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While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to
decrease yield of food crops, elevated CO, concentration ([CO,]) is predicted to enhance yield and offset these detrimental
factors. However, C, photosynthesis is usually saturated at current [CO,] and theoretically should not be stimulated under
elevated [CO,]. Nevertheless, some controlled environment studies have reported direct stimulation of C, photosynthesis and
productivity, as well as physiological acclimation, under elevated [CO,]. To test 1f these effects occur in the open air and within
the Corn Belt, maize (Zea mays) was grown in ambient [CO,] (376 umol mol™ !y and elevated [COZ] (550 wmol mol ™) using
Free-Air Concentration Enrichment technology. The 2004 season had ideal growing conditions in which the crop did not
experience water stress. In the absence of water stress, growth at elevated [CO,] did not stimulate photosynthesis, biomass, or
yield. Nor was there any CO, effect on the activity of key photosynthetic enzymes, or metabolic markers of carbon and
nitrogen status. Stomatal conductance was lower (—34%) and soil moisture was higher (up to 31%), consistent with reduced
crop water use. The results provide unique field evidence that photosynthesis and production of maize may be unaffected by
rising [CO,] in the absence of drought. This suggests that rising [CO,] may not provide the full dividend to North American

maize production anticipated in projections of future global food supply.

Global climate change, in the form of rising tem-
perature and altered soil moisture, is projected to
decrease the yield of food crops over the next 50 years
(Thomson et al., 2005). Meanwhile, the simultaneous
increase in CO, concentration ([CO,]) is predicted to
stimulate crop production and offset these detrimental
components of climate change (Thomson et al., 2005).
This encouraging projection results from species-
specific “CO, fertilization” factors in yield models
(Phillips et al., 1996; Brown and Rosenberg, 1999; Parry
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et al., 2004; Thomson et al., 2005). These simulate the
enhancements of net CO, assimilation rate (A) and
yield observed, for both C; (17%-29%) and C, crops
(6%-10%), under elevated [CO,] in controlled envi-
ronment studies (Kimball, 1983; Allen et al., 1987).
While early projections of “[CO,] fertilization” were
based on studies in glasshouses and other protected
environments, Free-Air Concentration Enrichment
(FACE) experiments are fully open-air trials of crop
performance. They provide realistic simulations of
future growing conditions and provide perhaps the
best opportunity to requantify CO, fertilization effects
and elucidate the mechanism of crop response. FACE
experiments on the C; crops rice (Oryza sativa), wheat
(Triticum aestivum), and soybean (Glycine max) have ob-
served smaller increases in yield than were predicted
from the early chamber studies (Ainsworth and Long,
2005; Long et al., 2005; Morgan et al., 2005). Yet the
primary response mechanisms of C; crops have not
been controversial (Ainsworth and Long, 2005). First,
elevated [CO,] directly stimulates A, growth, and yield
by decreasing photorespiration and accelerating car-
boxylation by Rubisco. Second, it decreases stomatal
aperture, which can reduce plant water use and indi-
rectly enhance performance by ameliorating water
stress. In contrast, the response of C, crops to future
elevated [CO,] is uncertain. In C, plants, Rubisco is
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localized in the bundle sheath cell chloroplasts, where
[CO,]is 3 to 6 times higher than in the atmosphere (He
and Edwards, 1996; Kiirats et al., 2002; von Caemmerer
and Furbank, 2003). Thus, C, crops avoid photores-
piration, are CO, saturated at the current atmospheric
[CO,], and should not theoretically display greater A
at elevated [CO,]. Yield improvements could still be
achieved under elevated [CO,] if reduced stomatal
conductance (g,) lowers crop water use and amelio-
rates short-term drought stress by conserving soil
moisture (Ghannoum et al., 2000). At elevated [CO,],
g, of C, plants is typically reduced (Ainsworth and
Long, 2005). However, lower g, does not guarantee
lower water use in the field, where canopy size, struc-
ture, and microclimate also regulate water use (Collatz
et al., 1991; Meinzer et al., 1997). Also, lower water use
will not typically benefit a crop when sufficient soil
moisture is available. Yet current projections of grain
production assume a stimulation of maize (Zea mays)
production by elevated [CO,] in all situations (Phillips
et al.,, 1996, Brown and Rosenberg, 1999; Parry et al.,
2004; Thomson et al., 2005). The need for accuracy in
these projections is significant because global demand
for the C, crop maize is expected to exceed that for
wheat and rice by 2020, making it the world’s most
important crop (Pingali, 2001).

Some controlled environment studies of well-
watered plants suggest that growth at elevated [CO,]
can directly impact C, photosynthesis by a number of
mechanisms (for review, see Ghannoum et al., 2000). As
examples, intercellular [CO,] (c;) below the saturation
point of the photosynthetic intercellular CO, response
(A/c;) curve has been reported under ambient [CO,],
allowing direct stimulation of photosynthesis under
elevated [CO,] (Wong, 1979; Watling and Press, 1997;
Ziska and Bunce, 1997). Bundle sheath leakiness in-
creased under elevated [CO,], reducing the initial slope
and CO,-saturated photosynthetic rate of the A/c;
curve in sorghum (Sorghum bicolor; Watling et al.,
2000). In developing Flaveria trinervia leaves, 10% of
CO, fixation occurred directly in the bundle sheath,
without involvement of the C, concentrating mecha-
nism, allowing the possibility that elevated [CO,] could
directly stimulate photosynthesis (Moore et al., 1986).
Some immature C, leaves have C,-like photosynthe-
sis and are therefore more sensitive to enhanced pho-
tosynthesis under elevated [CO,] (Dai et al., 1995;
Ziska et al., 1999). Enzymes of both the C, cycle and
Calvin cycle in maize were consistently lower under
elevated [CO,], with malate dehydrogenase (—37%) and
glyceraldehyde-3-phosphate dehydrogenase activities
(—29%) declining to the greatest extent in young leaves
(Maroco et al., 1999). Such acclimation was interpreted
to potentially benefit maize growth by improving
nitrogen (N) use efficiency while maintaining rates of
photosynthesis. Of these studies, those investigating
crop species at elevated [CO,] predicted for 2050 to
2100 reported that the light-saturated rate of photosyn-
thesis (A,,,) was stimulated by an average of 23%. Such
direct effects of CO, fertilization on photosynthesis
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suggest a more optimistic future for food production
from C, crops in the face of increasing temperatures
and water stress. Conversely, theoretical treatment of
C, photosynthesis suggested that differences in either
leakiness or direct CO, fixation are unlikely to play a
significant role in the responsiveness of C, photosyn-
thesis to high CO, (Ghannoum et al., 2000). Also, young
C, leaves in Panicum antidotale and Panicum coloratum
are not C,-like (Ghannoum et al., 1998). Unfortunately,
growth in chambers and the confinement of the rooting
system to pots could generate substantial and surpris-
ing artifacts, and responses might not therefore reflect
the response of crops in open-air field situations (Arp,
1991; Thomas and Strain, 1991; McLeod and Long,
1999; Ainsworth et al., 2002). Sorghum grown under
FACE in Arizona displayed some sensitivity to [CO,] in
young, C;-like leaves (Cousins et al., 2001). However,
the primary effect of elevated [CO,] on sorghum per-
formance was reported to be improved water relations
and amelioration of drought stress (Wall et al., 2001).
At SoyFACE in 2002, A of maize under field conditions
was episodically stimulated under elevated [CO,]
(Leakey et al., 2004). While CO, effects on photosyn-
thesis were limited to periods of low rainfall, the
mechanistic basis for the episodic response was not
demonstrated.

The North American Corn Belt is the largest single
area of global maize production and is characterized by
high growing season rainfall and deep fertile soils
capable of substantial water storage. This region ac-
counted for more than 40% of the world’s total maize
grain production in 2004 (U.S. Department of Agricul-
ture, 2005). The extent of any direct or indirect stimula-
tion of A, growth, and yield of maize in this region by
elevated [CO,] has major economic and social implica-
tions. The 32-ha FACE facility at the University of
Illinois, and an absence of even intermittent water
stress in 2004, provided a unique opportunity to test
the following three predictions concerning the effects of
elevated [CO,] on C, plants, and maize specifically,
under field conditions. In the absence of water stress
there is (1) no direct effect of [CO,] on photosynthetic
rate, growth, or yield; (2) no [CO,] effect on the devel-
opment of photosynthetic capacity, as reflected by in
vivo and in vitro activities of the key enzymes; and (3) a
decrease in g, and water use under elevated [CO,]. This
builds upon previous studies to provide a novel mech-
anistic understanding of the responses to elevated [CO,]
of a major food crop, in the major region of production.
Most importantly, changes in crop water use under
elevated [CO,] are quantified while also testing for direct
effects of elevated [CO,] on C, photosynthesis in the
absence of water stress.

RESULTS
Palmer Crop Moisture Index and Microclimate

Total rainfall in June, July, and August of 2004 was
347 mm, 11% above the average for the past 50 years of
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312 mm. Palmer Crop Moisture Index (PCMI) is a dy-
namic, meteorological estimate of short-term moisture
conditions, based on temperature, precipitation, and
modeled soil water content (Palmer, 1968). As PCMI
decreases below zero, it indicates progressively
greater drought stress conditions. Throughout the
2004 growing season, the PCMI for East Central Illi-
nois was greater than zero (Fig. 1; National Oceanic
and Atmospheric Administration [NOAA]/U.S. De-
partment of Agriculture [USDA]; http://www.usda.
gov/oce/waob/jawf/). Conditions were rated as fa-
vorable for normal growth and field work; moisture
adequate for present crop needs for 13 out of the 19
weeks in the growing season, with the remaining
weeks rated as some fields too wet; prospects above
normal. In other words, 2004 was an ideal growing
season in which the crop did not experience drought
stress at any time. For comparison, PCMI was often
less than zero during a previous experiment at the
same site in 2002 (Fig. 1), which indicates that the crop
experienced drought stress even though growing sea-
son rainfall was also close to average at 321 mm. It is
rare in East Central Illinois to have a growing season
without any drought stress, in other words, when
PCMI is always greater than or equal to zero (Fig. 2).
Conditions that were that favorable have only oc-
curred three times since 1973, including 2004
(Fig. 2). However, moderate, episodic drought stress
such as in 2002 occurs frequently, with PCMI = —1,
occurring roughly one in every three growing seasons.

In situ physiological performance was assessed on
five dates, corresponding to five discrete and key stages
of crop development (Table I). Conditions were pre-
dominantly clear and dry on each day except day of
year (DOY) 173, when heavy cloud cover and rain
affected measurements (Fig. 3). Daily peak values of
photosynthetic photon flux density (PPFD; approxi-
mately 1,250-2,000 pmol molfl) covered the range
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Figure 1. PCMI reported weekly during 2002 (@) and 2004 (O) for
Illinois Climate Division 5 by the Climate Operation Branch of NOAA
(http://www.usda.gov/oce/waob/jawf/). Dates on which diurnal courses
of gas exchange were measured are indicated by dashed arrows for
2002 and dotted arrows for 2004.
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Figure 2. Weekly reported PCMI between mid-March and October
each year from 1973 to 2004 for Illinois Climate Division 5 (including
SoyFACE) by the Climate Operation Branch of the NOAA (http://
www.usda.gov/oce/waob/jawf/).

typically experienced in the Midwest United States.
The daily mean temperatures (17°C-23°C) were at or
slightly below the 40-year average for summer months
of 23°C (http:/ /www.sws.uiuc.edu/data/climatedb/).

Diurnal Courses of Leaf Gas Exchange
and Chlorophyll Fluorescence

There was no significant effect of CO, treatment on
A at any time on any day (Fig. 3). This lack of
difference applied to all photosynthetic parameters
measured, including A, quantum yield of photosyn-
thesis (P¢(,), quantum yield of PSII (Ppg;), proportion
of open PSII reaction centers (qP), intrinsic efficiency
of PSII (F,'/F,'), and nonphotochemical quenching
(NPQ; Figs. 3 and 4). On all dates of measurement and
for all photosynthetic parameters investigated, the
probability of supporting the null hypothesis was
high. As this coincided with relatively small standard
errors, the absence of significance is not likely to be the
result of high variability leading to a Type Il error, but
rather because there was no difference. A power test
indicated that, with this data set, there was an 88%
probability of detecting a 10% stimulation of A by
elevated [CO,], even with the Type I error rate of P =
0.05. Under elevated [CO,], g, was 29% lower across
the growing season (Fig. 3) and significant for all or
part of each day.

Leaf Midday Gas Exchange; Leaf Photosynthetic Enzyme
Activities; and Leaf Carbohydrate, Protein, Amino Acid,
Chlorophyll, Specific Leaf Area, Nitrogen,

and Water Status

To investigate the basis for any photosynthetic en-
hancement or acclimation under elevated [CO,], pho-
tosynthetic enzyme activities, leaf metabolite pools,
and water status were measured at midday alongside
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Table 1. Calendar and DOY of experimental measurements with
corresponding crop growth stage described as days after emergence
(DAE), developmental stage (defined in Ritchie et al., 1993), and
height for maize grown under ambient (370 wmol mol™') and elevated
[CO,] (550 wmol mol™ h during 2004 at SoyFACE, Urbana, IL

Developmental Stage

Date DOY DAE
Ambient [CO,] Elevated [CO,]
June 21 173 43 Tenth leaf Tenth leaf
July 8 190 60  Silking Silking
July 19 201 71 Blister kernel Blister kernel

August 2 215 85
August 16 229 89

Milky kernel
Dented kernel

Milky kernel
Dented kernel

gas exchange (Table II). There was no significant [CO,]
effect on A at midday across the growing season. Nor
was there any significant effect of growth at elevated
[CO,] on the activity of the key photosynthetic en-
zymes phosphoenolpyruvate (PEP) carboxylase (PEPc),
pyruvate orthophosphate dikinase (PPDK), or Rubisco,
measured at 25°C. In contrast, g, at midday was
significantly lower at elevated [CO,], by 34% on aver-
age across the season. Therefore, leaf-level transpira-
tion (E) at midday was also significantly lower at
elevated [CO,]. Midday c; at elevated [CO,] was sig-
nificantly greater, by 34% on average across the season.
Consequently, there was no significant effect of growth
at elevated [CO,] on the ratio of intercellular [CO,] to
atmospheric [CO,] (c;/c,) at midday. There was no
significant effect of growth at elevated [CO,] on the

21 June 8 July

19 July

midday leaf content of total nonstructural carbohy-
drates (TNC; Table II) or its component pools of starch,
Suc, Fru, and Glc (data not shown). There was also no
significant effect of growth at elevated [CO,] on the
midday leaf content of total protein, total free-amino
acids, leaf N, or specific leaf area (SLA). Nor was there
a significant [CO,] effect on leaf water status at mid-
day, measured as relative water content (RWC) and
total leaf water potential (¢,.,).

Alc; and Light Response Curves

Leaves cut predawn, maintained hydrated and mea-
sured at 30°C in the laboratory, had rates of A equal or
higher to fluxes measured in situ, suggesting that the
photosynthetic capacity of these leaves was unaffected
by this short-term detachment. The A/c; and light
response (A/Q) curves (Fig. 5) showed the classical
C, patterns, and the parameter values were close to
theoretical expectations (von Caemmerer, 2000). There
was no significant effect of growth at elevated [CO,]
on maximum apparent rate of PEPc (V.,), CO,-
saturated rate of photosynthesis (V,,,), A,,,, or maxi-
mum apparent quantum yield as determined from
these response curves.

Crop Biomass, Development, and Yield

There was no significant effect of growth at elevated
[CO,] on stover biomass, grain biomass, kernel num-
ber, individual kernel weight, total leaf area, anthesis
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Figure 3. Diurnal courses of PPFD, T, vapor pressure deficit (D), A, and g; of the youngest and uppermost fully expanded leaf of

maize grown under ambient (O) and elevated CO, (@) on five dates during 2004 at SoyFACE. Each point is the mean (=sE) of the

replicate plots measured at that time (n = 4). Pvalues indicate statistical significance of CO, and CO, X time interaction effects.
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Figure 4. Diurnal courses of ®,, ®pg,, F,'/F,’, qP, and NPQ of the youngest fully expanded leaf of maize grown under ambient
(O) and elevated CO, (@) on five dates durlng 2004 at SoyFACE, Urbana, IL. Each point is the mean (*sg) of the replicate plots
measured at that time (n = 4). P values indicate statistical significance of CO, and CO, X time interaction effects.

date, or silking date (Table III). The yields of approx-
imately 10.5 t (seed) ha ' and approximately 20.3 t
(total biomass) ha™' are among the higher yields for
the Corn Belt, showing that the crop was representa-
tive of current agriculture.

Soil Water Content

There was no difference in volumetric soil water
content (H,O%) between treatments at the beginning

Plant Physiol. Vol. 140, 2006

of the season (Fig. 6, A and B). Over the growing
season, H,O0% decreased due to crop water use but
was regularly replenished by rain. The ratio of H,0%
in elevated [CO,] compared to ambient [CO,] plots
gradually increased to reach 1.31 between 5 and 25 cm
depth on DOY 215, and 1.11 between 25 and 55 cm
depth on DOY 223 (Fig. 6C). This greater H,O% under
elevated [CO,] reflected a significant interaction be-
tween the [CO,] and time in both the upper and lower
soil layers.
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Table Il. A (umol m~2 "), PEPc activity (umol m~2s 1), PPDK activity (umol m~2s71), Rubisco activity (umol m s, g, (mol m2s7),
transpiration (T; mmol m™? s™"), ¢; (umol mol™"), ratio of intercellular to atmospheric CO, (c;/c,), TNC (mmol m™), total protein content
(g m~2), RWC (%), total water potential (f; MPa), N (%) content, and SLA (mn?’ mg~ 1) of the youngest fully expanded leaf of maize grown
under ambient (370 umol mol™") and elevated [CO,] (550 wmol mol~") at noon on five dates in 2004 at SoyFACE, Urbana, IL

There was no effect of CO, on A (P = 0.81), PEPc activity (P = 0.26), PPDK activity (P = 0.76), Rubisco activity (P = 0.59), c¢/c, (P=0.52), TNC (P=
0.25), protein (P = 0.80), RWC (P = 0.60), total 4 (P = 0.86), N (P = 0.21), and SLA (P = 0.48). Asterisk (*), There was a significant CO, effect on g,
(P =0.037), T(P=0.049), and ¢, (P = 0.05).

P DOY 173 DOY 190 DOY 201 DOY 215 DOY 229
arameter

[CO,] 370 [CO,] 550 [CO,] 370 [CO,] 550 [CO,] 370 [CO,] 550 [CO,] 370 [CO,] 550 [CO,] 370 [CO,] 550
A 143 £28 15.0*28 294 *28 306 *28 424 28 429*28 384 =*28 388 *28 264*+28 251*28
PEPc 222 =39 213 £ 18 259 = 32 248 = 13 283 £ 19 243 = 27 230 £ 12 222 =18 152 £ 19 174 = 19
PPDK 325 =* 1.7 324 *50 33.0*20 345=*33 39.1*27 379*1.1 250*30 276=*22 376 *19 328 =*26
Rubisco 21.1 £ 3.1 179 *+1.8 177 £3.1 192 *29 224 +23 189*+12 180=*22 196 *1.8 132 *1.0 129+ 1.0

Total 4 —1.0 0.1 -1.0* 0.1 =15 *0.1 —1.4 x£0.1

8" 0.15 = 0.04 0.08 = 0.04 0.27 = 0.04 0.18 £ 0.04 0.29 = 0.04 0.18 = 0.04 0.36 = 0.04 0.31 £ 0.04 0.17 £ 0.04 0.07 = 0.04
T 1606 09*x06 29*x06 22=*x06 57*x06 39*x06 48=*x06 36=*06 4.7 *0.6 1.9 £ 0.6
G* 167 = 31 226 = 31 187 = 31 241 = 31 118 = 31 141 £ 31 187 = 31 292 *+ 31 126 = 31 154 = 31
c/c, 0.45 = 0.13 0.41 = 0.13 0.49 = 0.13 0.43 £ 0.13 0.31 £ 0.13 0.25 = 0.13 0.50 = 0.13 0.52 £ 0.13 0.33 £ 0.13 0.19 = 0.13
TNC 14211 13.0x09 114=11 11.9*09 183 *09 18109 201 £09 17709 204 *09 184 1.1
Protein 10 =1 10 =1 11 =1 12 £2 12 £1 12 £ 1 13 £ 1 12 £ 1 11 =1 11 =1
RWC 93.5*+0.7 90.8 2.0 93.7*05 926 1.4 941 =08 946 1.0 902 24 91209 940=*15 964 *=1.2
-15*01 -1.7*0.1 =21 0.1 =19 *0.1 -2.1 0.1 =2.1*0.2
+
+

N 40*x01 40*x01 32*x02 32*x01 35*x01 37x01 30x01 3.0x01 26x01 28=0.1
SLA 27 +2 30+ 2 23+ 1 23 +1 18 =1 21 =1 17 1 19 *2 17 =1 18 =1
DISCUSSION tosynthetic regulation and flux vary substantially over

In 2004, the climate of Central Illinois was particu-
larly favorable for crop growth, as reflected in the high
yield in both control and elevated [CO,] plots. The
absence of water stress throughout the season pro-
vided a rare opportunity to test for direct effects of
elevated [CO,] on photosynthesis and water relations
in a major C, crop, under field conditions. In accor-
dance with our first and second predictions, growth at
elevated [CO,] did not stimulate A at any time of the
day and at any of the developmental stages investi-
gated. Nor did it impact photosynthetic development
by altering in vivo or in vitro activities of key enzymes.
However, in accordance with our third prediction,
growth at elevated [CO,] did significantly decrease g,
corresponding to improved soil water availability by
midseason. In the same genotype on the same site in
2002, A was transiently stimulated by elevated [CO,]
during periods of intermittent drought stress, proba-
bly as a result of improved water relations (Leakey
et al, 2004). Early chamber studies (Rudorff et al.,
1996; Samarakoon and Gifford, 1996) found no in-
crease in A and production in well-watered maize
grown in elevated [CO,], but many other studies of
well-watered plants have reported an increase in A
and acclimation in the amounts of key photosynthetic
enzymes (Wong, 1979; Moore et al., 1986; Dai et al.,
1995; Watling and Press, 1997; Ziska and Bunce, 1997;
Maroco et al., 1999; Ziska et al., 1999; Watling et al.,
2000). It is hard to compare the results presented here
with this previous work because most previous stud-
ies examined A, at only one time in the day and at one
or two stages in the plant life cycle. Such data cannot
be easily extrapolated to field conditions where pho-
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the diurnal course and with development of the crop.
Additionally, most prior work was carried out in
chambers rather than the field. Plants in chambers
do not experience normal atmospheric coupling and
have limited rooting volume, both of which might
impact whole-plant water relations, carbon gain, and
growth. Uniquely, this study of field-grown maize, at a
site very typical of the major crop production area,
found no evidence of any direct effect of elevated
[CO,] on photosynthetic rate, photosynthetic enzymes,
development, dry matter production, or harvestable
yield in the absence of water deficit. This work will
enable the updating of models projecting future crop
yields and food supply.

No Direct Effect of Elevated [CO,] on Photosynthesis

If any of the proposed mechanisms for direct CO,
effects on C, photosynthesis (Wong, 1979; Moore et al.,
1986; Dai et al., 1995; Watling and Press, 1997; Ziska
and Bunce, 1997; Maroco et al., 1999; Ziska et al., 1999;
Watling et al., 2000) occurred in this experiment, it was
not evident in either net photosynthetic CO, assimila-
tion or any chlorophyll fluorescence parameter at any
time of day or at any of the five developmental stages
assessed. If responses occurred at a developmental
stage not assessed by the physiological analyses per-
formed (e.g. Cylike photosynthesis in very young
leaves), then they were not of sufficient significance
to alter biomass accumulation, development, or yield.
In addition, there was no effect of growth under FACE
on midday photosynthesis or final yield of two addi-
tional cultivars (FR1064 X LH185 and FR1064 X IHP;
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Figure 5. Photosynthetic gas-exchange analysis of the youngest fully
expanded leaf of maize growing under ambient (O) and elevated CO,
(@). A, Representative A/c; curves fitted with model equations for C,
photosynthesis (von Caemmerer, 2000) of maize grown at ambient
(dashed) and elevated [CO,] (solid). Arrows indicate the range of ¢
measured at midday during in situ measurements of maize grown at
ambient (dashed) and elevated [CO,] (solid). There was no significant
CO, effect on V. (DOY 180: ambient 139 * 16, elevated [CO,]
122 + 13; DOY 212: ambient 109 = 3, elevated [CO,] 112 = 5) or Vpr
(DOY 180: ambient 51.2 * 1.8, elevated [CO,] 48.6 = 1.2; DOY 212:
ambient 44.0 * 4.6, elevated [CO,] 40.1 = 3.0). B, Representative A/Q
curves fitted with nonrectangular hyperbolas for maize grown at
ambient (dashed) and elevated CO, (solid). There was no significant
CO, effect on maximum apparent quantum yield of photosynthesis
(DOY 180: ambient 0.07 = 0.01, elevated [CO,] 0.07 = 0.01) or A,
(DOY 180: ambient 58.9 = 1.3, elevated [CO,] 60.8 * 1.4).

M. Uribelarrea, unpublished data), which have previ-
ously been shown to differ in grain yield and compo-
sition (Uribelarrea et al., 2004).

Rising temperature can stimulate CO,-saturated
photosynthesis on the plateau of the C, A/c; curve
while having little effect on the initial slope (Sage and
Kubien, 2003). This means that at high temperatures
the CO,-saturation point increases and C, photosyn-
thesis could be more sensitive to direct enhancement
by elevated [CO,]. However, this appears unlikely to
regulate the responses to elevated [CO,] observed at
SoyFACE. First, temperatures were relatively low
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(maximum approximately 26°C) on July 11, 2002,
when the greatest [CO,] effect on photosynthesis was
observed (Leakey et al., 2004). The crop experienced
higher temperatures on all other measurement dates in
2002 and also on several dates in this study without a
[CO,] effect on photosynthesis. Second, the initial
slopes of the A/c; curves for maize in this study
were steep (at 30°C, CO,-saturation point <150 umol
mol ') compared to those for Amaranthus retroflexus
reported by Sage and Kubien (2003; at 32°C, CO,-
saturation point >200 wmol mol'). Therefore, in
maize grown at SOoyFACE, any increase in the V
with temperature would have less effect on the CO,-
saturation point. Notably, the CO,-saturation point of
the A/c; curve is reported to increase with increasing
PPFD, N, and water supplies as a result of changes in
PEPc/Rubisco activity ratio and bundle sheath leaki-
ness (Leegood and von Caemmerer, 1989; Ghannoum
et al., 2000). This would make C, photosynthesis more
sensitive to direct stimulation by elevated [CO,] and
suggests that the favorable growing conditions at
SoyFACE in 2004 make this study a relatively conser-
vative test for direct CO, effects on C, photosynthesis.
Nonetheless, it only infers that elevated [CO,] will not
directly stimulate the large fraction of global maize
supply produced in the U.S. Corn Belt. Projecting the
future performance of maize crops grown in tropical
latitudes, where stress is more severe and elevated
[CO,] might provide greater benefits, requires further
study.

It is possible that A might not change in situ if
counteracting acclimations to elevated [CO,] occur,
e.g. direct stimulation of A by elevated [CO,] offset by
a decrease in capacity for PEP carboxylation or PEP
regeneration. However, there was no effect of growth
at elevated [CO,] on these activities in vivo or in vitro.
Neither PEP carboxylation or PEP regeneration capac-
ity calculated from the A/c; response, nor the in vitro
activity at 25°C of the key photosynthetic enzymes
Rubisco, PEPc, and PPDK, were altered by elevated
[CO,]. Similarly, the A/Q responses suggest a com-
plete absence of acclimation in both light-limited and
light-saturated photosynthetic capacity. The in vitro
photosynthetic enzyme activities did not match the
photosynthetic rates measured in situ. In vitro condi-
tions did not mimic in vivo temperatures, and it is
likely that some activity or protein was lost during the
extraction and in vitro assay procedure. However,
these effects should impact samples from each treat-
ment to the same degree and should not prevent
comparisons between treatments on a relative basis.
Previously, incomplete extraction of Rubisco protein
from pine needles reduced in vitro measures of activ-
ity below estimates from in vivo assays but did not
alter the magnitude of CO, treatment effects (Rogers
et al, 2001). There was also no change in c¢/c,,
suggesting an absence of any acclimation of stomatal
response. Therefore, the lower g, in elevated [CO,]
likely resulted from an instantaneous response and not
any long-term response to growth at elevated [CO,].
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Table lll. Biomass of stover and grain, kernel number, individual kernel weight, total leaf area, and
DOY of anthesis and silking for maize grown at ambient (370 wmol mol~") or elevated [CO,]
(550 wmol mol™") upon harvest at the end of the growing season in 2004 at SoyFACE in Urbana, IL

Parameter [CO,] 370 [CO,] 550 P
Stover biomass R6 (g plant’]) 134 £ 11 131 £9 0.68
Grain biomass R6 (g plant_1) 140 £ 6 142 = 6 0.8
Kernel number (plant") 598 + 38 609 * 29 0.37
Kernel weight (mg) 248 =7 247 =5 0.83
Total leaf area (cm? plant™) 6,280 = 471 6,304 = 365 0.48
Anthesis date 188.9 + 0.3 188.7 = 0.2 0.53
Silking date 188.3 = 0.3 188.1 = 0.3 0.63

Increased activities of enzymes involved in Suc and
starch synthesis have been reported in maize grown at
elevated [CO,] with stimulated photosynthetic rates
(e.g. Maroco et al.,, 1999). There was no evidence of
increased starch or Suc content at elevated [CO,] in
this study even during the vegetative stage of crop
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Figure 6. Soil H,0% at depths of 5 to 25 cm (A) and 25 to 55 ¢cm (B) in
plots of maize growing under ambient (O) and elevated CO, (@) during
2004 at SoyFACE. Each point is the mean (*sk) of the replicate plots
measured at that time (n = 4). C, The ratio of H,0% in elevated [CO,]
compared to ambient [CO,] treatments, at 5 to 25 cm (dashed line)
and 25 to 55 cm (solid line). P values indicate statistical significance of
CO, X time interaction effects.
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development, when sink capacity in maize is relatively
low compared to sink capacity during grain filling. Itis
also possible that lower water use, indicated by con-
sistently lower g, might reduce nitrate uptake by mass
flow, reduce leaf N, and counteract any enhancement
of A by elevated [CO,]. Total leaf N, soluble protein,
and chlorophyll contents are markers of leaf N status,
while total leaf free-amino acid content reflects whole-
plant N status (Hirel et al., 2005). Total free-amino acid
content, which is the hub around which the processes
of N assimilation and associated carbon metabolism
revolve (Foyer et al., 2003), was higher in young
vegetative plants, as reported previously (Hirel et al.,
2005). Nonetheless, there was no [CO,] effect on
markers of plant or leaf N status. In summary, despite
a consistent decrease in g, there was no evidence of
the stimulation of A and acclimation in the photosyn-
thetic apparatus in response to the elevated [CO,] that
has been observed in some studies within chambers.
A number of factors may explain this difference in
results; these include genotype, developmental stage,
and the treatment [CO,]. Maize has been grown at
approximately 3 times current [CO,] (Maroco et al.,
1999) and sorghum at approximately 2 times current
[CO,] (Watling et al., 2000), compared to approxi-
mately 1.5 times current [CO,] in this experiment. But
there was no evidence of the physiological acclimation
to elevated [CO,] observed in these chamber studies in
this field study. Therefore, the difference could only be
explained by a threshold effect, i.e. acclimation occur-
ring when a threshold concentration is exceeded. The
cultivar used in this experiment is a major production
line currently used in the Corn Belt and closely related
to the germ plasm used in most of the region’s current
production lines. Although effects could be specific to
developmental stages not covered by this study, this
has included vegetative and reproductive stages of the
crop, including those where any effect on A would
have its maximum impact on yield (Ritchie et al.,
1993). Alternatively, maize crops in the deep soils of
the Corn Belt can root to 2 m. Therefore, their root
systems extend far beyond that allowed by even the
largest pots. Compared to the field, the root system of
any potted plant will be highly restricted, and this
would slow water uptake of even the best watered
pots. As a result, subtle improvements in plant water
status may occur in container-grown maize under
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elevated [CO,] that would be absent in the open field
under ample water conditions.

Only one other FACE experiment has assessed the
photosynthetic response of a C, crop to elevated [CO,].
Sorghum was grown under elevated [CO,] in Arizona,
with irrigation. These plants were suggested to display
C;-like photosynthesis in young leaves and some
suppression of photorespiration, along with increases
in energy use efficiency (Cousins et al.,, 2001). The
analysis of A/c; curves indicated that this phenome-
non did not occur in maize at SoyFACE. In addition, it
was concluded that the direct effects of CO, enrich-
ment on A of sorghum under FACE in Arizona were
minor, and indirect enhancement of A by improved
water relations was cited as the primary mechanism of
response (Wall et al., 2001).

Direct Effects of Elevated [CO,] on Water Use

Given no change in leaf area, the decrease in g, at
elevated [CO,] would favor reduced whole-plant wa-
ter use. This is consistent with the observation that, at
soil depths of 5 to 55 cm, soil in the elevated [CO,]
plots retained progressively more moisture compared
to ambient plots until maximum leaf area was reached.
Water conservation under elevated [CO,] has been
observed in chamber experiments on C, species
(Owensby et al., 1997; Nelson et al., 2004). However,
in these cases, forced canopy-atmosphere coupling,
caused by fumigation with forced air circulation, may
have artificially increased the extent to which plant
water use was controlled by g.. Sorghum canopy
evapotranspiration, measured across two growing
seasons by energy balance techniques in the FACE
experiment in Arizona, was reduced by elevated [CO,]
under both ample water supply (—10%) and severe
drought stress (—4%; Conley et al., 2001). However, in
the “wet” treatment, with ample water supply, the soil
was drier under elevated [CO,] throughout both
growing seasons (Wall et al., 2001), creating some
ambiguity as to the basis for the result.

The growing conditions of 2004 in Central Illinois
were so close to ideal that the observed improvements
in water use efficiency did not alter plant water status.
However, greater soil water would in most growing
seasons be expected to delay or prevent the onset of
drought stress during the periods of low rainfall. The
episodic enhancement of A in maize during periods of
drought at SoyFACE in 2002 is consistent with this
phenomenon (Leakey et al., 2004).

Should an increase in A be expected due to the re-
duced evaporative cooling caused by lower g, at ele-
vated [CO,]? The season-long average g, over the five
diurnal cycles of measurement was 0.21 mmol m ™ *s ™"
for ambient [CO,] and 0.15 mmol m s ! for elevated
[CO,], with a daytime average air temperature (T,;,) of
22.7°C and PPFD of 880 umol m~*s ™!, approximating
to a solar radiation flux of 420 ] m~*s~". Assuming an
absorptance of 0.9, typical of healthy leaves, mean
daytime relative humidity of 70%, and wind speed of
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41ms"!, the average increase in temperature caused
by the lower g, in elevated [CO,] would be 0.26°C,
calculated from the energy balance equations of Grace
(1983). Using the relationship of A to leaf temperature
for maize defined by Hofstra and Hesketh (1969), this
would cause an increase in leaf photosynthesis of
0.3 umol m 2 s~*. Even this may be an overestimate
since it is based on a mean temperature (22.7°C) below
the optimum; during periods when the optimum (ap-
proximately 34°C) is approached or reached, there will
be no increase in A. Therefore, growth at elevated
[CO,] probably favors greater photosynthesis due to
increased leaf temperature, but the effect is small
relative to A,,,. As a result, the effect had no detectable
impact on biomass accumulation and yield over the
growing season.

CONCLUSION

Maize is predicted to become the world’s most
important crop, in terms of human food supply, by
2050 (Pingali, 2001). While the results of our study are
limited to one location and one hybrid line, farming
practice and crop performance at SoyFACE are typical
of the surrounding area and the genotype shares
lineage with many other production lines. Champaign
County is centrally located in the U.S. Corn Belt and is
consistently high yielding (http://www.usda.gov/
nass/graphics/county04/crpmap04.htm#corn). So
the results of this study should at least relate to the
Corn Belt, which generates 40% of global maize pro-
duction (USDA, 2005). The absence of any photosyn-
thetic, growth, or yield response of maize to elevated
[CO,] in 2004 at SoyFACE is inconsistent with some
earlier cabinet studies, and suggests that including a
direct and consistent CO, fertilization effect on C, crop
performance is currently a significant source of error
in estimating future food security. It appears that
elevated [CO,] will only enhance performance by
reducing crop water use. Therefore, improvements in
A, growth, and yield will only occur if stress is ame-
liorated in times or places of drought. Unfortunately,
the indirect nature of this mechanism, combined with
considerable uncertainty regarding future soil water
availability (Cubasch et al., 2001), makes predicting
future crop performance difficult. Total precipitation
in North America is projected to increase slightly this
century (Giorgi et al., 2001), but there is also predicted
to be an increase in the frequency and magnitude of
droughts as climate becomes more variable (Gregory
et al., 1997; Beersma and Buishand, 1999). Therefore,
projections of crop performance will need to explicitly
deal with water stress, and its interaction with ele-
vated [CO,], if they are to be reliable. In 2002, A of
maize at SOoyFACE was stimulated, on average, by 10%
(Leakey et al., 2004). Years with episodic droughts,
such as 2002, occur every 2 to 3 years in Central
Ilinois. Therefore, future elevated [CO,] may often
indirectly enhance A and possibly yield. However, the

787



Leakey et al.

impact on growth and yield will vary with the dura-
tion and timing of water stress in the growing season.
Additionally, FACE studies of C; crops indicate that
the benefits of growth at elevated [CO,] are greatest
for A, lower for productivity, and least for yield
(Ainsworth and Long, 2005; Long et al., 2005; Morgan
et al., 2005). Likewise, in a FACE experiment on amply
irrigated sorghum, elevated [CO,] stimulated A by
9%, but did not enhance total biomass or grain yield
(Ottman et al., 2001). Therefore, it appears that ele-
vated [CO,] will increasingly have a role in determin-
ing C, crop performance via amelioration of drought
stress. However, in the absence of any direct stimula-
tion of photosynthesis, it is unclear that this will be
sufficient to override, or even negate, the detrimental
effects of increasing temperature and drought on
yield.

MATERIALS AND METHODS
Field Site, Cultivation, and FACE System

The study was conducted in a 16-ha field of maize (Zea mays) at the
SoyFACE facility in Champaign, IL. The facility operational procedures and
crop cultivation were repeated from a previous experiment (Leakey et al.,
2004). Maize cv 34B43 (Pioneer Hi-Bred International) was planted on April
29, 2004, emerged on May 9, 2004, and was harvested on September 10, 2004.
The infrastructure for CO, enrichment was installed immediately after plant-
ing in four experimental blocks (1 = 4 for statistical tests). In each block, one
plot was at current ambient [CO,] of 376 umol mol ™!, while a second plot was
fumigated during daylight hours to an average elevated [CO,] of 542 umol
mol . The target [CO,] for simulating the conditions in 2050 was 550 pmol
mol ™!, midpoint of different projections varying in assumptions about pop-
ulation and economic development (Prentice et al., 2001). The [CO,] enrich-
ment achieved during the growing season was within £20% of the target 93%
of the time.

Meteorological and Soil Water Data

An on-site weather station measured T;, relative humidity, incident PPFD,
and rainfall throughout the season. H,O% was measured in 10-cm increments
between depths of 5 and 105 cm using a capacitance probe (Diviner-2000;
Sentek Sensor Technologies). Measurements were taken every 3 to 7 d at four
positions in a 1-m* area near the center of each plot. Weekly records of the
PCMI from 1973 to 2004 for East Central Illinois were provided by the Climate
Operation Branch of NOAA (http:/ /www.usda.gov/oce/waob/jawf/).

In Situ Gas Exchange and Tissue Sampling

The diurnal course of gas exchange and chlorophyll fluorescence of the
youngest fully expanded leaf in each plot was measured on five dates across
the season, using four open gas-exchange systems with integrated modulated
chlorophyll fluorometers (LI-6400 and LI-6400-40; LI-COR). Full expansion
was judged by emergence of the ligule. The dates corresponded to five
discrete stages of crop development, including vegetative growth, silking, and
grain filling (Table I). On each date, four gas-exchange systems were used
simultaneously at intervals of approximately 2 h from early morning to
sunset. At each interval, one gas-exchange system was operated within each of
the four experimental blocks. Each block consisted of one ambient and one
elevated [CO,] plot. Two gas-exchange systems were first used in ambient
[CO,] plots, while the other two gas-exchange systems were first used in
elevated [CO,] plots. Each gas-exchange system was then moved to the
alternate [CO,] treatment within the block. The gas-exchange systems were
rotated among blocks and starting [CO,] treatment at each time point. These
procedures ensured that measurements were not biased by differences in
microclimate over time, or differences between gas-exchange systems. Three
plants were measured in each plot at each time interval. Measurements of
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chlorophyll fluorescence and gas-exchange parameters on all plants were
made at growth [CO,], T,;, and PPFD. Leaf A, g, and c; were calculated using
the equations of von Caemmerer and Farquhar (1981). The formation of dew
on leaves precluded measurement of g, at dawn and dusk and at other periods
of the day on occasion. Transpiration per unit leaf area (E), measured by the
gas-exchange system, is affected by chamber humidity, which may differ from
that of the external atmosphere. Therefore, a better measure of transpiration
was calculated as the product of leaf conductance and the leaf vapor pressure
deficit, which was determined from measured leaf temperature and the
external ambient air humidity. Chlorophyll fluorescence parameters (qP, ®pgy,
F,'/F,', NPQ, and ®.,) were defined and calculated as described by Naidu
and Long (2004).

Directly after the photosynthetic measurements, leaf discs (approximately
1.2 cm?) were excised, plunged immediately into liquid N, and then stored at
—80°C until analyzed for carbohydrate, protein, free-amino acid, and chloro-
phyll contents. Additional discs were removed and sealed into scintillation
vials for RWC analysis (approximately 3.6 cm? per plant) or sealed in stainless
steel psychrometer chambers (approximately 2.4 cm? per plant; C-30; Wescor)
for water potential analyses. Finally, leaf discs (approximately 3.6 cm? per
plant) were removed and dried in an oven at 70°C to constant weight and
weighed for calculation of SLA.

Foliar Biochemical, Nitrogen, and Water Analyses

Foliar contents of carbohydrates, protein, and total free-amino acids were
determined from 80% (v/v) ethanol extracts as by Geigenberger et al. (1996).
Glc, Fru, and Suc were determined using a continuous enzymatic substrate
assay (Rogers et al., 2004). For protein and starch determination, pellets of the
ethanol extraction were solubilized by heating to 95°C in 0.1 M NaOH. Protein
content was determined using a commercial kit (Protein assay kit; Pierce) with
bovine serum albumin as a standard. The NaOH solution containing the
dissolved pellet was then acidified to pH 4.9 and the starch content was
determined as by Hendriks et al. (2003). Total free-amino acid contents were
determined using a fluorescamine assay (Bantan-Polak et al., 2001).

The in vitro activities of Rubisco, PPDK, and PEPc were all measured
indirectly as the rate of oxidation of NADH (specific absorption coefficient of
6.22 mm ) using linked enzyme assays in a dual-beam spectrophotometer
(Cary I; Varian) at 340 nm and 25°C. The extraction of Rubisco followed the
procedure outlined by Sharkey et al. (1991), with the following modifications.
One protease inhibitor cocktail tablet (Roche Applied Science) per 10 mL of
extraction solution was added to inhibit enzyme degradation. Leaf tissue was
rapidly ground (60-120 s) in 2.0 mL of extraction solution at 0°C using an ice-
chilled glass tissue homogenizer. The extract was then centrifuged for 15 s at
15,000g. To fully activate Rubisco, a 1-mL aliquot of the supernatant was
added to 20 mm MgCl, and 10 mm NaHCO, (Sharkey et al., 1991). The crude
extract was incubated at room temperature until maximum activity was stable
(approximately 8 min). A 50-uL aliquot of the crude extract was added to a
cuvette containing 700 uL of assay medium and assayed for 1 min. The assay
medium was prepared according to Sharkey et al. (1991) with the following
modifications: 1.8 units (2.6 units mL ") of creatine phosphokinase, 1.8 units
(2.6 units mL ") of phosphoglycerate kinase, and 9.2 units (13.1 units mL ") of
glyceraldehyde-3-P dehydrogenase were used. Leaf tissue was prepared as
for the Rubisco assay, before PPDK was extracted as previously described
(Crafts-Brandner and Salvucci, 2002). The crude extract was allowed to
incubate in the assay medium for 5 min at 25°C, and the reaction was initiated
by the addition of 15 uL of 100 mm pyruvate (2.2 mu final concentration) and
12 pL (6 units) of purified maize PEPCase (Bio-Research Products) and then
assayed for 1 min. Incubation in this manner was found to increase the in vitro
activity by 10% to 20%. Leaf tissue was prepared as for the Rubisco assay,
before PEPCase was extracted by the method of Crafts-Brandner and Salvucci
(2002), with the exception of using 5 mm dithiothreitol in place of S-mercap-
toethanol. A 35-uL aliquot of the supernatant was added to a cuvette
containing 665 uL of assay medium and assayed for 1 min. The assay medium
was prepared as described previously (Giglioli-Guivarc'h et al., 1996) with the
addition of 5 mMm Glc-6-P and 2 mwm dithiothreitol (Ashton et al., 1990). Malate
dehydrogenase was increased to 6.5 units per assay (9.4 units mL ™).

Dried leaf material was powdered and analyzed for N content using an
elemental combustion system (model 4010; Costech Analytical Technologies).
RWC was measured as by Ghannoum et al. (2002). A dew point micro-
voltmeter (HR-33T; Wescor) measured iy, after psychrometer chambers
(C-30; Wescor) containing leaf discs (2.4 cm?) were equilibrated in a controlled
environment cabinet at 25°C.
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Alc; and A/Q Curves

Predawn on DOY 180 and 212, the youngest fully expanded leaf of two
plants per plot were cut from the plant and then immediately recut under
water and kept immersed. The objective was to reveal any effect of elevated
[CO,] on the potential photosynthetic capacity of the leaves, through mea-
surement of A/c; and A/Q curves. Sampling leaves predawn and performing
measurements under controlled conditions avoided the short-term decreases
in water potential, chloroplast inorganic phosphate concentration, and max-
imum PSII efficiency that can occur in the field and may transiently limit
photosynthetic performance. Using the gas-exchange and fluorescence appa-
ratus described above, A/c; curves were determined in the laboratory at a
PPFD of 1,750 umol m2 s and A/Q curves were determined at growth
[CO,], as by Bernacchi et al. (2005). All measurements were performed at 30°C.
The response of A to ¢; at ¢; <50 umol mol ' was used to solve for Vpmax (von
Caemmerer, 2000). V,,, was estimated from the horizontal asymptote of a
nonrectangular hyperbolic function for each A/c; curve. From A/Q curves,
D, and A, were calculated as by Naidu and Long (2004).

sat

Crop Development, Biomass, and Yield

Silking dates were defined at the point in time when 50% of plants had
visible silks and anthesis dates when 50% of plants shed pollen. At flowering,
the area of every leaf on four randomly sampled plants from each plot was
determined from the linear dimensions and a pre-established relationship
with area (McKee, 1964). At the end of the growing season, four plants were
sampled from each plot and separated into grain and stover (i.e. the remainder
of the shoot). These fractions were oven dried at 75°C to constant weight and
their mass determined.

Statistics

In all cases, statistics were performed on plot means using the MIXED
procedure of SAS, with the Satterthwaite option (SAS Institute, Cary, NC). The
Akaike’s criterion was used to choose the best model of variance-covariance.
In all tests, [CO,] treatment was a fixed effect and block a random effect. In
tests of physiological processes, time of day and DOY were fixed effects. For
the overall comparison of H,0% between treatments over the growing season,
a mixed model was fitted to repeated measures of time.
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