritants (e.g., Ocular Irritant Class 
I per the EPA classification system [EPA 1996], Ocular Irritant Class R41 per the EU 
classification system [EU 2001], or Ocular Irritant Class 1 per the GHS classification system 
[UN 2003]). 
 
1.3.3 Similarities and Differences in the Endpoints Measured in the Proposed Test 

Method and the In Vivo Reference Test Method 
As mentioned in Section 1.1.1, the in vivo rabbit eye test method in current use by the U.S. 
Federal and international agencies is based on a method developed by Draize and colleagues 
in 1944.  This test method involves instillation of the test substance into the lower 
conjunctival sac of the rabbit eye, and evaluates the cornea, the iris, and the conjunctiva for 
adverse effects after exposure to the potential irritant.  The cornea is evaluated both for the 
degree of corneal opacity and the area of the cornea in which opacity is involved.  The iris is 
assessed for inflammation, iridal folds, congestion, swelling, circumcorneal injection, 
reaction to light, hemorrhage, and gross destruction.  The conjunctiva is evaluated for the 
degree of redness, chemosis (swelling), and discharge (Draize et al. 1944).  
 
As detailed in Section 1.2.2, the CAM used in the HET-CAM test method is used as a model 
for a living membrane (such as the eye conjunctiva), since it comprises a functional 
vasculature and can be evaluated for other endpoints that are associated with ocular injuries.  
The HET-CAM test method evaluates the development of adverse effects on blood vessels 
(e.g., hemorrhage, coagulation, hyperemia, injection, and/or vessel lysis).  The endpoints 
evaluated in the HET-CAM test method are not similar to those evaluated in the in vivo test 
method (redness, chemosis and discharge from the conjunctiva), but are proposed to 
represent mechanisms of toxicity that could elicit these in vivo endpoints.  
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1.3.4 Use of Proposed Test Method in Overall Strategy of Hazard for Safety Assessment 
The HET-CAM test method is being considered for use in the identification of ocular 
corrosives and severe irritants in a tiered testing strategy (e.g., GHS; UN 2003).  The GHS 
proposes a tiered testing and evaluation strategy for serious eye damage and eye irritation 
using available data from dermal irritation studies, knowledge of structure activity 
relationships, and pH screening.  As shown in Figure 1-2, the GHS also allows for use of 
validated and accepted in vitro methods to identify severe ocular irritants/corrosives without 
further testing.  If a test substance is classified in a validated in vitro method as an ocular 
corrosive or severe irritant, then no further testing would be required and the test substance 
would be appropriately labeled.  If a test substance is not classified as an ocular corrosive or 
severe irritant using a validated in vitro method (i.e., the test substance remains unclassified), 
then current regulatory agency regulations for ocular testing would be followed.  It is noted 
that the current testing strategy is proposed for use for regulatory classification and labeling 
purposes.  
 
1.4 Validation of In Vitro HET-CAM Test Method 
 
The ICCVAM Authorization Act (Sec. 4(c)) mandates that “[e]ach Federal Agency … shall 
ensure that any new or revised … test method … is determined to be valid for its proposed 
use prior to requiring, recommending, or encouraging [its use].” (Public Law [P.L.] 106-
545).  
 
Validation is the process by which the reliability and relevance of an assay for a specific 
purpose are established (ICCVAM 1997).  Relevance is defined as the extent to which an 
assay will correctly predict or measure the biological effect of interest (ICCVAM 1997).  For 
the HET-CAM test method described in this BRD, relevance is restricted to how well the 
assay identifies substances that are capable of producing corrosive or severe irritant effects to 
the eye.  Reliability is defined as the reproducibility of a test method within and among 
laboratories and should be based on performance with a diverse set of substances that are 
representative of the types of chemical and product classes that are expected to be tested and 
the range of response that needs to be identified.  The validation process will provide data 
and information that will allow U.S. Federal agencies to develop guidance on the 
development and use of the HET-CAM test method as part of a tiered-testing approach to 
evaluating the eye irritation potential of substances. 
 
The first stage in this evaluation is the preparation of a BRD that presents and evaluates the 
relevant data and information about the assay, including its mechanistic basis, proposed uses, 
reliability, and performance characteristics (ICCVAM 1997).  This BRD summarizes the 
available information on the various versions of the HET-CAM test method that have been 
published.  Where adequate data are available, the qualitative and quantitative performances 
of the assay are evaluated and the reliability of each version of HET-CAM is compared with 
the reliability of the other versions.  If there are insufficient data to support the 
recommendation of a standardized protocol for HET-CAM, this BRD will aid in identifying 
essential test method components that should be considered during its development and 
validation.   
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Figure 1-2 GHS Testing Strategy for Serious Eye Damage and Eye Irritation  

Parameter  Findings  Conclusions 

If a valid in vitro test is 
available to assess severe 
damage to eyes 

   
 Severe damage 

 
Category 1 

 
 

    

Not a severe eye irritant     
     

If a valid in vitro test is 
available for eye irritation 

 
Irritant 

 
Category 2 

 
 

No indication of eye irritant 
properties 

    

 
 
Experimentally assess skin 
corrosion potential 
(validated in vitro or in vivo 
test) 

 

 
Corrosive 

 

 
No evaluation of 
effects on eyes 

     

         Not corrosive     
 
 
1 rabbit eye test       
 
 
      No serious damage 

 

Severe/irreversible 
damage 
Irritant 

 

Category 1 
 
Category 2 

 
     

1 or 2 additional rabbits 
 
 
        
 
 
      Not an eye irritant 
 

 
 
 
 

Severe/irreversible 
damage 
 
Irritant 

 Category 1 
 
 
Category 2  

Adapted from UN (2003).  
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1.5 Search Strategies and Selection of Citations for the HET-CAM BRD 
 
The HET-CAM test method data summarized in this BRD are based on information found in 
the peer-reviewed scientific literature.  An online literature search of entries in MEDLINE, 
ALTBIB, Web of Science, and STN International was conducted to retrieve database records 
on publications reporting on in vitro testing of substances using the HET-CAM test method.  
The search was conducted in the database basic index, which includes words in the title and 
abstract, and indexing words.  Search terms used in various database indexes are shown in 
Table 1-3. 
 
Table 1-3 Terms and Phrases Used for Online Literature Searches 

Database Searched Search Term 

ALTBIB hen's egg 

PubMed and Web of Science HET-CAM 

PubMed and Web of Science hen's AND egg* AND membrane 

STN International hen's AND egg* 

STN International hen's AND egg* AND membrane 

STN International 
(chorioallantoic OR (chorion AND 
allantoic)) AND test 

STN International HET-CAM 

*represents wildcard character used in the search term. 

 
Each database record included authors, bibliographic citation, and indexing terms.  Most 
records also included abstracts.   
 
Of the 128 records obtained from the search in ALTBIB, MEDLINE, and Web of Science 
completed in November 2003 (and updated in October 2004), 38 records contained relevant 
information on HET-CAM test method protocols and/or contained data obtained using the 
HET-CAM method.  Of the 86 records obtained from the search in STN International 
completed in February 2004, 13 records contained relevant information on additional HET-
CAM test method protocols and/or contained data obtained using the HET-CAM method.  
Abstracts of selected titles were reviewed, and the relevant articles were selected and 
retrieved from the literature for analysis.  A database of the literature citations was 
established using bibliographic or reference database software.  Subsequent to the initial 
search, additional articles with relevant information were identified and retrieved; many of 
these were identified from the bibliographies of the articles that were selected initially.  
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