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Abstract

Bayesian probability theory is an inference calculus, which originates from a gen-
eralization of inclusion on the Boolean lattice of logical assertions to a degree of
inclusion represented by a real number. Dual to this lattice is the distributive lat-
tice of questions constructed from the ordered set of down-sets of assertions, which
forms the foundation of the calculus of inquiry—a generalization of information
theory. In this paper we introduce this novel perspective on these spaces in which
machine learning is performed and discuss the relationship between these results
and several proposed generalizations of information theory in the literature.
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1 Introduction

It has been known for some time that probability theory can be derived
as a generalization of Boolean implication to degrees of implication repre-
sented by real numbers [11,12]. Straightforward consistency requirements dic-
tate the form of the sum and product rules of probability, and Bayes’ theo-
rem [11,12,47,46,20,34], which forms the basis of the inferential calculus, also
known as inductive inference. However, in machine learning applications it is
often times more useful to rely on information theory [45] in the design of
an algorithm. On the surface, the connection between information theory and
probability theory seems clear—information depends on entropy and entropy
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is a logarithmically-transformed version of probability. However, as I will de-
scribe, there is a great deal more structure lying below this seemingly placid
surface.

Great insight is gained by considering a set of logical statements as a Boolean
lattice. I will show how this lattice of logical statements gives rise to a dual
lattice of possible questions that can be asked. The lattice of questions has a
measure, analogous to probability, which I will demonstrate is a generalized
entropy. This generalized entropy not only encompasses information theory,
but also allows for new quantities and relationships, several of which already
have been suggested in the literature.

A problem can be solved in either the space of logical statements or in the
space of questions. By better understanding the fundamental structures of
these spaces, their relationships to one another, and their associated calculi
we can expect to be able to use them more effectively to perform automated
inference and inquiry.

In §2, we provide an overview of order theory, specifically partially-ordered
sets and lattices. I will introduce the notion of extending inclusion on a finite
lattice to degrees of inclusion effectively extending the algebra to a calculus,
the rules of which are derived in the appendix. These ideas are used to re-
cast the Boolean algebra of logical statements and to derive the rules of the
inferential calculus (probability theory) in §3. I will focus on finite spaces of
statements rather than continuous spaces. In §4, I will use order theory to
generate the lattice of questions from the lattice of logical statements. I will
discuss how consistency requirements lead to a generalized entropy and the
inquiry calculus, which encompasses information theory. In §5 I discuss the
use of these calculi and their relationships to several proposed generalizations
of information theory.

2 Partially-Ordered Sets and Lattices

2.1 Order Theory and Posets

In this section, I introduce some basic concepts of order theory that are nec-
essary in this development to understand the spaces of logical statements and
questions. Order theory works to capture the notion of ordering elements of
a set. The central idea is that one associates a set with a binary ordering re-
lation to form what is called a partially-ordered set, or a poset for short. The
ordering relation, generically written ≤, satisfies reflexivity, antisymmetry, and
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Fig. 1. Diagrams of posets described in the text. A. Natural numbers ordered by
‘less than or equal to’, B. Π3 the lattice of partitions of three elements ordered by
‘is contained by’, C. 23 the lattice of all subsets of three elements {a, b, c} ordered
by ‘is a subset of’.

transitivity, so that for elements a, b, and c we have

P1. For all a, a ≤ a (Reflexivity)

P2. If a ≤ b and b ≤ a, then a = b (Antisymmetry)

P3. If a ≤ b and b ≤ c, then a ≤ c (Transitivity)

The ordering a ≤ b is generally read ‘b includes a’. In cases where a ≤ b and
a �= b, we write a < b. If it is true that a < b, but there does not exist an
element x in the set such that a < x < b, then we write a ≺ b, read ‘b covers
a’, indicating that b is a direct successor to a in the hierarchy induced by the
ordering relation.

This concept of covering can be used to construct diagrams of posets. If an
element b includes an element a then it is drawn higher in the diagram. If b
covers a then they are connected by a line. These poset diagrams (or Hasse
diagrams) are useful in visualizing the order induced on a set by an ordering
relation. Figure 1 shows three posets. The first is the natural numbers ordered
by the usual ‘is less than or equal to’. The second is Π3 the lattice of partitions
of three elements. A partition y includes a partition x, x ≤ y, when every cell of
x is contained in a cell of y. The third poset, denoted 23, is the powerset of the
set of three elements P({a, b, c}), ordered by set inclusion ⊆. The orderings in
Figures 1b and c are called partial orders since some elements are incomparable
with respect to the ordering relation. For example, since it is neither true that
{a} ≤ {b} or that {b} ≤ {a}, the elements {a} and {b} are incomparable,
written {a}||{b}. In contrast, the ordering in Figure 1a is a total order, since
all pairs of elements are comparable with respect to the ordering relation.

A poset P possesses a greatest element if there exists an element � ∈ P , called
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the top, where x ≤ � for all x ∈ P . Dually, the least element ⊥ ∈ P , called
the bottom, exists when ⊥ ≤ x for all x ∈ P . For example, the top of Π3 is the
partition 123 where all elements are in the same cell. The bottom of Π3 is the
partition 1|2|3 where each element is in its own cell. The elements that cover
the bottom are called atoms. For example, in 23 the atoms are the singleton
sets {a}, {b}, and {c}.

Given a pair of elements x and y, their upper bound is defined as the set of
all z ∈ P such that x ≤ z and y ≤ z. In the event that a unique least upper
bound exists, it is called the join, written x ∨ y. Dually, we can define the
lower bound and the greatest lower bound, which if it exists, is called the meet,
x∧ y. Graphically the join of two elements can be found by following the lines
upward until they first converge on a single element. The meet can be found
by following the lines downward. In the lattice of subsets of the powerset 23,
the join ∨, corresponds to the set union ∪, and the meet ∧ corresponds to the
set intersection ∩. Elements that cannot be expressed as a join of two elements
are called join-irreducible elements. In the lattice 23, these elements are the
atoms.

Last, the dual of a poset P , written P ∂ can be formed by reversing the ordering
relation, which can be visualized by flipping the poset diagram upside-down.
This action exchanges joins and meets and is the reason that their relations
come in pairs, as we will see below. There are different notions of duality and
the notion after which this paper is titled will be discussed later.

2.2 Lattices

A lattice L is a poset where the join and meet exist for every pair of elements.
We can view the lattice as a set of objects ordered by an ordering relation,
with the join ∨ and meet ∧ describing the hierarchical structure of the lattice.
This is a structural viewpoint. However, we can also view the lattice from an
operational viewpoint as an algebra on the space of elements. The algebra
is defined by the operations ∨ and ∧ along with any other relations induced
by the structure of the lattice. Dually, the operations of the algebra uniquely
determine the ordering relation, and hence the lattice structure. Viewed as
operations, the join and meet obey the following properties for all x, y, z ∈ L

L1. x ∨ x = x, x ∧ x = x (Idempotency)

L2. x ∨ y = y ∨ x, x ∧ y = y ∧ x (Commutativity)

L3. x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z (Associativity)

L4. x ∨ (x ∧ y) = x ∧ (x ∨ y) = x (Absorption)
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The fact that lattices are algebras can be seen by considering the consistency
relations, which express the relationship between the ordering relation and the
join and meet operations.

x ≤ y ⇔ x ∧ y = x

x ∨ y = y
(Consistency Relations)

Lattices that obey the distributivity relation

D1. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (Distributivity of ∧ over ∨)

and its dual

D2. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (Distributivity of ∨ over ∧)

are called distributive lattices. All distributive lattices can be expressed in
terms of elements consisting of sets ordered by set inclusion.

A lattice is complemented if for every element x in the lattice, there exists a
unique element ∼ x such that

C1. x∨ ∼ x = �
C2. x∧ ∼ x = ⊥

(Complementation)

Note that the lattice 23 (Fig. 1c) is complemented, whereas the lattice Π3

(Fig. 1b) is not.

2.3 Inclusion and the Incidence Algebra

Inclusion on a poset can be quantified by a function called the zeta function

ζ(x, y) =




1 if x ≤ y

0 if x � y
(zeta function) (1)

which describes whether the element y includes the element x. This function
belongs to a class of real-valued functions f(x, y) of two variables defined on a
poset, which are non-zero only when x ≤ y. This set of functions comprises the
incidence algebra of the poset [42]. The sum of two functions f(x, y) + g(x, y)
in the incidence algebra is defined the usual way by

h(x, y) = f(x, y) + g(x, y), (2)
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as is multiplication by a scalar h(x, y) = λf(x, y). However, the product of
two functions is found by taking the convolution over the interval of elements
in the poset

h(x, y) =
∑

x≤z≤y

f(x, z)g(z, y). (3)

To invert functions in the incidence algebra, one must rely on the Möbius
function µ(x, y), which is the inverse of the zeta function [44,42,3]

∑
x≤z≤y

ζ(x, z)µ(z, y) = δ(x, y), (4)

where δ(x, y) is the Kronecker delta function. These functions are the general-
ized analogues of the familiar Riemann zeta function and the Möbius function
in number theory, where the poset is the set of natural numbers ordered by
‘divides’. We will see that they play an important role both in inferential rea-
soning as an extension of inclusion on the Boolean lattice of logical statements,
and in the quantification of inquiry.

2.4 Degrees of Inclusion

It is useful to generalize this notion of inclusion on a poset. I first introduce
the dual of the zeta function, ζ∂(x, y), which quantifies whether x includes y,
that is

ζ∂(x, y) =




1 if x ≥ y

0 if x � y
(dual of the zeta function) (5)

Note that the dual of the zeta function on a poset P is equivalent to the zeta
function defined on its dual P ∂, since the ordering relation is simply reversed.
I will generalize inclusion by introducing the function z(x, y), 1

z(x, y) =




1 if x ≥ y

0 if x ∧ y = ⊥
z otherwise, where 0 < z < 1.

(degrees of inclusion) (6)

where inclusion on the poset is generalized to degrees of inclusion represented
by real numbers. 2 This new function quantifies the degree to which x includes
y. This generalization is asymmetric in the sense that the condition where
ζ∂(x, y) = 1 is preserved, whereas the condition where ζ∂(x, y) = 0 has been
modified. The motivation here is that, if we are certain that x includes y then
we want to indicate this knowledge. However, if we know that x does not

1 I have dropped the ∂ symbol since the definition is clear.
2 This function need not be normalized to unity, as we will see later.
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include y, then we can quantify the degree to which x includes y. In this sense,
the algebra is extended to a calculus. Later, I will demonstrate the utility of
such a generalization.

The values of the function z must be consistent with the poset structure. In
the case of a lattice, when the arguments are transformed using the algebraic
manipulations of the lattice, the corresponding values of z must be consistent
with these transformations. By enforcing this consistency, we can derive the
rules by which the degrees of inclusion are to be manipulated. This method
of requiring consistency with the algebraic structure was first used by Cox
to prove that the sum and product rules of probability theory are the only
rules consistent with the underlying Boolean algebra [11,12]. The rules for the
distributive lattices I will describe below are derived in the appendix, and the
general methodology is discussed in greater detail elsewhere [34].

Consider a distributive lattice D and elements x, y, t ∈ D. Given the degree
to which x includes t, z(x, t), and the degree to which y includes t, z(y, t), we
would like to be able to determine the degree to which the join x∨ y includes
t, z(x ∨ y, t). In the appendix, I show that consistency with associativity of
the join requires that

z(x ∨ y, t) = z(x, t) + z(y, t) − z(x ∧ y, t). (7)

For a join of multiple elements x1, x2, . . . , xn, this degree is found by

z(x1 ∨ x2 ∨ · · · ∨ xn, t) =∑
i

z(xi, t) −
∑
i<j

z(xi ∧ xj, t) +
∑

i<j<k

z(xi ∧ xj ∧ xk, t) − · · · , (8)

which I will call the sum rule for distributive lattices. This sum rule exhibits
Gian-Carlo Rota’s inclusion-exclusion principle, where terms are added and
subtracted to avoid double-counting of the join-irreducible elements in the
join [28,42,3]. The inclusion-exclusion principle is a consequence of the Möbius
function for distributive lattices, which leads to an alternating sum and differ-
ence as one sums down the interval in the lattice. This demonstrates that the
form of the sum rule is inextricably tied to the underlying lattice structure
[34].

For the meet of two elements x ∧ y, it is clear that we can use (7) to obtain

z(x ∧ y, t) = z(x, t) + z(y, t) − z(x ∨ y, t). (9)

However, another useful form can be obtained by requiring consistency with
distributivity. In the appendix, I show that this consistency constraint leads
to

z(x ∧ y, t) = Cz(x, t)z(y, x ∧ t), (10)
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which is the product rule for distributive lattices. The constant C acts as a
normalization factor, and is necessary when these degrees are normalized to
values other than unity.

Last, requiring consistency with commutativity of the meet leads to the analog
of Bayes’ Theorem for distributive lattices

z(y, x ∧ t) =
z(y, t)z(x, y ∧ t)

z(x, t)
. (11)

One does not think typically of Bayes’ Theorem outside of the context of prob-
ability theory, however, it is a general rule that is applicable to all distributive
lattices. As I will demonstrate, it can be used in computing probabilities among
logical assertions, as well as in working with questions.

2.5 Measures and Valuations

The fact that one can define functions that take lattice elements to real num-
bers was utilized by Rota, who used this to develop and promote the field of
geometric probability [43,28]. The more familiar term measure typically refers
to a function µ defined on a Boolean lattice B, which takes elements of a
Boolean lattice to a real number. For example, given x ∈ B, µ : x �→ R. The
term valuation is a more general term that takes a lattice element x ∈ L to
a real number, v : x �→ R, or more generally to an element of a commutative
ring with identity [44], v : x �→ A. The function z, introduced above (6), is
a bi-valuation since it takes two lattice elements x, y ∈ L as its arguments,
z : x, y �→ R. When applied to a Boolean lattice, the function z is also a
measure.

3 Logical Statements

George Boole [8,9] was the first to understand the algebra of logical state-
ments, which I will interchangeably call logical assertions. Boole’s algebra is
so familiar, that I will spend little effort in describing it. In this algebra, there
are two binary relations called conjunction (AND) and disjunction (OR), and
one unary operation called complementation (NOT). The binary operations
are commutative, associative, and distributive.

Let us now adopt a different perspective, where we view this Boolean structure
as a set of logical statements ordered by logical implication. A statement x
includes a statement y, y ≤ x, when y implies x, written y → x. Thus the
ordering relation ≤ is represented by →. Logical implication as an ordering
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Fig. 2. The lattice of assertions A3 generated by three atomic assertions a, k, and
n. The ideals of this lattice form the lattice of ideal questions I3 ordered by set
inclusion ⊆, which is isomorphic to A3. The the maximum of the set of statements
in any ideal maps back to the assertion lattice. The statements comprising three
ideals are highlighted on the right.

relation among a set of logical assertions sets up a partial order on the set and
forms a Boolean lattice. The join and meet are identified with the disjunction
and conjunction, respectively. In this case the order-theoretic notation for the
join and the meet conveniently matches the logical notation for the disjunction
and conjunction. However, one must remember that the join and meet describe
different operations in different lattices. A Boolean lattice follows L1-L4, D1,
D2, C1 and C2, which is neatly summarized by saying that it is a complemented
distributive lattice.

To better picture this, consider a simple example [33] concerning the matter
of ‘Who stole the tarts made by the Queen of Hearts?’ For the sake of this
example, let us say that there are three mutually exclusive statements, one of
which answers this question:

a = ‘Alice stole the tarts!’

k = ‘The Knave of Hearts stole the tarts!’

n = ‘No one stole the tarts!’

The lattice A3 generated by these assertions is shown in Figure 2. The bottom
element of the lattice is called the logical absurdity. It is always false, and as
such, it implies every other statement in the lattice. The three statements a,
k, and n are the atoms which cover the bottom. All other logical statements in
this space can be generated from joins of these three statements. For example,
the statement a∨k is the statement ‘Either Alice or the Knave stole the tarts! ’
The top element � = a∨k∨n is called the truism, since it is trivially true that
‘Either Alice, the Knave, or nobody stole the tarts! ’. The truism is implied by
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every other statement in the lattice. Since the lattice is Boolean, each element
in the lattice has a unique complement (C1, C2). The statement a =‘Alice
stole the tarts! ’ has as its complement the statement ∼ a = k∨n =‘Either the
Knave or no one stole the tarts! ’ This statement ∼ a is equivalent to ‘Alice
did not steal the tarts! ’ Last, note that this lattice (Fig. 2) is isomorphic to
the lattice of powersets 23 (Fig. 1c), therefore Boolean algebra describes the
operations on a powerset as well as implication on a set of logical statements.

3.1 The Origin of Probability Theory

Deductive reasoning describes the act of using the Boolean lattice structure to
determine whether one logical statement implies another given partial knowl-
edge of relations among a set of logical statements. From the perspective of
posets, this equates to determining whether one element of a poset includes
another element given some partial knowledge of inclusion among a set of poset
elements. Since inclusion on a poset is encoded by the zeta function ζ and its
dual ζ∂ (5), either of these functions can be used to quantify implication on
A and perform deductive reasoning.

Inductive reasoning or inference is different from deductive reasoning in the
sense that it incorporates a notion of uncertainty not found in the Boolean
lattice structure. Just as ζ∂ quantifies deductive reasoning, its generalization
z quantifies inductive reasoning. Probability 3 is simply this function z (6)
defined on the Boolean lattice A,

p(x|y) = z(x, y), (12)

so that implication on the lattice is generalized to degrees of implication rep-
resented by real numbers

p(y|x) =




1 if x → y

0 if x ∧ y = ⊥
p otherwise, where 0 < p < 1.

(probability) (13)

To make this more concrete, consider the example in Figure 2. Clearly, � ≥ a,
which is equivalent to a → �, so that ζ∂(�, a) = 1 and p(�|a) = 1. Now,
� � a and a∧� = a, therefore ζ∂(a,�) = 0 and p(a|�) = p where 0 < p < 1.
While the truism, � =‘Either Alice or the Knave or no one stole the tarts! ’,

3 I could call this degree of implication plausibility or perhaps by a new term, how-
ever we will see that this quantity follows all of the rules of probability theory. Since
there is neither an operational nor a mathematical difference between this degree
of implication and probability, I see no need to indicate a difference semantically.
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does not imply that a =‘Alice stole the tarts! ’, the degree to which the premise
implies that Alice stole the tarts, p(a|�), is a very useful quantity. This is the
essence of inductive reasoning.

Since probability is the function z defined on the Boolean lattice A, the rules
by which probabilities may be manipulated derive directly from requiring that
probability be consistent with the underlying Boolean algebra. Since Boolean
algebras are distributive, we have already shown that there are three rules for
manipulating probabilities: the sum rule of probability

p(x ∨ y|t) = p(x|t) + p(y|t) − p(x ∧ y|t), (14)

which is equivalent to (7), the product rule of probability

p(x ∧ y|t) = p(x|t)p(y|x ∧ t), (15)

which is equivalent to (10) with C = 1, and Bayes’ theorem

p(y|x ∧ t) =
p(y|t)p(x|y ∧ t)

p(x|t) , (16)

which is equivalent to (11). These three rules constitute the inferential calculus,
which is a generalization of the Boolean algebra of logical assertions. There
are several very important points to be made here. Probabilities are functions
of pairs of logical statements and quantify the degree to which one logical
statement implies another. For this reason, they are necessarily conditional.
Since the rules by which probabilities are to be manipulated derive directly
from consistency with the underlying Boolean algebra, probability theory is
literally an extension of logic, as argued so effectively by E.T. Jaynes [25].

3.2 Join-Irreducible Statements and Prior Probabilities

The join-irreducible elements of the Boolean lattice of logical statements are
the atoms that cover the absurdity ⊥. This set of atomic statements {ai}
comprises the exhaustive set of mutually exclusive assertions that form the
basis of this lattice. All other statements in the lattice can be found by taking
joins of these atoms. Given assignments of the prior probabilities for the set
of {ai}, (eg. p(ai|�)), the prior probabilities for all other statements in the
lattice can be computed using the sum rule of the inferential calculus. This
was proven by Gian-Carlo Rota [44, Theorem 1, Corollary 2, p.35] who showed
that:

Theorem 1 (Rota, Assigning Valuations [44]) A valuation in a finite dis-
tributive lattice is uniquely determined by the values it takes on the set of
join-irreducibles of L, and these values can be arbitrarily assigned.
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Furthermore, given the prior probability of the degree to which � implies an
assertion x, the degree to which any other element of the lattice implies x can
be found via the product rule

p(x|y) = p(x|y ∧ �) =
p(x ∧ y|�)

p(y|�)
. (17)

Thus by assigning the prior probability that the truism implies each of the
atoms, all the other probabilities can be uniquely determined using the infer-
ential calculus.

What is even more remarkable here, is that Rota proved that the values of
the prior probabilities can be arbitrarily assigned. This means that there are
no constraints imposed by the lattice structure, or equivalently the Boolean
algebra, on the values of the prior probabilities. Thus the inferential calculus
tells us nothing about assigning prior probabilities. Objective assignments
can only be made by relying on additional consistency principles, such as
symmetry, constraints, and consistency with other aspects of the problem at
hand. Examples of useful principles are Jaynes’ Principle of Maximum Entropy
[23] and his Principle of Group Invariance [22], which is a generalization of
the Principle of Indifference [6,35,27]. Once these assignments are made, the
inferential calculus, induced by consistency with order-theoretic principles,
dictates the remaining probabilities.

3.3 Remarks on Lattice Products

Two spaces of logical statements can be combined by taking the lattice prod-
uct, which can be written as the Cartesian product of the lattice elements. By
equating the bottom elements of the two spaces, we get a distributive lattice.
Such products of lattices are very important in inference, since it is exactly
what one does when one takes a lattice of hypotheses and combines them with
data. The product rule and Bayes’ theorem are extremely useful in these sit-
uations where the prior probabilities are assigned on the two lattices forming
the product. These issues are discussed in more detail elsewhere [34].

4 Questions

In his last published work exploring the relationships between inference and
inquiry [13], Cox defined a question as the set of all logical statements that
answer it. At first glance, this definition is strikingly simple. However, with
further thought one sees that it captures the essence of a question and does
so in a form that is accessible to mathematical investigation.
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In the previous section on logical statements, the modern viewpoint of lattice
theory may seem like overkill. Its heavy mathematics are not necessary to
reach the same conclusions that one reaches by simply working with Boole’s
algebra. In addition, while some of new insight is gained, there is little there
to change how one uses probability theory to solve inference problems. Here
however, we will find lattice theory to be of great advantage by enabling us to
visualize relations among sets of assertions that comprise the sets of answers
to questions.

4.1 Down-sets and Ideals

If a logical statement x answers a question, then any statement y such that
y → x, or equivalently in order-theoretic notation, y ≤ x, answers the same
question. Thus a question is not defined by just any set of logical statements,
it is defined by a set that is closed when going down the assertion lattice. Such
a set is called a down-set [14]

Definition 1 (Down-set) A down-set is a subset J of an ordered set L,
written J = ↓L, where if a ∈ J , x ∈ L, x ≤ a then x ∈ J .

Let us begin exploring questions by considering the down-set formed from a
set containing a single element {x}, which we write 4 as X = ↓{x} ≡ ↓x. Given
any logical statement x in the Boolean lattice of assertions, we can consider
the down-set formed from that assertion x

X = ↓x = {y | y → x ∀ x, y ∈ A} (18)

Such a down-set is called an ideal [7,14], and to emphasize this I have called
these questions ideal questions to denote the fact that they are ideals of the
assertion lattice A [32].

We are now in a position to compare questions. Two questions are equivalent
if they ask the same thing—or equivalently when they are answered by the
same set of assertions. The questions ‘Is it raining? ’ and ‘Is it not raining? ’
are both answered by either the statement ‘It is raining! ’ or the statement
‘It is not raining! ’ and all the statements that imply them. Thus our two
questions ask the same thing and are therefore equivalent. Furthermore, if one
question X is a subset of another question Y in a space of questions Q, then
answering the question X will necessarily answer the question Y . This means
that we can use the binary ordering relation ‘is a subset of’ to implement the
ordering relation ‘answers’ and therefore order the set of questions.

4 Note that I am using lowercase letters to represent logical statements, uppercase
letters to represent questions, and script letters to represent an entire lattice.
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The set of ideal questions I ordered by set inclusion forms a lattice (Fig.
2) isomorphic to the original assertion lattice [7]. Thus there is a one-to-one
onto mapping from each statement x ∈ A to its ideal question X ∈ Q. The
atomic assertions map to atomic questions, each of which has only two possible
answers. For example, the statement k from our previous example maps to

K = ↓k = {k,⊥}, (19)

which is answered by either ‘The knave stole the tarts! ’ or the absurdity ⊥.
Robert Fry calls these atomic questions elementary questions [17], since you
basically receive either exactly what you asked or no useful answer. The non-
atomic statements map to more complex questions, such as

KN = ↓k ∨ n = {k ∨ n, k, n,⊥}, (20)

where the symbol KN is considered to be a single symbol representing a
single question formed from the down-set of the join of the statements k and
n. Similarly, I will use AKN to represent the question AKN = ↓a∨k∨n. The
lattice of ideal questions I can be mapped back to the lattice of assertions A

by selecting the maximum element in the set.

4.2 The Lattice of Questions

We can construct more complex questions by considering down-sets, which
are set unions of the ideals of the assertion lattice. For example, the question
T =‘Who stole the tarts? ’ is formed from the union of the three elementary
questions

T = A ∪ K ∪ N. (21)

Since

A = ↓a = {a,⊥} (22)

K = ↓k = {k,⊥}
N = ↓n = {n,⊥}

the question T = A ∪ K ∪ N can be written as

T = {a, k, n,⊥}. (23)

In this way, the question T is defined by its set of possible answers, including
the absurdity. We could also ask the binary question B =‘Did or did not Alice
steal the tarts? ’. This question can be written as the down-set formed from
a =‘Alice stole the tarts! ’, and its complement ∼ a =‘Either the Knave or no
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Fig. 3. The ordered set of down-sets of the lattice of assertions A results in the lattice
of all possible questions Q = O(A) ordered by ⊆. The join-irreducible elements of Q

are the ideal questions, which are isomorphic to the lattice of assertions A ∼ J(Q).
The down-sets corresponding to several questions, including the questions T and B
discussed in the text, are illustrated on the right.

one stole the tarts! ’

B = ↓a ∪ ↓∼ a (24)

= ↓a ∪ ↓k ∨ n

= {a,⊥} ∪ {k ∨ n, k, n,⊥}
= {k ∨ n, a, k, n,⊥},

where any one of the statements in the set will answer the question B. We
can write B compactly as B = A ∪ KN .

This construction produces every possible question given the lattice of asser-
tions A, see Figure 3. Since the questions are sets, the set of questions ordered
by set inclusion forms a poset ordered by ⊆, which is a distributive lattice
[7,14]. More specifically, this construction results in the ordered set of down-
sets of A, which is written O(A). Thus the Boolean lattice 2N is mapped to
the free distributive lattice FD(N). Even though FD(N) is a lattice of sets
and is distributive, it is not complemented [32]. Thus questions in general have
no complements.

The question lattice Q is closed under set union and set intersection, which
correspond to the join and the meet, respectively. Therefore, T = A∪K∪N ≡
A∨K ∨N . Unfortunately, the terminology introduced by Cox is at odds with
the order-theoretic terminology, since the joint question is formed from the
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meet of two questions, and it asks what the two questions ask jointly, whereas
the join of two questions, the common question, asks what the two questions
ask in common.

Consider the two questions T and B. Since T ⊆ B, the question T necessarily
answers the question B. Thus asking ‘Who stole the tarts? ’ will resolve ‘Did
or did not Alice steal the tarts? ’ The converse is not true, since if one asks
‘Did or did not Alice steal the tarts? ’, the reply could be ‘Either the Knave
or no one stole the tarts! ’, which still does not answer ‘Who stole the tarts? ’
Thus the question T lies below the question B in the lattice Q3 indicating that
T answers B.

The consistency relations (discussed in §2.2) can be used to better visual-
ize these relationships. Consider again the two questions T =‘Who stole the
tarts? ’ and B =‘Did or did not Alice steal the tarts? ’. The join of these two
questions T ∨B asks what they ask in common, which is ‘Did or did not Alice
steal the tarts? ’. Whereas, their meet T ∧B asks what they ask jointly, which
is ‘Who stole the tarts? ’. So we have that

T ∨ B = B

T ∧ B = T

which, by the consistency relations, implies that

T ⊆ B.

This can also be determined by taking the set union for the join and the set
intersection for the meet, and working with expressions for the sets defining
T and B.

4.3 The Central Issue

Just as statements can be true or false, questions can be real or vain. Cox
defined a real question as a question that is answered by at least one true
statement, whereas a vain question is a question that is answered by no true
statement [13]. In Lewis Carroll’s Alice’s Adventures in Wonderland, it turned
out that no one stole the tarts. Thus, any question not allowing for that
possibility is a vain question—there does not exist a true answer that will
resolve the issue.

When the truth values of the statements are not known, a question Q is only
assured to be a real question when it is answered by every one of the atomic
statements of A, or equivalently when Q∧Qi �= ⊥ for all elementary questions
Qi ∈ Q. Put simply, all possibilities must be accounted for. Previously, I called
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these questions assuredly real questions [32], which I will shorten here to real
questions. The set of real questions is a sublattice R of the lattice Q. That is,
it is closed under joins and meets.

The bottom of R is the smallest real question, and it answers all other questions
in R. It is formed from the join of all of the elementary questions, and as such
it does not accept an ambiguous answer. For this reason, I call it the central
issue. In our example, the central issue is the question T =‘Who stole the
tarts? ’. Resolving the central issue will answer all the other real questions.
Recall that by answering T =‘Who stole the tarts? ’, we necessarily will have
answered B =‘Did or did not Alice steal the tarts? ’ As one ascends the real
sublattice, the questions become more and more ambiguous. For example, the
question AN ∪ KN will narrow down the inquiry, resolving whether it was
Alice or the Knave, but not necessarily ruling out that no one stole the tarts.

4.4 Duality between the Assertions and Questions

The question lattice Q is formed by taking the ordered set of down-sets of the
assertion lattice, which can be represented by the map A �→ O(A), so that
Q = O(A). The join-irreducible questions J(Q) are the ideal questions, which
by themselves form a lattice that is isomorphic to the assertion lattice A, which
can be represented by the map Q �→ J(Q). Thus we have two isomorphisms Q ∼
O(A) and A ∼ J(Q). This correspondence, called Birkhoff’s Representation
Theorem [14], holds for all finite ordered sets A. The lattice Q is called the
dual of J(Q), and the lattice A is called the dual of O(A). This is of course
a different notion of duality than I introduced earlier. What is surprising is
that the join-irreducible map takes lattice products to sums of lattices, so that
the map J acts like a logarithm, whereas the map O acts like the exponential
function [14].

4.5 The Geometry of Questions

There are some interesting relationships between the lattice of questions and
geometric constructs based on simplexes. A simplex is the simplest possible
polytope in a space of given dimension. In zero dimensions, a 0-simplex is
a point. A 1-simplex is a line segment, which consists of two 0-simplexes
connected by a line. A 2-simplex is a triangle consisting of three 0-simplexes
joined by three 1-simplexes, in conjunction with the filled in interior. The
3-simplex is a tetrahedron. Finally the n-simplex is an n-hypertetrahedron.

Since, an n − 1 simplex can be used to construct an n-simplex, we can order
these simplexes with an ordering relation ‘contains’. For example, if two 0-
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Fig. 4. The lattice of questions (A) is isomorphic to the lattice of simplicial complexes
(B). The atomic questions A, K, and N are isomorphic to the three 0-simplexes.
The real questions are isomorphic to the simplicial complexes that include every
0-simplex in the space. Questions are not only related to these geometric constructs,
they are also isomorphic to hypergraphs. Since low-order hypergraphs look like
low-order simplicial complexes, the lattice of hypergraphs with three generators is
almost identical. The only exception is that instead of the 2-simplex at the top, we
have the hypergraph connecting the three points (see top of B).

simplexes, A and B, are used to create a 1-simplex AB, we write A ≤ AB
and B ≤ AB. We can also define a join of a m-simplex with an n-simplex as
a geometric object akin to the set union of the two simplexes. Such an object
is called a simplicial complex. The set of all simplicial complexes formed from
N distinct 0-simplexes forms the free distributive lattice FD(N) [28]. We
can identify each n-simplex with an ideal question in the question lattice
formed by taking the down-set of the join of n assertions. This allows us to
set up a one-to-one correspondence between the set of questions and the set of
simplicial complexes. The lattice of questions is thus isomorphic to the lattice
of simplicial complexes (Figure 4).

Another interesting isomorphism can be established. Hypergraphs are graphs
with generalized edges that can connect more than a single node. By identi-
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fying each n-simplex with an n-hypergraph, a one-to-one correspondence can
be made between simplicial complexes and hypergraphs. Thus, a lattice of
hypergraphs can be constructed, which is isomorphic to both the lattice of
simplicial complexes and the lattice of questions. The relationship between
hypergraphs and information theory was noted by Tony Bell [4]. I will show
that the lattice on which Bell’s co-information is a valuation is precisely the
question lattice [32].

4.6 The Inquiry Calculus

The algebra of questions provides us with the operations with which questions
can be manipulated. Given two questions, we can form the common question
and the joint question using the join and meet respectively. Inclusion on the
lattice Q indicates whether one question is answered by another. We now
extend this algebra to a calculus by generalizing inclusion on this lattice to
degrees of inclusion represented by real numbers just as we did on the Boolean
lattice. Consider two questions, one of which I will call an outstanding issue
I, and the other an inquiry Q. The degree to which the issue I is resolved (or
answered) by the inquiry Q is a measure of the relevance of the inquiry to the
issue. This is expressed mathematically by defining,

d(I|Q) = z(I,Q), (25)

which is explicitly written as

d(I|Q) =




1 if I ≥ Q

0 if I ∧ Q = ⊥
d otherwise, where 0 < d < 1.

(relevance) (26)

If the degree is low, then the inquiry has little relevance to the issue. If it is
zero, the inquiry does not resolve the issue, and thus is not relevant. For this
reason, I call this degree the relevance 5 , which I will write as d(I|Q) = z(I,Q).
This can be read as the degree to which I is answered by Q, which is the same
as the degree to which I includes Q on the lattice. In practice one would most
likely work with real questions and compute quantities like d(T |B), which is

5 This degree was called ‘bearing’ by Cox, and Robert Fry adopted the symbol b,
which is an upside-down p to reflect the relationship with probability. Ariel Caticha
suggested the name ‘relevance’ since its Latin origin would make it more accessible
to speakers whose native language was not English. I have chosen to define the
relevance as d, which reverses the order of the arguments to reflect the relation-
ship between the relevance d and the probability p as valuations equivalent to the
function z defined on their respective lattices. Thus d(I|Q) ≡ b(Q|I).
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the degree to which asking ‘Did or did not Alice steal the tarts? ’ resolves ‘Who
stole the tarts? ’. This quantity d(T |B) measures the relevance of the question
B to the issue T .

The rules of the calculus are straightforward, since they were developed earlier
for distributive lattices in general and applied to the assertions in the form of
probability. There is the sum rule for the relevance of a question Q to the join
of two questions X ∨ Y

d(X ∨ Y |Q) = d(X|Q) + d(Y |Q) − d(X ∧ Y |Q), (27)

and its generalization

d(X1 ∨ X2 ∨ · · · ∨ Xn|Q) =∑
i

d(Xi|Q) − ∑
i<j

d(Xi ∧ Xj|Q) +
∑

i<j<k

d(Xi ∧ Xj ∧ Xk|Q) − · · · , (28)

the product rule

d(X ∧ Y |Q) = Cd(X|Q)d(Y |X ∧ Q), (29)

and a Bayes’ theorem analog

d(Y |X ∧ Q) =
d(Y |Q)d(X|Y ∧ Q)

d(X|Q)
, (30)

where the constant C in the product rule is the value of the relevance d(�|X).
Relevances, like probabilities, need not be normalized to one.

With the rules of the inquiry calculus in hand, and with Rota’s theorem [44,
Theorem 1, Corollary 2, p.35], we can take relevances assigned to the join-
irreducible elements J(Q) (ideal questions) and compute the relevances be-
tween all pairs of questions on the lattice. However, we need an objective
means by which to assign these relevances for the ideal questions.

4.7 Entropy from Consistency

To assign relevances, we must maintain consistency with both the algebraic
properties of the question lattice Q and the probability assignments on the
Boolean lattice A. While, I will outline how this is done below, the detailed
proofs will be published elsewhere. Clearly from Rota’s theorem, we need only
determine the relevances of the ideal questions. Once those are assigned, the
rest follow from the inquiry calculus.

To determine the form of the relevance, I make a single assumption. That is
the degree to which the top question � answers a join-irreducible question X
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depends only on the probability of the assertion x from which the question X
was generated. That is, given the ideal question X = ↓x

d(X|�) = H(p(x|�)), (31)

where H is a function to be determined. In this way, the relevance of the ideal
question is required to be consistent with the probability assignments on A. I
will outline how the form of the function H can then be determined completely
from the properties of the inquiry calculus.

The lattice structure and the inquiry calculus imposes important restrictions
on the behavior of the relevance. Given three questions X,Y,Q ∈ Q the rele-
vance is additive only when X ∧ Y = ⊥

d(X ∨ Y |Q) = d(X|Q) + d(Y |Q), iff X ∧ Y = ⊥. (32)

However, in general the result is subadditive

d(X ∨ Y |Q) ≤ d(X|Q) + d(Y |Q). (33)

This is a result of the generalized sum rule, which includes additional terms to
avoid double-counting the overlap between the two questions. Commutativity
of the join requires that

d(X1 ∨ X2 ∨ · · · ∨ Xn|Q) = d(Xπ(1) ∨ Xπ(2) ∨ · · · ∨ Xπ(n)|Q) (34)

for all permutations (π(1), π(2) · · · , π(n)) of (1, 2, · · · , n). Thus the relevance
must be symmetric with respect to the order of the joins.

Last, we consider what happens when an assertion f , known to be false is
added to the system. Associated with this assertion f is a question F =↓f ∈ Q.
Now consider the relevance d(X1∨X2∨· · ·∨Xn∨F |Q). Since f is known to be
false, it can be identified with the absurdity ⊥, and the lattice A collapses from
2n+1 to 2n. The associated question F is then identified with F = ↓⊥ = ⊥,
where it is understood that the first ⊥ refers to the bottom of the lattice A

and the second refers to the bottom of the lattice Q. Since X ∨ ⊥ = X, we
require, for consistency,

d(X1 ∨ X2 ∨ · · · ∨ Xn ∨ F |Q) = d(X1 ∨ X2 ∨ · · · ∨ Xn|Q). (35)

This requirement is called expansibility.

I now define a partition question as a real question where its set of answers
are neatly partitioned. More specifically

Definition 2 (Partition Question) A partition question is a real question
P ∈ R formed from the join of a set of ideal questions P =

∨n
i=1 Xi where

∀ Xj, Xk ∈ J(Q), Xj ∧ Xk = ⊥.
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I will denote the set of partition questions by P. There are five partition
questions in our earlier example: AKN , N ∪ AK, K ∪ AN , A ∪ KN , and
A ∪ K ∪ N , which form a lattice isomorphic to the partition lattice Π3 in
Figure 1b.

For partition questions, the relevance can be easily computed using (32)

d(
n∨

i=1

Xi|�) =
n∑

i=1

H(p(qi|�)). (36)

Writing this as a function Kn of the n probabilities, we get

d(
n∨

i=1

Xi|�) = Kn(p1, p2, · · · , pn)), (37)

where I have written pi = p(qi|�). An important result from Aczél et al.
[2] states that if this function Kn satisfies additivity (32), subadditivity (33),
symmetry (34), and expansibility (35), then the function can be written as a
linear combination of the Shannon and Hartley entropies

Kn(p1, p2, · · · , pn) = a Hm(p1, p2, · · · , pn) + b oHm(p1, p2, · · · , pn), (38)

where a, b are arbitrary non-negative constants, the Shannon entropy [45] is
defined as

Hm(p1, p2, · · · , pn) = −
n∑

i=1

pi log2 pi, (39)

and the Hartley entropy [21] is defined as

oHm(p1, p2, · · · , pn) = log2 N(P ), (40)

where N(P ) is the number of non-zero arguments pi. An additional condition
suggested by Aczél states that the Shannon entropy is the only solution if
the result is to be small for small probabilities [2]. That is, that the relevance
varies continuously as a function of the probability. For the remainder of this
work, I will assume that this is the case.

Given these results, it is straightforward to show that the relevance of an ideal
question (31) can be written as

d(X|�) = −ap(x|�) log2 p(x|�), (41)

which is proportional to the probability-weighted surprise. With this result
in hand, the inquiry calculus enables us to calculate all the other relevances
of pairs of questions in the lattice. By requiring consistency with the lattice
structure and assuming that the relevance of an ideal question is a continuous
function of the probability of its corresponding assertion, we have found that
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the relevance of a partition question is equal to the Shannon entropy. Thus

d(A ∨ K ∨ N |�) ∝ −pa log2 pa − pk log2 pk − pn log2 pn, (42)

where pa ≡ p(a|�), · · · . Whereas,

d(A ∨ KN |�) ∝ −pa log2 pa − pk∨n log2 pk∨n, (43)

where pk∨n ≡ p(k ∨ n|�).

The inquiry calculus allows us to compute the degree to which the question
T =‘Who stole the tarts? ’ is answered by the question B =‘Did or did not
Alice steal the tarts? ’ by

d(T |B) = d(T |B ∧ �) (44)

= d(B|T ∧ �)
d(B|�)

d(T |�)

= d(B|T )
d(B|�)

d(T |�)

= C
d(B|�)

d(T |�)
,

where C is the chosen normalization constant for the relevance. By assigning
probabilities to the different cases, this is easily computed using the equations
(42) and (43) above.

The relevance of questions such as AN ∪ KN ≡ AN ∨ KN is even more
interesting, since this must be computed using the sum rule

d(AN ∨ KN |Q) = d(AN |Q) + d(KN |Q) − d(AN ∧ KN |Q), (45)

which is equivalent to the mutual information between AN and KN

I(AN ; KN) = H(AN) + H(KN) − H(AN,KN), (46)

although the information-theoretic notation obscures the conditionality of
these measures. Thus the relevance of the common question is related to the
mutual information, which describes what information is shared by the two
questions. The term d(AN ∧ KN |Q) is then identified as the join entropy.
In the context of information theory, Cox’s choice in naming the common
question and joint question is more clear.

However, the inquiry calculus holds new possibilities. The relevance of ques-
tions comprised of the join of multiple questions must then be computed using
the generalized sum rule (28), which is related to the sum rule via the Möbius
function for the lattice. Combined with the Shannon entropy for relevance,
this leads to the generalized entropy conjectured by Cox as the appropriate
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measure [12,13]. Furthermore, one can see that this is also the co-information,
rediscovered by Bell [4], and the lattice on which they are a valuation is pre-
cisely the question lattice [29]. We now have a well-founded generalization of
information theory, where the commonalities among a set of any number of
questions can be quantified.

5 Discussion

There are some significant deviations in this work from Cox’s initial explo-
rations. First, the question algebra is the free distributive algebra—not a
Boolean algebra as Cox suggested. Cox actually first believed (correctly) that
the algebra could not possibly be Boolean [12][pp. 52-3], but then later as-
sumed that complements of questions exist [13][pp. 151-2], which led to the
false conclusion that the algebra must be Boolean. This belief, that questions
follow a Boolean algebra and therefore possess complements, spread to several
early papers following Cox, including two of my own. The second major devia-
tion is that the ordering relation that I have used for question is reversed from
the one implicitly adopted by Cox. This led to a version of the consistency
relations in Cox’s work that is reversed from the consistency relations used in
order theory, where joins and meets of questions are swapped. This is related
to the third deviation, where I have adopted a notation for relevance that
is consistent with the function z from which it and probability both derive.
Thus, I use d(I|Q) to describe the degree to which the issue I is resolved by
the question Q, which is in keeping with the notation for probability where
p(x|t) is the degree to which the statement x is implied by the statement t.
This function d(I|Q) is equivalent to Fry’s notation b(Q|I). This is a difficult
decision, but I feel that mathematical consistency is more important than
historical consistency—especially at the early stages of development. Never-
theless, I would like to stress that Cox’s achievement in penetrating the realm
of questions is remarkable—especially considering the historical focus on the
logic of assertions and the surprising lack of attention paid to questions. One
notable exception is a paper by Felix Klein titled ‘What is a Question?’ [29].

Cox’s method for deriving probability theory from consistency has both sup-
porters and critics. It is my experience that many criticisms originate from a
lack of understanding of how physicists use symmetries, constraints and con-
sistency to narrow down the form of an unknown function in a problem. In
fortunate circumstances, this approach leads to a unique solution, or at least
a useful solution, with perhaps an arbitrary constant. In more challenging sit-
uations, such as using symmetries to understand the behavior of the strong
nuclear force, this approach may only exclude possibilities. Other criticisms
seem to focus on details related to probability and plausibility. By deriv-
ing these rules for degrees of inclusion defined on distributive lattices, I have
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taken any disagreement to a wider arena—specifically one where probability
and plausibility are no longer the issue. The fact that the application of this
methodology of deriving laws from ordering relations [34] leads to probability
theory, information theory, geometric probability [43,28], quantum mechan-
ics [10], and perhaps to measures in new spaces [34] suggests that there are
important insights to be gained here.

It is remarkable that Cox’s insight led him to correctly conjecture the rela-
tionship between relevance and probability as a generalized entropy [12,13].
Generalizations to information theory go back to its inception [40], and ap-
peared recently in the form of Bell’s co-informations, which he realized were
related to lattice structures [4]. Bell’s co-information is precisely Cox’s gener-
alized entropy, and in this paper I have shown that the lattice on which they
operate is precisely the question lattice.

In retrospect, the relationship between questions and information theory is
not surprising. For example, the design of a communication channel can be
viewed as designing a question to be asked of a transmitter. Experimental
design, which is also a form of question-asking, has relied on entropy [36,15,38].
Active learning has made experimental design an active process and entropy
has found a role here as well alongside Bayesian inference [39,37]. Question-
asking is also important when searching a space for an optimal solution [24,41].
Generalizations of information theory have found use in searching for causal
interactions among a set of variables. Transfer entropy is designed to extend
mutual information to address the asymmetric issue of causality [26]. Given
two time-series, X and Y , the transfer entropy can be neatly expressed in
terms of the relevance of the common question Xi+1 ∨ Yi minus relevance of
Xi ∨ Xi+1 ∨ Yi, where Xi =‘What is the value of the time series X at the
time i? ’ Last, Robert Fry has been working to extend the inquiry calculus to
cybernetic control [18] and neural network design [16,19]. Given the scope of
these applications, it will be interesting to see the implications that a detailed
understanding of the inquiry calculus will have on future developments.

It is already known that some problems can be solved in both the space of
assertions and the space of questions. For example, the Infomax Indepen-
dent Component Analysis (ICA) algorithm [5] is a machine learning algorithm
that was originally derived using information theory. However, by consider-
ing a source separation problem in terms of the logical statements describing
the physical situation, one can derive ICA using probability theory [30]. The
information-theoretic derivation can be interpreted in terms of maximizing the
relevance of the common question X ∨ Y , where X =‘What are the recorded
signals? ’ and Y =‘How well have we modelled the source activity? ’ This is
accomplished by using the prior probability distribution of the source ampli-
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tudes to encode how well the sources have been modelled [31]. 6 This notion
of encoding answers to questions is important to inductive inquiry.

In this paper, I have laid out the relationship between the algebra of a finite
set of logical statements and the algebra of the corresponding questions. The
Boolean lattice of assertions A gives rise to the free distributive lattice of
questions Q as the ordered set of down-sets of the assertion lattice. The join-
irreducible elements of the question lattice form a lattice that is isomorphic
to the original assertion lattice. Thus the assertion lattice A is dual to the
question lattice Q in the sense of Birkhoff’s representation theorem. Further-
more, the I showed that the question lattice is isomorphic to both the lattice of
simplicial complexes and the lattice of hypergraphs, which connects questions
to geometric constructs. By generalizing the zeta function on each lattice, I
have demonstrated that their algebras can be generalized to calculi, which
effectively enable us to measure statements and questions. Probability theory
is the calculus on A, and as such it is literally an extension of Boolean logic.
Cox’s generalized entropies, which are called co-informations by Bell, quantify
the relevance of a question on an issue. Traditional information theory is thus
only a portion of the inquiry calculus, which now offers new possibilities. This
formalism must now be extended to continuous spaces. An understanding of
these fundamental relationships will be essential to utilizing the full power of
these mathematical constructs.
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APPENDIX: Deriving the rules of the calculi

In this appendix, I derive the sum rule, product rule, and Bayes’ theorem ana-
log for distributive lattices. These rules are equally applicable to probability
on the Boolean lattice of assertions A, to relevance on the free distributive
lattice of questions Q, and any other distributive lattice. The first derivation
of these rules was by Cox for complemented distributive lattices (Boolean lat-
tices) [11,12]. The derivations rely on maintaining consistency between the
proposed calculus and the properties of the algebra. In Cox’s derivations, he
relied on consistency with complementation to obtain the sum rule, and consis-
tency with associativity of the meet to obtain the product rule. The derivation
of Bayes’ theorem is, in contrast, well-known since it follows directly from
commutativity of the meet. An interesting variation of Cox’s derivation for
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Boolean algebra relying on a single algebraic operation (NAND) was intro-
duced by Anthony Garrett [20].

Below, I expound on the derivations introduced by Ariel Caticha, which rely on
associativity and distributivity [10]. The implications of Caticha’s derivation
are profound, since his results imply that the sum rule, the product rule,
and Bayes’ theorem are consistent with distributive lattices in general. These
implications are discussed in greater detail elsewhere [34].

Consistency with Associativity

Consider a distributive lattice D, two join-irreducible elements, a, b ∈ J(D),
where a∧ b = ⊥, and a third element t ∈ D such that a∧ t �= ⊥ and b∧ t �= ⊥.
We begin by introducing a degree of inclusion (see Eqn. 6) represented by the
function φ, so that the degree to which a includes t is given by φ(a, t). We
would like to be able to compute the degree to which the join a∨ b includes t.
In terms of probability, this is the degree to which t implies a ∨ b.

Since a ∧ b = ⊥, this degree of inclusion can only be a function of φ(a, t) and
φ(b, t), which can be written as

φ(a ∨ b, t) = S(φ(a, t), φ(b, t)). (A-1)

The function S, will tell us how to use φ(a, t) and φ(a, t) to compute φ(a∨b, t).
The hope is that the consistency constraint will be sufficient to identify the
form of S—we will see that this is the case.

The function S must maintain consistency with the distributive algebra D.
Consider another join-irreducible element c ∈ J(D) where a∧c = ⊥, b∧c = ⊥,
and form the element (a ∨ b) ∨ c. We can use associativity of the lattice to
write this element two ways

(a ∨ b) ∨ c = a ∨ (b ∨ c). (A-2)

Consistency requires that each expression gives the same result when the de-
gree of inclusion is calculated

S(φ(a ∨ b, t), φ(c, t)) = S(φ(a, t), φ(b ∨ c, t)). (A-3)

Applying S to the arguments φ(a ∨ b, t) and φ(b ∨ c, t) above, we get

S(S(φ(a, t), φ(b, t)), φ(c, t)) = S(φ(a, t), S(φ(b, t), φ(c, t))). (A-4)

This can be further simplified by letting u = φ(a, t), v = φ(b, t), and w =
φ(c, t) resulting in a functional equation for the function S, which Aczél called
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the associativity equation [1, pp. 253-273].

S(S(u, v), w) = S(u, S(v, w)). (A-5)

The general solution [1], is

S(u, v) = f(f−1(u) + f−1(v)), (A-6)

where f is an arbitrary function. This is simplified by letting g = f−1

g(S(u, v)) = g(u) + g(v). (A-7)

Writing this in terms of the original expressions we get,

g(φ(a ∨ b, t)) = g(φ(a, t)) + g(φ(b, t)), (A-8)

which reveals that there exists a function g : R → R re-mapping these numbers
to a more convenient representation. Defining z(a, t) ≡ g(φ(a, t)) we get

z(a ∨ b, t) = z(a, t) + z(b, t), (A-9)

which is the sum rule for the join of two join-irreducible elements.

This rule can be extended to all elements in D by using the Möbius function
for the lattice, or equivalently the inclusion-exclusion relation, which avoids
double-counting the elements in the calculation [28,42,3,34]. This leads to the
generalized sum rule for the join of two arbitrary elements

z(a ∨ b, t) = z(a, t) + z(b, t) − z(a ∧ b, t), (A-10)

and

z(x1 ∨ x2 ∨ · · · ∨ xn, t) =∑
i

z(xi, t) −
∑
i<j

z(xi ∧ xj, t) +
∑

i<j<k

z(xi ∧ xj ∧ xk, t) − · · · (A-11)

for the join of multiple arbitrary elements x1, x2, . . . , xn [34].

Consistency with Distributivity

Given x, y, t ∈ D, we would like to be able to compute the degree to which the
meet x ∧ y includes t, written z(x ∧ y, t). We can easily use (A-10) to obtain

z(x ∧ y, t) = z(x, t) + z(y, t) − z(x ∨ y, t). (A-12)

However, another form can be found by requiring consistency with distribu-
tivity D1. Following Cox [11,12], and relying on the consistency arguments
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given by Jaynes [25], Tribus [47], and Smith and Erickson [46], this degree can
be written two ways as a function P of two arguments

z(x ∧ y, t) = P (z(x, t), z(y, x ∧ t)) = P (z(y, t), z(x, y ∧ t)), (A-13)

where the function P will tell us how to do the calculation. The two expressions
on the right are a consequence of commutativity, which we will address later.

We will focus for now on the first expression of P , and consider five elements
a, b, r, s, t ∈ D where a ∧ b = ⊥ and r ∧ s = ⊥. By considering distributivity
D1 of the meet over the join, we can write a ∧ (r ∨ s) two ways

a ∧ (r ∨ s) = (a ∧ r) ∨ (a ∧ s). (A-14)

Consistency with distributivity D1 requires that their relevances calculated
these two ways are equal. Using the sum rule (A-10) and the form of P (A-
13), distributivity requires that

P (z(a, t), z(r ∨ s, a ∧ t)) = z(a ∧ r, t) + z(a ∧ s, t), (A-15)

which simplifies to

P (z(a, t), z(r, a ∧ t) + z(s, a ∧ t)) =

P (z(a, t), z(r, a ∧ t)) + P (z(a, t), z(s, a ∧ t)). (A-16)

Defining u = z(a, t), v = z(r, a ∧ t), and w = z(s, a ∧ t), the equation above
can be written as

P (u, v + w) = P (u, v) + P (u,w). (A-17)

This functional equation for P captures the essence of distributivity D1.

We will now show that P (u, v + w) is linear in its second argument. Defining
k = w + v, and writing (A-17) as

P (u, k) = P (u, v) + P (u,w), (A-18)

we can compute the second derivative with respect to x. Using the chain rule
we find that

∂

∂v
=

∂k

∂v

∂

∂k
=

∂

∂k
=

∂k

∂w

∂

∂k
=

∂

∂w
, (A-19)

so that the second derivative with respect to k can be written as

∂2

∂k2
=

∂

∂v

∂

∂w
. (A-20)

The second derivative of P (u, k) with respect to k is then easily shown to be

∂2

∂k2
P (u, k) = 0, (A-21)
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which implies that the function P is linear in its second argument

P (u, v) = A(u)v + B(u), (A-22)

where A and B are functions to be determined. Substitution of (A-22) into
(A-17) gives B(u) = 0.

Now we consider (a ∨ b) ∧ r, which using D1 can be written as

(a ∨ b) ∧ r = (a ∧ r) ∨ (b ∧ r), (A-23)

gives a similar functional equation

P (v + w, u) = P (v, u) + P (w, u), (A-24)

where u = z(r, t), v = z(a, r∧t), w = z(b, r∧t). Following the approach above,
we see that P is also linear in its first argument

P (u, v) = A(v)u. (A-25)

Together with (A-22), the general solution is

P (u, v) = Cuv, (A-26)

where C is an arbitrary constant. Thus we have the product rule

z(x ∧ y, t) = Cz(x, t)z(y, x ∧ t), (A-27)

which tells us the degree to which t includes the meet x ∧ y. The constant
C acts as a normalization factor, and is necessary when these valuations are
normalized to values other than unity. It should be noted that this only satisfies
the distributivity of the meet over the join D1. There are reasons why D1 is
preferred over D2 related to the lattice product, which are discussed elsewhere
[34].

Consistency with Commutativity

Commutativity of the meet is the reason that there are two forms for the
function P , the product rule (A-13)

z(x ∧ y, t) = Cz(x, t)z(y, x ∧ t) (A-28)

and
z(y ∧ x, t) = Cz(y, t)z(x, y ∧ t). (A-29)

Equating the degrees (A-28) and (A-29) results in

Cz(x, t)z(y, x ∧ t) = Cz(y, t)z(x, y ∧ t), (A-30)
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which leads to Bayes’ theorem

z(y, x ∧ t) =
z(y, t)z(x, y ∧ t)

z(x, t)
. (A-31)

This demonstrates that there is a sum rule, a product rule, and a Bayes’
Theorem analog for bi-valuations on all distributive lattices. This realization
clears up the mystery as to why some quantities in science act like probabilities,
but clearly are not probabilities [34].
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