Dietary Exposure Assessment at the Food and Drug Administration:

A comparison of exposure assessment methods used in the Total Diet Study and analyses of individual food products

Katie Egan and Michael DiNovi ORACBA Risk Forum, Nov. 19, 2007

Exposure Assessments

- Point Estimates - "The Estimate is ..."
- Safety assessments for food additives
- Evaluations using the TDS
- Probabilistic Estimates
- Contaminants
- Stochastic (from the Greek, stochastikos: to guess at)
- Monte Carlo
. Black box

Simplified Exposure Equation

$$
E D I_{x}=\sum_{f=1}^{F} \frac{\text { Freq }_{f} \cdot \text { Port }_{f} \cdot \text { Conc }_{x f}}{N}
$$

$E D I_{x}=$ The Estimated Daily Intake of Substance x
F = Total no. of foods in which x can be found
Freq $_{f}=$ No. of eating occasions for food f over N survey days
Port $_{\mathrm{f}}=$ Average portion size for food f
Conc $_{x f}=$ Concentration of the substance x in the food f
$N=$ No. of survey days
Exposures for Individuals Combined

Acrylamide Exposure

- Data included in 2006 assessment
- New data:
- 2005 targeted data, Table 4, http://www.cfsan.fda.gov/~dms/acrydata.html
- 2004 and 2005 Total Diet Study (TDS) data, Tables 2 and 3, http://www.cfsan.fda.gov/~dms/acrydat2.html
- Previous data from 2003, 2004 assessments:
- 2002-2004 targeted data, Tables 1-3, http://www.cfsan.fda.gov/~dms/acrydata.html
- 2003 TDS data, http://www.cfsan.fda.gov/~dms/acrydat2.html
- 66 food categories evaluated
- Ethnic, regional foods included

Acrylamide Intake Modeling

AA Intake $=\left(\right.$ Eaters $\left._{(\text {(yes or no })}\right) \times($ Food Amt. $) \times$ (AA Level)

Eaters $_{\text {(yes or no) }}$ - Either 0 or 1 in Proportion to Percent Eaters
Food Amount - Food Consumption Value from Survey Data
Acrylamide Level - Value from Laboratory Data Each Value Equally Likely on Each Iteration

Results are Summed over Foods and Individuals

Acrylamide Intake Modeling

- Each Iteration is a Virtual Consumer
- 25,000 Iterations
- No Accounting for Correlations Between Food Choices
- Truncation of Distributions Removes Irrationally High Values
- 13 L of Coffee Per Day - 100 ${ }^{\text {th }}$ Percentile

Acrylamide Model in Excel: Overview

Food	\% eaters	Mean Intake	ACM Conc	Intake	Big Kahuna
		(g/kg-bw-d)	(ug/kg)	(ug/kg-bw-d)	(ug/kg-bw-d)
Almonds	0.3	0.3	320.3	0.000	0.44
Nuts \&					
Seeds	5.9	0.4	36.1	0.001	
Bagels	9.8	0.6	50.3	0.003	
Baked					
Breaded					
Breaded Fish	5.3	1.3	11.6	0.001	
Breakfast Cereal	40.8	0.8	124.5	0.041	

Acrylamide Model in Excel: FC Data

Percentages

0.01	0.0	0.0	0.1
0.05	0.0	0.0	0.2
0.1	0.0	0.0	0.2
0.15	0.0	0.1	0.3
0.2	0.0	0.1	0.3
0.25	0.1	0.1	0.4
0.3	0.1	0.1	0.4
0.35	0.1	0.1	0.4
0.4	0.1	0.2	0.4
0.45	0.1	0.2	0.4
0.5	0.1	0.3	0.5
0.55	0.1	0.3	0.5
0.6	0.1	0.4	0.5
0.65	0.2	0.4	0.6
0.7	0.2	0.5	0.7
0.75	0.3	0.5	0.7
0.8	0.3	0.7	0.8
0.85	0.5	0.8	1.0
0.9	0.8	1.1	1.1
0.95	1.4	1.5	1.3
0.97	1.4	1.9	1.6
0.98	1.4	2.2	1.8
0.99	1.5	2.7	2.3

Acrylamide Model in Excel: Contaminant Data

Crisp Bread
182 Streit's lightly salted matzos
Wasa original crispbread fibe rye
Indian flat bread (from local restaurant)
Wasa, Crisp 'n Light Crackerbread

Manischewitz, Matzos unsalted
208
620
Fat Free Natural, Rye Crisp

Doughnuts
24

5
14

26
19

Shoppers Food Warehouse, cake doughnut

French Fries
Shoppers Food Warehouse, french twirl
doughnut 197

Shoppers Food Warehouse, plain doughnut220

Doughnut, Cake-Type, Any Flavor 369
Doughnut, Cake-Type, Any Flavor 257
Doughnut, Cake-Type, Any Flavor
407

Doughnut, Cake-Type, Any Flavor 389
Krispy Kreme Doughnuts

Krispy Kreme Doughnuts
346

Arby's french fries
Burger King french fries, location 1
Burger King french fries, location 2
Burger King french fries, location 3
Checkers french fries, location 1
Checkers french fries, location 2

Chick-fil-A french fries
Fuddruckers french fries, location 1

Fuddruckers french fries, location 2

KFC french fries, location 1

KFC french fries, location 2

Results - Feb. 2003

Survey used	Age Group	Exposure (mean)	90th \%ile
MRCA	$2+$ years	0.48 Hg/kgbw-day	0.91
CSFII (3-day)	2+ years	0.32	0.66
CSFII (2-day)	2+ years	0.37	0.81
MRCA	2-5 year olds	1.26	2.33
CSFII (3-day)	2-5 year olds	0.78	1.63
CSFII (2-day)	2-5 year olds	1.00	2.15

Acrylamide Intake Distribution CFSII 1994-96, 1998; 2+ Population

Acrylamide Intake ($\mu \mathrm{g} / \mathrm{kgbw}-\mathrm{d}$)

Top 20 Foods by Mean Acrylamide Intake

Food	Mean AA intake ($\mu \mathrm{g} / \mathrm{kgbw}$-day)	Cumulative Percentile
French Fries (RF*)	0.070	0.16
French Fries (OB^{*})	0.051	0.28
Potato Chips	0.045	0.38
Breakfast Cereal	0.040	0.47
Cookies	0.028	0.53
Brewed Coffee	0.027	0.60
Toast	0.023	0.65
Pies and Cakes	0.018	0.69
Crackers	0.017	0.73
Soft Bread diner	0.014	0.77

Food	Mean AA intake ($\mu \mathrm{g} / \mathrm{kg} \mathrm{bw}$-day)	Cumulative Percentile
Chile con Carne	0.014	0.80
Corn Snacks	0.011	0.82
Popcorn	0.007	0.84
Pretzels	0.007	0.86
Pizza	0.006	0.87
Burrito/Tostada	0.006	0.88
Peanut Butter	0.003	0.89
Breaded Chicken	0.003	0.90
Bagels	0.003	0.90
Soup Mix	0.003	0.91
B, oven bake		

Top Eight Foods by Acrylamide Per Portion

Food	AA Conc $(\mu \mathrm{g} / \mathrm{kg})$	Portion Size $(\mathrm{g})^{*}$	AA ($\mu \mathrm{g})$ Portion
Breakfast Cereal	124.6	55	6.9
Brewed Coffee	8.0	240	1.9
Postum	93	240	22.3
French Fries (RF)	401	70	28.1
French Fries (OB)	697.8	70	48.8
Potato Chips	608.1	30	20.4
Canned Black Olives	498.5	15	28.8
Prune Juice	206.3	140	

Portion Sizes From 21 CFR 101.12, Table 2

What-If Scenarios CSFII, 1994-96, 98, 2+ Population

- Mean= $0.44 \mu \mathrm{~g} / \mathrm{kgbw}-\mathrm{d}, 90^{\mathrm{th}}=0.96 \mu \mathrm{~g} / \mathrm{kgbw}-\mathrm{d}$
- Remove AA from French Fries
- Mean - $0.37 \mu \mathrm{~g} / \mathrm{kgbw}-\mathrm{d}$; $90^{\text {th }}$ Percentile $-0.78 \mu \mathrm{~g} / \mathrm{kgbw}-\mathrm{d}$
- Remove AA from Snack Foods
- Mean - $0.38 \mu \mathrm{~g} / \mathrm{kgbw}-\mathrm{d} ; 90^{\text {th }}$ Percentile $-0.85 \mu \mathrm{~g} / \mathrm{kgbw}-\mathrm{d}$
- Remove AA from Breakfast Cereal
- Mean - $0.38 \mu \mathrm{~g} / \mathrm{kgbw}-\mathrm{d}$; $90^{\text {th }}$ Percentile $-0.84 \mu \mathrm{~g} / \mathrm{kgbw}-\mathrm{d}$
- Remove AA from Coffee
- Mean - $0.40 \mu \mathrm{~g} / \mathrm{kgbw}-\mathrm{d} ; 90^{\text {th }}$ Percentile $-0.88 \mu \mathrm{~g} / \mathrm{kgbw}-\mathrm{d}$

Perchlorate Exposure

- Multi-agency Investigation
- May be natural, may be anthropomorphic
- Source isn't material
- Initial surveys completely inadequate
- Milk
- Vegetables thought to be irrigated with contaminated water
- 5 vegs, milk, and bottled water

2004-5 Survey expansion

- 27 foods and beverage classes
- Some seafood included
- 5 to >100 samples per food
- Consistently low, typically ≤ 10 ppb, with occasional outliers
- Spinach and greens much higher
- >90 ppb
- Food consumption approx. 1/3 of the diet

Perchlorate Residue Data

Food Groups	Number of Data Points	Average Residue (ppb)
Lettuce	137	10.3
Milk	125	5.81
Tomatoes	73	13.7
Carrots	59	15.8
Spinach	36	115
Cantaloupes	48	28.6
Apples	9	0.15*
Grapes	12	8.58
Oranges	10	3.47
Strawberries	19	2.14
Watermelon	19	1.96
Fruit Juices (Apple \& Orange)	14	2.31
Broccoli	14	8.49
Cabbage	13	8.80
Greens	14	92.4
Cucumber	20	6.64
Green Beans	19	6.12
Onions	12	0.53
Potatoes	6	0.15*
Sweet Potatoes	6	1.24
Corn Meal	22	1.16
Oatmeal	22	3.96
Rice (Brown \& White)	19	0.50*
Whole Wheat Flour	19	4.27
Catfish	7	1.02
Salmon	11	1.06
Shrimp	5	19.83
Total	775	

Perchlorate Exposure

Population Monte Carlo estimate using @Risk software with 5,000 iterations* ($\mu \mathrm{g} / \mathrm{kg}$-bw/d)

	Mean	90th Percentile
All ages 2+ Years	0.053	0.12
Children, 2-5 Years	0.17	0.34
Females, 15-45 Years	0.037	0.074

Food Contributors

Food Groups
Milk
Tomatoes
Fruit Juices (Apple \& Orange)
Spinach
Carrots
Lettuce
Cantaloupes
Greens
Broccoli
Green Beans
Grapes
Cucumbers
All other foodsTotal

Mean Intake ($\mu \mathrm{g} / \mathrm{kg}$ bw/day)
0.025
0.005
0.004
0.004
0.003
0.003
0.002
0.001
0.001
0.001
0.001
0.053

Cumulative Percentage

47

566472788488909294960.001
0.001 98

<0.001
<0.001 100100

Summary

- Simple distributional analyses allow data manipulation unavailable to point estimate methods
- All of the food consumption data come from one source
- TDS use of data is different, but conclusions support methodology
- Contamination concentration data give clue to source or type of incident/ecology
- Model uncertainty not evaluated

