

National Plan for Aeronautics R&D and Related Infrastructure

Robie I. Samanta Roy

Assistant Director for Space and Aeronautics
Office of Science and Technology Policy

46th AIAA Aerospace Sciences Meeting *9 January 2008*

Overview

- Background and Review of National Aeronautics
 R&D Policy and Executive Order 13419 National
 Aeronautics R&D
- Development of the Plan
- Overview of the Plan

NSTC Aeronautics S&T Subcommittee

- Created Sept. 2005
- Membership:
 - OSTP/NASA (Co-Chairs)
 - Department of Defense
 - Department of Transportation
 - Department of Commerce
 - Department of Energy
 - Department of Homeland Security
 - National Science Foundation
 - Department of State
 - US International Trade Commission
 - Executive Office of the President
- Outreach to Academia, Industry, and Aviation User Community in Spring 2006
- Final approval of Policy and EO December 20, 2006

Overview: National Aeronautics R&D Policy

- Establishes Principles
- Sets Policy Goal and Objectives
- Creates General Guidelines for Federal Government
- Establishes Specific Guidelines
- Implementation Guidelines

Policy Goal

"Advance U.S. technological leadership in aeronautics by fostering a vibrant and dynamic aeronautics R&D community that includes government, industry, and academia."

Policy Principles

- 1. Mobility through the air is vital to economic stability, growth, and security as a nation
- Aviation is vital to national security and homeland defense
- 3. Aviation *safety* is paramount
- 4. Security of and within the aeronautics enterprise must be maintained
- 5. The US should continue to possess, rely on, and develop its world-class aeronautics workforce
- 6. Assuring *energy availability* and *efficiency* is central to the growth of the aeronautics enterprise
- 7. The *environment* must be protected while sustaining growth in air transportation

Policy Guidelines

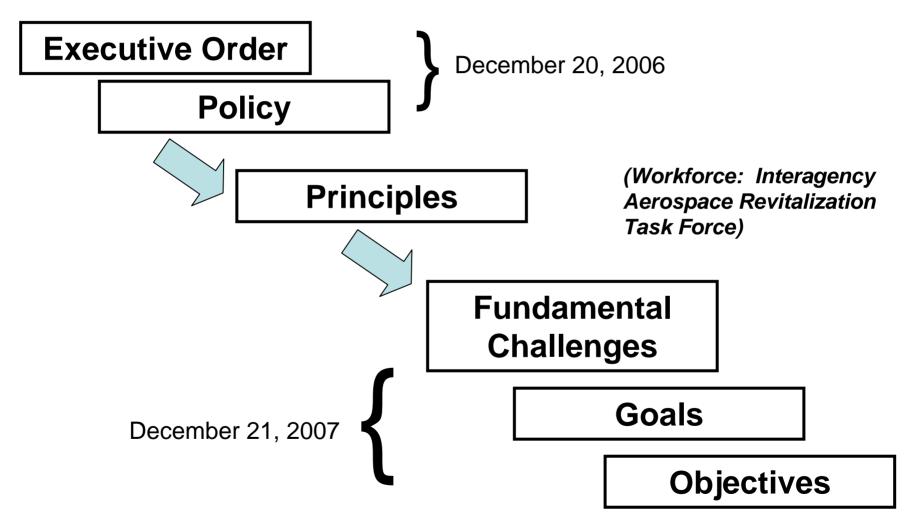
General:

- Role of the Federal Gov. in Aeronautics R&D
- Aeronautics Workforce
- Academic Cooperation
- Commercial Cooperation
- International Relations

Specific:

- Stable and Long-term Foundational Research
- Advanced Aircraft Systems Development
- Air Transportation Management Systems
- National RDT&E Infrastructure

Policy and EO Implementation Guidelines



- National Aeronautics R&D and related Infrastructure Plan
 - National Aeronautics R&D
 - Priorities and objectives, roadmaps, timelines
 - Aeronautics RDT&E Infrastructure
- Engagement with non-Federal stakeholders
- Dissemination of R&D results
- Other innovative policies and approaches that complement and enhance Federal activities
- Biennial review procedure

Strategy for Development of Plan

Establishment of Coordinating Groups

- Mobility
 - JPDO, NASA
- National Security and Homeland Defense
 - DOD
- Aviation Safety
 - FAA, NASA
- Aviation Security
 - DHS

Energy and Environment

- DOD, DOE, FAA
- RDT&E Infrastructure
 - DOD, NASA

(Coordination with National Strategy for Aviation Security)

Public Outreach Strategy

- 3 NSTC-Sponsored Outreach Sessions:
 - April 24, National Academy of Sciences, Wash., DC
 - July 11, Joint Propulsion Conference, Cincinnati, OH
 - July 30, NASA Ames Research Center
- 1-3 page White Paper Solicitations:
 - Two solicitations 1st due by May 11, 2nd by August 17, 2007
- Public Comment on draft high-priority aero R&D fundamental challenges, goals and objectives
 - Comment period: Oct. 22 Nov. 7, 2007

www.ostp.gov/nstc/aeroplans

Structure of the Plan - R&D for each Principle

- Introduction
- State-of-the-art where we are as a Nation today
- Fundamental Challenges to Overcome
- High priority national aeronautics R&D goals
- Supporting objectives (including numerical targets if appropriate)
 phased over three time periods where we want to go as a Nation
 - Near term (<5 years)</p>
 - Mid term (5-10 years)
 - Far term (>10 years)

Structure of the Plan - RDT&E Infrastructure

- Introduction
- Scope
 - High-end computing
 - Simulation labs
 - Flight test facilities
 - Ground test facilities
- Fundamental Challenges to Overcome
- Goals for follow-on activity

Aeronautics R&D Fundamental Challenges, Goals and Objectives

Mobility

- O LINU MANAGEMENT OF THE PARTY OF THE PARTY
- Principle: MOBILITY THROUGH THE AIR IS VITAL TO ECONOMIC STABILITY, GROWTH, AND SECURITY AS A NATION
- Fundamental Challenges:
 - Airspace
 - Reducing <u>aircraft separation distances</u> to increase traffic density
 - Dynamically balancing airspace capacity to demand
 - Weather
 - Developing more accurate and timely weather observations and forecasts
 - Airports
 - Increasing airport capacity
 - Developing airport terminal designs that facilitate passenger movement
 - Air Vehicles
 - Introducing <u>new generations of air vehicles</u> with vastly improved performance and revolutionary capabilities
 - <u>Improving the efficiency and performance of all classes of aircraft</u> to take advantage of increased performance available in the NAS
 - Cross-cutting
 - Defining <u>appropriate roles for humans</u> (controllers and pilots) in relation to automation
 - Understanding <u>enterprise-level issues</u> (e.g., environmental, organizational)

Mobility R&D Goals

Airspace

- Goal 1 Develop reduced aircraft separation in trajectory- and performance-based operations
- Goal 2 Develop increased NAS capacity by managing NAS resources and traffic flow contingencies

Weather

Goal 3 – Reduce the adverse impacts of weather on ATM decisions

Airports

 Goal 4 – Maximize arrivals and departures at airports and in metroplex areas

Air Vehicles

 Goal 5 – Develop expanded aircraft capabilities to take advantage of increased air transportation system performance

National Security

- Principle: AVIATION IS VITAL TO NATIONAL SECURITY AND HOMELAND DEFENSE
- Fundamental Challenges:
 - Improved aerodynamics and innovative airframe structural concepts for high-efficiency fixed- and rotary-wing aircraft
 - Quiet, efficient rotorcraft
 - Highly efficient propulsion systems
 - Integrated thermal and energy management on aircraft
 - High-speed and hypersonic flight
 - Airspace integration and de-confliction, especially as UAS become ubiquitous to aviation operations

National Security R&D Goals

- Goal 1 Demonstrate increased cruise lift to drag and innovative airframe structural concepts for highly efficient high altitude flight and for mobility aircraft
- Goal 2 Develop improved lift, range, and mission capability for rotorcraft
- Goal 3 Demonstrate reduced gas turbine specific fuel consumption
- Goal 4 Demonstrate increased power generation and thermal management capacity for aircraft
- Goal 5 Demonstrate sustained, controlled, hypersonic flight

Safety

- Principle: AVIATION SAFETY IS PARAMOUNT
- Fundamental Challenges:
 - Air Vehicle:
 - Monitoring and assessing aircraft health
 - Rapidly and safely incorporating advances in avionics
 - Stabilizing and maneuvering next-generation aircraft in response to to safety issues in the NextGen airspace
 - Airspace and Airport Operations:
 - Understanding and predicting system-wide safety concerns of the airspace system and the vehicles envisioned by NextGen
 - Understanding the key parameters of human performance in aviation
 - Ensuring safe operations for the complex mix of vehicles anticipated within the next-generation airspace
 - Personnel:
 - Enhancing the probability of passengers and crew to survive crash impact and escape safely when accidents do occur

Safety R&D Goals

Air Vehicle:

 Goal 1 – Develop technologies to reduce accidents and incidents through enhanced vehicle design, structure, and subsystems

Airspace and Airport Operations:

 Goal 2 – Develop technologies to reduce accidents and incidents through enhanced aerospace vehicle operations on the ground and in the air

Personnel:

 Goal 3 – Demonstrate enhanced passenger and crew survivability in the event of an accident

Energy and Environment

- Principle: ASSURING ENERGY AVAILABITY AND EFFICIENCY IS CENTRAL TO THE GROWTH OF THE AERONAUTICS ENTERPRISE, AND THE ENVIRONMENT MUST BE PROTECTED WHILE SUSTAINING GROWTH IN AIR TRANSPORTATION
- Fundamental Challenges:
 - Development of alternative aviation fuels and energy
 - A more complete understanding of the complex interdependencies that exist between aircraft noise, emissions, and fuel burn
 - Improvement in the capability to optimize aircraft noise, fuel efficiency, and emissions impacts
 - Scientific uncertainties relating to a spectrum of environmental interactions must be reduced to levels that enable appropriate action
 - Improvement in the modeling of pollutant concentrations around airports and throughout the atmosphere

Energy and Environment R&D Goals

- Goal 1 <u>Enable new aviation fuels</u> derived from diverse and domestic resources to improve fuel supply security and price stability
- Goal 2 Advance development of technologies and operations to enable significant increases in the energy efficiency of the aviation system
- Goal 3 Advance development of technologies and operational procedures to <u>decrease the significant</u> <u>environmental impacts</u> of the aviation system

RDT&E Infrastructure

- Fundamental Challenges:
 - A coordinated management structure that cuts across individual Federal agencies
 - Clear identification of critical assets to support goals and objectives of the Plan
 - A cyber-infrastructure integrating physical hardware with simulations
- Goal 1 Determine the national RDT&E infrastructure that satisfies national aeronautics R&D goals and objectives
- Goal 2 Establish a coordinated management approach for Federal RDT&E infrastructure that is based upon a national perspective and interagency cooperation

Future Implementation

- A supplemental report to the Plan
 - Additional technical content on R&D goals and objectives
 - Preliminary assessment of areas of opportunity for potential increased emphasis, as well as potential areas of unnecessary redundancy
- RDT&E Infrastructure Interagency Working Group
 - Assessment of necessary RDT&E capabilities for R&D goals and objectives
 - Assessment of current RDT&E capabilities
 - Comparative analysis for identification of potential shortfalls and redundancies
 - Initiate development of a strategy to provide all necessary RDT&E capabilities and terminate those not necessary
 - Establish mechanisms to coordinate and engage with non-Federal stakeholders
 - Recommend interagency cooperative management approaches for RDT&E infrastructure

Questions?