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SECAT CONSORTIUM
• Advanced Technology Corporation
• ASME Standards and Technologies
• Chemical Composite Coatings Intl
• Columbia Gas of Kentucky
• Oregon Steel Mills
• Schott North America
• DGS Metallurgical Solutions, Inc.
• Hatch Moss MacDonald
• Oak Ridge National Laboratory
• University of Illinois

Partners

Overview
• Project start date: 05/2005 
• Project end date: 09/2009
• Percent complete: 25%

Barriers addressed
High capital cost and Hydrogen Embrittlement of 
Pipelines
Technical Targets (2017):
– Capital cost ($490K/Mile Transmission)
– Cost of delivery of hydrogen <$1.00/gge
– High Reliability of operation with metrics to be 
determined

• Total project funding
– $1650K (DOE share)
– $1110K (contractor share)

• Funding for FY 07: $200K
• Funding for FY 08: $350K

Timeline

Budget

Barriers and Targets
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Objective and Deliverables
Objective:
• Develop materials technologies to minimize embrittlement of 

steels used for high-pressure transport of hydrogen

Deliverables:
• Identify steel compositions/microstructures suitable for 

construction of new pipeline infrastructure 
• Develop barrier coatings for minimizing hydrogen permeation in 

pipelines and associated processes – ON HOLD per DOE
• Understand the economics of implementing new technologies



Known/Unknown
• Known

– Variability of microstructure within a grade i.e. not all X52, X70, etc. is 
created equal

– Disassociation of H2 to H required
– Disassociation causes – Corrosion, Partial Pressures
– Surface oxide layers can inhibit diffusion of hydrogen into the steel
– H migrates/collects in area of high residual stress (50% of residual stress 

due to microstructure mismatch, inclusions, thermal, mechanical)

• Unknown
– H2 embrittlement of steels/welds in high pressure dry gaseous H2

– Effect on steel metallurgical microstructures in high pressure dry gaseous H2

– Effectiveness of non-metallic coatings in minimizing H2 issues
– Economics of technical solutions not qualified
– Is common X70 microstructure suitable in high pressure dry gaseous H2 (Volume 

fraction? Banding? Moisture/corrosion?)
– Suitability of alternative microstructures in high pressure dry gaseous H2

(Volume fraction? Banding? Moisture/corrosion?) 4
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Major Tasks
Task 1: Evaluate hydrogen embrittlement characteristics of 
existing commercial pipeline base steels/microstructures and 
welds under high-pressure hydrogen gas

Task 2: Evaluate hydrogen embrittlement characteristics of 
existing commercial alternative alloy/microstructure steels under 
high-pressure hydrogen gas

Task 3: Develop Alternate Alloys/microstructure and welding 
consumables and Evaluate Hydrogen Embrittlement 

Task 4: Financial Analysis and Incorporation into Codes and 
Standards 

Note – Tasks related to coatings have been placed on hold and are not 
represented here.



6

Progress To Date
a) Four (4) commercial pipeline steels have been down-selected 

– Task 1

• Majority of the baseline pipeline steel microstructure and mechanical property 
data have been characterized

• Commercial X70 pipeline welds have been secured for future work
• Two (2) traditional screening tests have been explored
• In-situ ABI test has been developed
• Processing techniques developed for glassy coatings
• Down-selected steel composition has been coated

– For evaluation in high pressure hydrogen gas
– Evaluation of coating technique effect on steel microstructure.

b) Two (2) commercial abrasion resistant/structural steels have 
been down-selected – Task 2

• Low carbon-high alloy capable of producing 100% bainite or 100% martensite
microstructures (dependant on processing) with good toughness

• Medium carbon-high alloy capable of producing 100% bainite or 100% martensite
microstructures (dependant on processing) with good toughness
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Down-selected Commercial Pipeline 
Steel Compositions – Task 1

Grade* Code Carbon Microstructure Comment

X70 Std A 0.08 Ferrite/Pearlite Baseline

X70/X80 B 0.05 Ferrite/Acicular 
Ferrite

Potentially 
Good

X70/X80 C 0.04 Ferrite/Acicular 
Ferrite/Sm Pearlite

Potentially 
Good

X52/X60 HIC D 0.03 Ferrite/Acicular 
Ferrite Potentially Best

*Note that all are commercially available pipeline base steels 
utilizing microalloying technology.
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Down-selected Commercial Abrasion 
Resistant/Structural Alternative Steel 

Compositions/Microstructures – Task 2

Grade* Code Carbon Alloy Microstructure Comment

100 KSI 
Yield 

Strength
E 0.08 Mn, Ni, 

Nb, B, Ti

100% Bainite or 
Martensite

dependent on 
processing

Potentially 
Good

Abrasion 
Resistant 
400 BHN

F 0.15
Mn, Si, 
Cr, Mo, 

Nb, B, Ti 

100% Bainite or 
Martensite

dependent on 
processing

Potentially 
Good

*Note that all are commercially available structural/abrasion 
resistant base steels utilizing solute solution strengthening and 
boron/microalloying technology
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Effect of Hydrogen on the Mechanical 
Properties of Steel A – Ex-situ Testing

Ferrite + Pearlite20 KSI H2 @ 100 °C for 8 days
5 KSI He @ 100 °C for 8 days
Strain rate 10-4 in/in/sec

Note the relatively large variability of stress-strain curves

Surface  to ¼ thick – 4.13% volume fraction pearlite
¼ thick to centerline – 8.40% volume fraction pearlite
Centerline – 6.90% volume fraction pearlite
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Effect of Hydrogen on the Mechanical 
Properties of Steel B – Ex-situ Testing

Ferrite + Acicular Ferrite

Note the relatively small variation in the stress-strain curves

20 KSI H2 @ 100 °C for 8 days
5 KSI He @ 100 °C for 8 days
Strain rate 10-4 in/in/sec

Surface  to ¼ thick – Acicular ferrite TBD by TEM
¼ thick to centerline – Acicular ferrite TBD by TEM
Centerline – Acicular ferrite TBD by TEM
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Effect of Hydrogen on the Mechanical 
Properties of Steel C – Ex-situ Testing

Ferrite/acicular ferrite + sm pearlite

Note intermediate variability in the stress-strain curves

20 KSI H2 @ 100 °C for 8 days
5 KSI He @ 100 °C for 8 days
Strain rate 10-4 in/in/sec

Surface  to ¼ thick – AF TBD by TEM, pearlite TBD
¼ thick to centerline – AF TBD by TEM, pearlite TBD
Centerline – AF TBD by TEM, pearlite ≈ 3%
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NACE Hydrogen Induced Cracking (HIC) 
Test

• Evaluates resistance of pipeline and pressure vessel plate steels to 
Hydrogen Induced Cracking (HIC) caused by hydrogen adsorption 
through a corrosive mechanism

• Cracks  that develop in the microstructure are evaluated 
transverse to the rolling direction

• UNSTRESSED test specimens are immersed in one of two H2S 
containing solutions for 96 hours – Solution A (Low pH – more 
severe), Solution B (High pH – less severe)

• Test provides reproducible environments for distinguishing 
RELATIVE susceptibility to HIC in a relatively SHORT TIME
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NACE HIC Testing of Selected Pipeline Steels

Alloy Crack Length 
Ratio (%)

Crack 
Sensitivity 
Ratio (%)

Crack 
Thickness 
Ratio (%)

A 11.8a 0 0.1

B 0.4b 0 0

C 0 0 0

D 0 0 0

Lower numbers are desirable

a) Cracks located at the ferrite/pearlite interface
b) Cracks located between surface and ¼ thickness and associated with cluster of non-

metallic inclusions (related to ¼ thickness casting inclusion issue)
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System for in-situ Testing in High Pressure 
Hydrogen is Now Fully Functional at ORNL

Key features
• Room temperature gas pressures up to 4800 psi 
• Strain rates down to 1E-6/sec
• Test loads up to 4000 lbs
• Flexible specimen geometry
• Computer-controlled valves and data acquisition



Effect of Strain Rates on Stress-Strain Curves 
in Hydrogen Atmosphere for Alloy A

Note: Friction correction has NOT been applied
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• Gas compositions used: UHP hydrogen (99.9999%), UHP Helium 
(99.9999%)

• Gas pressure: 1580 psi
• Presence of hydrogen decreases total strain to failure
• The decrease in total strain is a function of the strain rate used for testing 15



Fracture Mode of Steel A Changes in the 
Presence of Hydrogen

Helium Hydrogen

Ductile cup and cone fracture Faceted fracture surface with
evidence for multiple secondary cracking
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Effect of Hydrogen on Deformation 
Characteristics of Alloy C
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• Pressure: 1580 psi, Strain rate: 1E-4 /sec
• Total elongation decreases in a hydrogen atmosphere
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Fracture Mode of Steel C Also Changes in the 
Presence of Hydrogen

Helium Hydrogen

Ductile cup and cone fracture
Faceted fracture surface with
visible secondary cracking

18
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Future Work

• Steels
– Complete measurement of mechanical properties in-situ high 

pressure hydrogen testing of commercial pipeline steels and 
commercial alternative microstructures

– Evaluate effect of different strain rates for in-situ testing
– Complete microstructural characterization of down-selected 

steels before and after exposure to hydrogen to understand the 
effect of microstructure on embrittlement

– Evaluate in-situ fatigue testing of commercial pipeline steels 
and alternative microstructures

– Perform and evaluate baseline fracture mechanics 
characteristics 

• Economic Analysis
– Recommend steel and coating systems for implementation
– Evaluate economic impact of suggested materials systems
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Contacts

Dr. Subodh K. Das
Secat, Inc.

(859) 514-4989
skdas@secat.net

mailto:skdas@secat.net
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