Nominal Performance Biosphere Dose Conversion Factor Analysis Rev 03, ICN 00 ANL-MGR-MD-000009 September 2004 1. PURPOSE This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The Biosphere Model Report (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the Biosphere Model Report (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2004 [DIRS 169671]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the Biosphere Dose Conversion Factor Importance and Sensitivity Analysis (Figure 1-1). This analysis is a revision of the Nominal Performance Biosphere Dose Conversion Factor Analysis (BSC 2003 [DIRS 164403]). The analysis was performed in accordance with the Technical Work Plan for Biosphere Modeling and Expert Support (TWP) (BSC 2004 [DIRS 169573]). The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose from drinking water for beta- and photon-emitting radionuclides. Another objective of this analysis was to re-qualify the output of the previous revision (BSC 2003 [DIRS 164403]). For the groundwater exposure scenario, radionuclides enter the biosphere from a well that extracts contaminated groundwater from an aquifer. BDCFs for the groundwater scenario apply to the TSPA-LA modeling cases that consider groundwater release of radionuclides from the repository at Yucca Mountain (the nominal scenario class and some modeling cases from the disruptive scenario classes, i.e., igneous intrusion or human intrusion). Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 1-2 September 2004 Figure 1-1. Biosphere Model Documentation and Total System Performance Assessment Feeds Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 1-3 September 2004 The biosphere model considers features, events, and processes (FEPs) applicable to the Yucca Mountain biosphere (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). Consideration of the LA FEPs List (DTN: MO0407SEPFEPLA.000 [DIRS 170760]) constitutes a deviation from the TWP (BSC 2004 [DIRS 169573]), which referred to an earlier revision of the FEPs list (DTN: MO0307SEPFEPS4.000 [DIRS 164527]). Table 1-1 lists FEPs that are included in the biosphere model for the groundwater exposure scenario (BSC 2004 [DIRS 169460], Tables 6.2-1 and 6.3-6). The BDCFs developed as output of this report, and used as direct inputs to the TSPA, are the results of the biosphere model and are based on the inputs from the supporting parameter reports. The BDCFs, therefore, implicitly include the FEPs that are related to the model and to the model inputs taken from the supporting parameter reports. Consequently, explicit mapping of individual FEPs listed in Table 1-1 to specific sections of this report and BDCFs is not possible. All FEPs considered in the biosphere model and its input parameters are collectively included in BDCFs. Relationships among the biosphere-related FEPs, the biosphere conceptual model, and the exposure scenarios are examined in Section 6.3 of the Biosphere Model Report (BSC 2004 [DIRS 169460]). The disposition of the included FEPs within the mathematical model, and their explicit relationship to the model equations and input parameters, is presented in the Biosphere Model Report (BSC 2004 [DIRS 169460], Table 6.7-1). In addition to producing the BDCFs for the groundwater exposure scenario, this analysis develops conversion factor values for evaluating compliance with the groundwater protection standard of 10 CFR 63 [DIRS 156605]. These conversion factors are used by TSPA to calculate gross alpha particle activity in groundwater and the organ and whole-body annual dose from beta- and photon-emitting radionuclides resulting from drinking 2 liters of water per day. The FEPs considered in the development of conversion factors are listed in Table 1-2. The disposition of these FEPs in TSPA is through the conversion factors that are inputs for the TSPA-LA. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 1-4 September 2004 Table 1-1. Biosphere-Related Features, Events, and Processes Implicitly Included in TSPA Through the Use Of Biosphere Dose Conversion Factors for the Groundwater Exposure Scenario FEP Name LA FEP Number Climate change 1.3.01.00.0A Water table rise affects SZ 1.3.07.02.0A Water management activities 1.4.07.01.0A Wells 1.4.07.02.0A Chemical characteristics of groundwater in the SZ 2.2.08.01.0A Soil type 2.3.02.01.0A Radionuclide accumulation in soils 2.3.02.02.0A Soil and sediment transport in the biosphere 2.3.02.03.0A Surface water transport and mixing 2.3.04.01.0A Precipitation 2.3.11.01.0A Biosphere characteristics 2.3.13.01.0A Radionuclide alteration during biosphere transport 2.3.13.02.0A Human characteristics (physiology, metabolism) 2.4.01.00.0A Human lifestyle 2.4.04.01.0A Dwellings 2.4.07.00.0A Wild and natural land and water use 2.4.08.00.0A Agricultural land use and irrigation 2.4.09.01.0B Animal farms and fisheries 2.4.09.02.0A Urban and industrial land and water use 2.4.10.00.0A Radioactive decay and ingrowth 3.1.01.01.0A Atmospheric transport of contaminants 3.2.10.00.0A Contaminated drinking water, foodstuffs and drugs 3.3.01.00.0A Plant uptake 3.3.02.01.0A Animal uptake 3.3.02.02.0A Fish uptake 3.3.02.03.0A Contaminated nonfood products and exposure 3.3.03.01.0A Ingestion 3.3.04.01.0A Inhalation 3.3.04.02.0A External exposure 3.3.04.03.0A Radiation doses 3.3.05.01.0A Radon and radon daughter exposure 3.3.08.00.0A Source: DTN: MO0407SEPFEPLA.000 [DIRS 170760]. SZ = saturated zone Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 1-5 September 2004 Table 1-2. Features, Events and Processes Considered in the Development of Conversion Factors FEP Number FEP Name Description of FEP Disposition 1.4.07.02.0A Wells A well is the initial source of contaminated groundwater in the biosphere. 2.4.01.00.0A Human characteristics (physiology, metabolism) Physiology and metabolism of the human receptor were considered in developing the values of dose conversion factors for ingestion, which are used as input to calculate the values of conversion factors (Equation 6.3-3). 3.1.01.01.0A Radioactive decay and ingrowth Contribution from long-lived and short-lived decay products of primary radionuclides is included in the values of conversion factors, through the use of effective dose conversion factors for ingestion (Table 6.3-5) and also through including decay products in the total number of alpha particles associated with a primary radionuclide (Table 6.3-3). 3.3.01.00.0A Contaminated drinking water, foodstuffs and drugs Locally obtained contaminated drinking water causes ingestion dose (Equations 6.3-2 and 6.3-4) 3.3.04.01.0A Ingestion Conversion factors for beta-gamma emitters are used in evaluating exposure of the receptor arising from ingestion of contaminated water (Equations 6.3-2 to 6.3-4). 3.3.05.01.0A Radiation doses Radiation doses arising from ingestion of contaminated water will be evaluated in TSPA using conversion factors developed in this analysis. Source: DTN: MO0407SEPFEPLA.000 [DIRS 170760]. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 1-6 September 2004 INTENTIONALLY LEFT BLANK Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 2-1 September 2004 2. QUALITY ASSURANCE This analysis involved development of data to support performance assessment, as identified in TWP (BSC 2004 [DIRS 169573]), and thus, it was a quality affecting activity in accordance with AP-2.27Q, Planning for Science Activities. Approved quality assurance procedures identified in TWP (BSC 2004 [DIRS 169573], Section 4) were used to conduct and document the activities described in this report. Specifically, the procedure governing development of this document was AP-SIII.9Q, Scientific Analyses. Electronic data used in this analysis were controlled in accordance with methods specified in TWP (BSC 2004 [DIRS 169573], Section 8). The natural barriers and items identified in the Q-List (BSC 2004 [DIRS 168361]) are not pertinent to this analysis and a Safety Category per AP-2.22Q, Classification Analyses and Maintenance of the Q-List, is not applicable. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 2-2 September 2004 INTENTIONALLY LEFT BLANK Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 3-1 September 2004 3. USE OF SOFTWARE This analysis was performed using a verified and validated model, the ERMYN model, which is described in the Biosphere Model Report (BSC 2004 [DIRS 169460]). The model files were obtained from the Model Warehouse (DTN: MO0306MWDBGSMF.001 [DIRS 163816]). The model is implemented using the GoldSim Graphical Simulation Environment, a graphical, object-oriented computer program for carrying out dynamic, probabilistic simulations (GoldSim Technology Group 2002 [DIRS 160643]). The analysis was conducted using two versions of the software that was qualified under the Office of Civilian Radioactive Waste Management, Quality Assurance program for use on the Yucca Mountain Project. • GoldSim V7.50.100 (STN: 10344-7.5.100-00) (BSC 2003 [DIRS 161572]) • GoldSim V8.01 Service Pack (SP) 4 (STN: 10344-8.01SP4-00) (BSC 2004 [DIRS 169695]) The software was appropriate for the application of running ERMYN model, which was implemented using GoldSim software, as described in the Biosphere Model Report (BSC 2004 [DIRS 169460], Section 6.8), and was used within the range of validation in accordance with procedure LP-SI.11Q-BSC, Software Management. The GoldSim files generated in this analysis are shown in Appendix A. The original verification of the model was performed using GoldSim version 7.50.100. Verification of the model for the use with GoldSim version 8.01 SP4 is described in Appendix E. Both versions of GoldSim were installed by Software Configuration Management on a DELL Precision Workstation 530 computer (CPU# 151554) and were ran under the Windows 2000 operating system. In addition, the commercial off-the-shelf product Microsoftฎ Excel 2000 (Version 9.0.3821 SR-1) was used for data reduction. Standard functions of Excel were used to calculate values presented in the tables in Section 6. The use of these functions, including formulas or algorithms, inputs, and outputs, is described in Appendix B. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 3-2 September 2004 INTENTIONALLY LEFT BLANK Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-1 September 2004 4. INPUTS 4.1 DIRECT INPUTS 4.1.1 Calculation of Biosphere Dose Conversion Factors The inputs to this analysis are listed in Tables 4.1-1 to 4.1-4. Input parameter values and distributions were generated specifically for biosphere model input and are appropriate for the intended use. The appropriateness for the intended use in this analysis and uncertainty in the input parameters is discussed in the individual analysis reports that document parameter development (BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169459]; BSC 2004 [DIRS 169671]). The parameters were used as input for the ERMYN model for the groundwater exposure scenario (DTN: MO0306MWDBGSMF.001 [DIRS 163816]). Where applicable, Table 4.1-1 includes parameter values and distributions for two climate extremes: the present-day climate and one future climate state represented by the upper bound of the glacial transition climate. The BDCFs are calculated in this analysis for three climate states by interpolation between these two extremes. The half-lives and branching fractions for radionuclides included in the biosphere model are listed in Table 4.1-2. Dose conversion factors for inhalation and ingestion for use in the biosphere model are shown in Table 4.1-3. Dose coefficients for exposure to contaminated soil are shown in Table 4.1-4. The output of Revision 02 of this analysis (DTN: MO0307MWDNPBDC.001 [DIRS 164615]) is also a direct input to this analysis. This DTN is re-qualified within this analysis (see Appendix C) using a corroborating data approach as a qualification method, per AP-SIII.2Q, Qualification of Unqualified Data. The Data Qualification Plan is included in Appendix D. In the qualification process, the DTN: MO0307MWDNPBDC.001 [DIRS 164615] is compared with the results of biosphere modeling generated in this analysis to determine the impact of software and input changes, and to qualify the data. Table 4.1-5 lists the input DTNs used by both analyses and summarizes differences between the inputs. The direct inputs described in this section are used in Sections 6.2 and in Appendix C. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-2 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference S U R F A C E S O I L S U B M O D E L Activity concentration of a radionuclide in well water Fixed Bq/m3 1 – – – Source of contamination Present-day climate Normal 0.95 0.08 0.74 1.16 Monsoon climate upper bound Fixed 0.52 – – – Glacial transition climate lower bound Fixed 0.88 – – – Annual average irrigation rate Glacial transition climate upper bound Normal m/yr 0.50 0.04 0.40 0.60 MO0403SPAAEIBM.002 [DIRS 169392] Radionuclide half-life and branching fraction Fixed See Table 4.1-2 See Table 4.1-2 – – – MO0407SPACRBSM.002 [DIRS 170677] Soil bulk density Triangular kg/m3 1500 – 1300 1700 MO0407SPASRPBM.002 [DIRS 170755] Surface soil depth (tillage depth) Uniform m – – 0.05 0.30 MO0403SPAAEIBM.002 [DIRS 169392] Surface soil erosion rate Triangular kg/(m2 yr) 0.19 – 0.19 1.1 MO0407SPASRPBM.002 [DIRS 170755] Carbon 1.8E+01 6.0E+00 – – Chlorine 1.4E-01 6.0E+00 – – Selenium 1.5E+02 6.0E+00 – – Strontium 2.0E+01 5.5E+00 – – Technetium 1.4E-01 6.0E+00 – – Tin 4.5E+02 6.0E+00 – – Iodine 4.5E+00 7.4E+00 – – Cesium 4.4E+03 3.7E+00 – – Lead 1.6E+04 4.1E+00 – – Radium 3.6E+04 2.2E+01 – – Actinium 1.5E+03 6.0E+00 – – Soil solid/liquid partition coefficient Thorium Lognormala L/kg 3.0E+03 8.2E+00 – – MO0407SPASRPBM.002 [DIRS 170755] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-3 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Protactinium 1.8E+03 6.0E+00 – – Uranium 3.3E+01 2.5E+01 – – Neptunium 2.5E+01 3.3E+00 – – Plutonium 1.2E+03 3.3E+00 – – Americium 2.0E+03 1.3E+01 – – Present-day climate Cumulative m/yr – – 0.009 0.030 0.045 0.077 0.129 0.233 0.275 0% 19% 38% 57% 76% 95% 100% Overwatering rate Future climate Cumulative m/yr – – 0.004 0.020 0.047 0.072 0.104 0.150 0.177 0% 19% 38% 57% 76% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] Volumetric water content Uniform – – – 0.18 0.28 MO0407SPASRPBM.002 [DIRS 170755] A I R S U B M O D E L Mass loading for crops at nominal conditions Triangular mg/m3 0.12 – 0.025 0.200 MO0407SPAINEXI.002 [DIRS 170597] Active outdoors 5.00 – 1.000 10.000 Inactive outdoors 0.06 – 0.025 0.100 Active indoors 0.10 –- 0.060 0.175 Mass loading for receptor environments at nominal conditions Asleep indoors Triangular mg/m3 0.03 – 0.010 0.050 MO0407SPAINEXI.002 [DIRS 170597] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-4 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Active outdoors Cumulative – – – 2.2 4.0 6.5 0% 50% 100% Inactive outdoors Active indoors Enhancement factor at nominal conditions Asleep indoors Cumulative – – – 0.21 0.7 1.04 0% 50% 100% MO0407SPASRPBM.002 [DIRS 170755] Evaporative cooler water transfer fraction Uniform – – – 0 1 MO0406SPAETPBM.002 [DIRS 170150] Evaporative cooler water use (evaporation) rate Lognormala L/hr 17 1.7 – – MO0406SPAETPBM.002 [DIRS 170150] Evaporative cooler air flow rate Cumulative m3/hr – – 1,700 8,300 10,200 0% 50% 100% MO0406SPAETPBM.002 [DIRS 170150] Correlation coefficient for evaporative cooler water use (evaporation) and air flow rates Fixed – 0.8 – – – MO0406SPAETPBM.002 [DIRS 170150] Radon release factor Fixed (Bq/m3)/ (Bq/kg ) 0.25 – – – MO0406SPAETPBM.002 [DIRS 170150] Average Lognormalb 1.0 1.1 0.35 2.9 House ventilation rate Evap. cooler on Uniform 1/hr – – 1 30 MO0406SPAETPBM.002 [DIRS 170150] Fraction of radon from soil entering the house Uniform – – – 0.1 0.25 MO0406SPAETPBM.002 [DIRS 170150] Ratio of Rn-222 concentration in air to flux density from soil Fixed (Bq m-3)/ (Bq m-2 s-1) 300 – – – MO0406SPAETPBM.002 [DIRS 170150] P L A N T S U B M O D E L Chlorine 6.4E+01 2.0 1.1E+01 3.8E+02 Selenium 4.6E-02 3.8 1.4E-03 1.4E+00 Strontium 1.7E+00 2.0 2.9E-01 1.0E+01 Technetium 4.6E+01 2.6 3.8E+00 5.5E+02 Tin 3.8E-02 2.0 6.4E-03 2.3E-01 Iodine 2.6E-02 9.9 7.2E-05 9.7E+00 Soil-to-plant transfer factor for leafy vegetables Cesium Lognormala (Bq/kgplant)/ (Bq/kgsoil) 8.5E-02 2.5 7.7E-03 9.4E-01 MO0406SPAETPBM.002 [DIRS 170150] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-5 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Lead 1.5E-02 4.6 3.0E-04 7.7E-01 Radium 6.8E-02 2.7 5.1E-03 9.2E-01 Actinium 4.3E-03 2.0 7.2E-04 2.6E-02 Thorium 4.3E-03 2.8 3.2E-04 5.9E-02 Protactinium 4.6E-03 3.8 1.4E-04 1.4E-01 Uranium 1.1E-02 2.0 1.8E-03 6.6E-02 Neptunium 5.9E-02 4.4 1.3E-03 2.6E+00 Plutonium 2.9E-04 2.0 4.9E-05 1.7E-03 Americium 1.2E-03 2.5 1.2E-04 1.3E-02 Chlorine 6.4E+01 2.0 1.1E+01 3.8E+02 Selenium 4.6E-02 3.8 1.4E-03 1.4E+00 Strontium 7.9E-01 2.0 1.4E-01 4.5E+00 Technetium 4.4E+00 3.7 1.5E-01 1.2E+02 Tin 1.5E-02 3.6 5.3E-04 4.0E-01 Iodine 3.2E-02 4.4 7.0E-04 1.5E+00 Cesium 5.0E-02 2.0 8.4E-03 3.0E-01 Lead 9.0E-03 3.1 5.0E-04 1.6E-01 Radium 1.2E-02 5.3 1.6E-04 8.6E-01 Actinium 1.1E-03 4.9 1.8E-05 6.6E-02 Thorium 4.4E-04 5.6 5.3E-06 3.6E-02 Protactinium 1.1E-03 10.0 3.0E-06 4.3E-01 Uranium 6.0E-03 2.8 4.2E-04 8.5E-02 Neptunium 3.1E-02 4.9 5.0E-04 1.9E+00 Plutonium 1.9E-04 2.0 3.3E-05 1.1E-03 Soil-to-plant transfer factor for other vegetables Americium Lognormala (Bq/kgplant)/ (Bq/kgsoil) 4.0E-04 2.6 3.5E-05 4.6E-03 MO0406SPAETPBM.002 [DIRS 170150] Chlorine 6.4E+01 2.0 1.1E+01 3.8E+02 Selenium 4.6E-02 3.8 1.4E-03 1.4E+00 Strontium 2.9E-01 2.3 3.6E-02 2.4E+00 Technetium 4.3E+00 4.6 8.7E-02 2.1E+02 Soil-to-plant transfer factor for fruit Tin Lognormala (Bq/kgplant)/ (Bq/kgsoil) 1.5E-02 3.6 5.3E-04 4.0E-01 MO0406SPAETPBM.002 [DIRS 170150] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-6 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Iodine 5.7E-02 2.8 4.1E-03 7.9E-01 Cesium 5.6E-02 2.8 3.8E-03 8.1E-01 Lead 1.2E-02 3.3 5.8E-04 2.6E-01 Radium 7.3E-03 4.3 1.6E-04 3.2E-01 Actinium 8.5E-04 3.4 3.7E-05 2.0E-02 Thorium 2.9E-04 4.9 4.8E-06 1.7E-02 Protactinium 1.1E-03 10.0 3.0E-06 4.3E-01 Uranium 6.3E-03 2.9 3.9E-04 1.0E-01 Neptunium 3.4E-02 6.9 2.3E-04 5.0E+00 Plutonium 1.8E-04 3.4 7.8E-06 4.2E-03 Americium 5.4E-04 2.3 6.5E-05 4.5E-03 Chlorine 2.4E+01 8.4 1.0E-01 5.8E+03 Selenium 2.9E-02 2.0 4.8E-03 1.7E-01 Strontium 1.7E-01 2.0 2.8E-02 1.0E+00 Technetium 1.6E+00 4.3 3.8E-02 6.8E+01 Tin 9.2E-03 2.0 1.5E-03 5.5E-02 Iodine 2.5E-02 10.0 6.6E-05 9.4E+00 Cesium 2.0E-02 2.2 2.7E-03 1.6E-01 Lead 5.5E-03 2.1 8.2E-04 3.8E-02 Radium 3.1E-03 4.0 8.8E-05 1.1E-01 Actinium 5.4E-04 2.9 3.6E-05 8.0E-03 Thorium 1.7E-04 5.2 2.4E-06 1.2E-02 Protactinium 9.5E-04 7.2 5.9E-06 1.5E-01 Uranium 1.1E-03 3.6 4.1E-05 3.1E-02 Neptunium 4.4E-03 6.9 3.1E-05 6.3E-01 Plutonium 1.9E-05 4.2 4.8E-07 7.8E-04 Soil-to-plant transfer factor for grain Americium Lognormala (Bq/kgplant)/ (Bq/kgsoil) 7.5E-05 3.2 3.8E-06 1.5E-03 MO0406SPAETPBM.002 [DIRS 170150] Chlorine 7.5E+01 2.0 1.3E+01 4.5E+02 Selenium 1.5E-01 5.5 1.9E-03 1.3E+01 Soil-to-plant transfer factor for forage crops Strontium Lognormala (Bq/kgplant)/ (Bq/kgsoil) 2.1E+00 2.1 3.2E-01 1.3E+01 MO0406SPAETPBM.002 [DIRS 170150] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-7 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Technetium 2.7E+01 2.7 2.1E+00 3.5E+02 Tin 1.6E-01 5.8 1.7E-03 1.5E+01 Iodine 4.0E-02 10.0 1.1E-04 1.5E+01 Cesium 1.3E-01 3.3 6.3E-03 2.8E+00 Lead 1.8E-02 7.0 1.2E-04 2.8E+00 Radium 8.2E-02 3.0 4.9E-03 1.4E+00 Actinium 1.7E-02 5.4 2.2E-04 1.3E+00 Thorium 1.0E-02 4.2 2.5E-04 3.9E-01 Protactinium 1.9E-02 6.7 1.4E-04 2.5E+00 Uranium 1.7E-02 6.1 1.6E-04 1.9E+00 Neptunium 5.8E-02 5.6 6.8E-04 4.9E+00 Plutonium 1.0E-03 10.0 2.7E-06 3.9E-01 Americium 2.1E-03 10.0 5.5E-06 7.9E-01 Correlation coefficient for transfer factors and solid-liquid partition coefficients Fixed – –0.8 – – – MO0406SPAETPBM.002 [DIRS 170150] Leafy vegetables Cumulative kgdry/kgwet – – 0.041 0.054 0.060 0.078 0.081 0.084 0.093 0% 17% 33% 50% 67% 83% 100% Dry-to-wet weight ratio Other vegetables Cumulative kgdry/kgwet – – 0.035 0.063 0.078 0.08 0.103 0.122 0.240 0% 17% 33% 50% 67% 83% 100% MO0403SPAAEIBM.002 [DIRS 169392] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-8 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Fruit Cumulative kgdry/kgwet – – 0.062 0.084 0.102 0.155 0.194 0% 25% 50% 75% 100% Grain Cumulative kgdry/kgwet – – 0.891 0.896 0.906 0.918 0% 33% 67% 100% Forage Cumulative kgdry/kgwet – – 0.182 0.227 0.238 0% 75% 100% Leafy vegetables Fixed – 1.0 – – – Other vegetables Fruit Grain Cumulative – – – 0.05 0.10 0.30 0% 50% 100% Translocation factor Forage Fixed – 1.0 – – – MO0406SPAETPBM.002 [DIRS 170150] Leafy vegetables 0.75 0.10 0.49 1.0 Other vegetables 0.75 0.10 0.49 1.0 Fruit 0.50 0.10 0.24 1.0 Grain 0.90 0.05 0.77 1.0 Fraction of overhead irrigation Forage Normal – 0.90 0.05 0.77 1.0 MO0403SPAAEIBM.002 [DIRS 169392] Weathering half-life Cumulative days 14 – 5 14 30 0% 50% 100% MO0406SPAETPBM.002 [DIRS 170150] Leafy vegetables 75 – – – Other vegetables 80 – – – Fruit 160 – – – Grain 200 – – – Crop growing time Present-day climate Forage Fixed days 75 – – – MO0403SPAAEIBM.002 [DIRS 169392] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-9 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Leafy vegetables 75 – – – Other vegetables 100 – – – Fruit 105 – – – Grain 185 – – – Future climate Forage Fixed days 90 – – – Leafy vegetables Cumulative kg/m2 – – 1.08 1.46 1.78 2.01 2.98 3.25 3.83 7.79 7.85 0% 5% 20% 35% 50% 65% 80% 95% 100% Other vegetables Cumulative kg/m2 – – 2.8 3.37 3.56 3.64 4.92 5.15 6.61 0% 5% 28% 51% 72% 95% 100% Crop wet yield Fruit Cumulative kg/m2 – – 0.73 1.51 2.67 2.92 3.00 3.63 6.89 0% 5% 28% 51% 72% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-10 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Grain Cumulative kg/m2 – – 0.27 0.28 0.44 0.54 1.10 1.22 0% 5% 35% 65% 95% 100% Forage Cumulative kg/m2 – – 0.69 1.02 1.87 5.78 6.28 0% 5% 73% 95% 100% Leafy vegetables Cumulative kg/m2 – – 0.10 0.13 0.14 0.15 0.16 0.18 0.30 0.42 0.50 0% 5% 20% 35% 50% 65% 80% 95% 100% Crop dry biomass Other vegetables Cumulative kg/m2 – – 0.30 0.40 0.41 0.43 0.44 0.46 0.60 0% 5% 28% 51% 73% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-11 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Fruit Cumulative kg/m2 – – 0.10 0.56 0.60 0.65 0.68 1.30 0% 5% 35% 65% 95% 100% Grain Cumulative kg/m2 – – 0.50 0.61 0.74 1.20 1.97 2.20 0% 5% 35% 65% 95% 100% Forage Cumulative kg/m2 – – 0.10 0.23 0.34 1.38 1.50 0% 5% 73% 95% 100% Daily average irrigation rate, present-day climate Leafy vegetables Cumulative mm/day – – 4.00 5.11 5.19 5.21 5.38 5.48 6.00 7.08 0% 5% 20% 35% 50% 80% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-12 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Other vegetables Cumulative mm/day – – 5.00 6.07 6.65 6.93 7.67 8.36 9.03 9.26 10.93 0% 5% 20% 35% 50% 65% 80% 95% 100% Fruit Cumulative mm/day – – 4.00 5.40 7.02 7.59 8.38 8.67 10.23 0% 5% 28% 51% 72% 95% 100% Grain Cumulative mm/day – – 3.00 3.44 3.58 3.87 7.69 9.07 0% 5% 35% 65% 95% 100% Forage Cumulative mm/day – – 5.00 5.85 6.18 9.02 10.64 0% 5% 73% 95% 100% Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-13 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Leafy vegetables Cumulative mm/day – – 3.00 3.34 3.51 3.86 3.92 4.02 4.18 4.93 0% 5% 20% 50% 65% 80% 95% 100% Other vegetables Cumulative mm/day – – 2.00 2.73 3.08 3.48 4.08 4.16 4.43 4.95 5.84 0% 5% 20% 35% 50% 65% 80% 95% 100% Fruit Cumulative mm/day – – 2.00 2.51 3.48 4.33 4.38 4.79 5.65 0% 5% 28% 51% 72% 95% 100% Daily average irrigation rate, future climate Grain Cumulative mm/day – – 1.00 1.99 3.42 3.93 4.11 4.85 0% 5% 35% 65% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-14 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Forage Cumulative mm/day – – 3.00 3.64 4.01 5.03 5.94 0% 5% 73% 95% 100% Leafy vegetables Cumulative mm – – 6.0 7.5 8.4 10.0 10.9 20.8 22.0 23.5 27.7 0% 5% 20% 35% 50% 65% 80% 95% 100% Other vegetables Cumulative mm – – 8.0 9.1 18.9 19.8 21.2 33.3 34.8 44.7 52.7 0% 5% 20% 35% 50% 65% 80% 95% 100% Irrigation amount per application, present-day climate Fruit Cumulative mm – – 5.0 6.0 30.3 35.4 48.4 49.4 58.3 0% 5% 28% 51% 72% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-15 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Grain Cumulative mm – – 43.0 48.6 50.1 50.4 77.9 91.9 0% 5% 35% 65% 95% 100% Forage Cumulative mm – – 50.0 56.3 57.6 60.0 71.0 0% 5% 72% 95% 100% Leafy vegetables Cumulative mm – – 7.0 7.8 8.0 9.0 10.1 19.3 22.0 26.1 30.8 0% 5% 20% 35% 50% 65% 80% 95% 100% Irrigation amount per application, future climate Other vegetables Cumulative mm – – 10.0 11.3 14.4 17.7 20.1 34.1 37.2 40.3 47.6 0% 5% 20% 35% 50% 65% 80% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-16 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Fruit Cumulative mm – – 6.0 7.3 31.4 34.6 43.2 54.4 64.2 0% 5% 28% 51% 72% 95% 100% Grain Cumulative mm – – 28.0 32.2 46.2 59.9 66.7 78.7 0% 5% 35% 65% 95% 100% Forage Cumulative mm – – 43.0 48.3 52.5 61.9 73.0 0% 5% 73% 95% 100% Irrigation intensity Uniform cm/hr – – 1.0 7.5 MO0403SPAAEIBM.002 [DIRS 169392] Dry deposition velocity Cumulative m/s – – 3E-4 1E-3 8E-3 3E-2 3E-1 0 % 16 % 50 % 84 % 100 % MO0406SPAETPBM.002 [DIRS 170150] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-17 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference A N I M A L S U B M O D E L Chlorine 4.6E-02 2.0 7.7E-03 2.7E-01 Selenium 8.8E-02 5.8 9.6E-04 8.0E+00 Strontium 1.4E-03 4.4 3.1E-05 6.2E-02 Technetium 1.1E-03 7.2 6.9E-06 1.8E-01 Tin 1.9E-02 4.6 3.8E-04 9.9E-01 Iodine 1.0E-02 2.8 6.8E-04 1.5E-01 Cesium 2.4E-02 2.6 2.1E-03 2.7E-01 Lead 6.3E-04 2.6 5.4E-05 7.5E-03 Radium 8.1E-04 2.1 1.1E-04 5.7E-03 Actinium 7.9E-05 8.2 3.5E-07 1.8E-02 Thorium 1.1E-04 10.0 2.8E-07 4.0E-02 Protactinium 6.6E-05 10.0 1.8E-07 2.5E-02 Uranium 4.8E-04 3.0 2.9E-05 7.8E-03 Neptunium 3.4E-04 8.8 1.3E-06 9.0E-02 Plutonium 1.3E-05 10.0 3.3E-08 4.7E-03 Animal product transfer coefficients for meat Americium Lognormala days/kg 3.4E-05 9.0 1.2E-07 9.9E-03 MO0406SPAETPBM.002 [DIRS 170150] Chlorine 1.8E-02 2.0 2.9E-03 1.0E-01 Selenium 5.7E-03 2.5 5.5E-04 6.0E-02 Strontium 1.7E-03 2.0 2.8E-04 1.0E-02 Technetium 2.1E-03 6.0 2.0E-05 2.1E-01 Tin 1.1E-03 2.0 1.8E-04 6.3E-03 Iodine 9.1E-03 2.0 1.5E-03 5.4E-02 Cesium 7.7E-03 2.0 1.3E-03 4.6E-02 Lead 1.7E-04 3.0 1.0E-05 2.9E-03 Radium 5.8E-04 2.0 1.0E-04 3.4E-03 Actinium 7.6E-06 4.1 2.0E-07 2.9E-04 Thorium 4.4E-06 2.0 7.4E-07 2.6E-05 Animal product transfer coefficients for milk Protactinium Lognormala days/L 4.4E-06 2.0 7.4E-07 2.6E-05 MO0406SPAETPBM.002 [DIRS 170150] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-18 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Uranium 4.9E-04 2.0 8.1E-05 2.9E-03 Neptunium 6.3E-06 2.0 1.0E-06 3.9E-05 Plutonium 2.3E-07 7.7 1.2E-09 4.4E-05 Americium 1.6E-06 4.2 3.9E-08 6.3E-05 Chlorine 3.0E-02 2.0 5.0E-03 1.8E-01 Selenium 5.1E+00 3.6 1.9E-01 1.4E+02 Strontium 3.1E-02 5.8 3.4E-04 2.9E+00 Technetium 6.3E-02 10.0 1.7E-04 2.4E+01 Tin 3.5E-02 10.0 9.4E-05 1.3E+01 Iodine 5.5E-02 9.7 1.6E-04 1.9E+01 Cesium 2.6E+00 9.8 7.2E-03 9.3E+02 Lead 2.5E-02 10.0 6.6E-05 9.3E+00 Radium 1.7E-02 10.0 4.4E-05 6.3E+00 Actinium 4.0E-03 2.0 6.7E-04 2.4E-02 Thorium 5.9E-03 8.0 2.7E-05 1.3E+00 Protactinium 3.0E-03 2.0 5.1E-04 1.8E-02 Uranium 2.4E-01 10.0 6.5E-04 9.2E+01 Neptunium 3.6E-03 2.0 6.0E-04 2.1E-02 Plutonium 1.2E-03 10.0 3.2E-06 4.6E-01 Animal product transfer coefficients for poultry Americium Lognormala days/kg 1.8E-03 10.0 4.8E-06 6.7E-01 MO0406SPAETPBM.002 [DIRS 170150] Chlorine 4.4E-02 10.0 1.2E-04 1.7E+01 Selenium 7.3E+00 2.0 1.2E+00 4.4E+01 Strontium 2.7E-01 2.0 4.5E-02 1.6E+00 Technetium 2.4E+00 2.0 4.0E-01 1.4E+01 Tin 8.7E-02 10.0 2.3E-04 3.3E+01 Iodine 2.6E+00 2.0 4.4E-01 1.6E+01 Cesium 3.5E-01 5.8 3.7E-03 3.3E+01 Lead 5.6E-02 10.0 1.5E-04 2.1E+01 Radium 3.9E-04 10.0 1.0E-06 1.5E-01 Actinium 2.9E-03 2.3 3.4E-04 2.5E-02 Animal product transfer coefficients for eggs Thorium Lognormala days/kg 3.5E-03 7.3 2.0E-05 5.9E-01 MO0406SPAETPBM.002 [DIRS 170150] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-19 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Protactinium 2.0E-03 2.0 3.4E-04 1.2E-02 Uranium 6.3E-01 2.5 6.0E-02 6.7E+00 Neptunium 3.4E-03 2.4 3.4E-04 3.3E-02 Plutonium 1.7E-03 7.4 9.7E-06 2.9E-01 Americium 4.9E-03 2.0 8.2E-04 2.9E-02 Beef cattle – – 29 68 Dairy cow – – 50 73 Poultry – – 0.12 0.40 Animal consumption rate of feed Laying hen Uniform kg/day – – 0.12 0.40 MO0406SPAETPBM.002 [DIRS 170150] Beef cattle Fixed 60 – – – Dairy cow Uniform – – 60 100 Poultry Fixed 0.5 – – – Animal consumption rate of water Laying hen Fixed L/day 0.5 – – – MO0406SPAETPBM.002 [DIRS 170150] Beef cattle – – 0.4 1.0 Dairy cow – – 0.8 1.1 Poultry – – 0.01 0.03 Animal consumption rate of soil Laying hen Uniform kg/day – – 0.01 0.03 MO0406SPAETPBM.002 [DIRS 170150] F I S H S U B M O D E L Carbon 4.6E+03 3.2 2.3E+02 9.2E+04 Chlorine 2.2E+02 5.6 2.6E+00 1.9E+04 Selenium 2.3E+02 2.0 3.9E+01 1.4E+03 Strontium 4.6E+01 2.0 7.8E+00 2.8E+02 Technetium 2.0E+01 2.0 3.3E+00 1.2E+02 Tin 2.5E+03 2.0 4.2E+02 1.5E+04 Iodine 4.5E+01 2.6 3.8E+00 5.3E+02 Cesium 3.5E+03 2.2 4.7E+02 2.5E+04 Lead 2.9E+02 2.5 2.7E+01 3.1E+03 Radium 6.7E+01 2.2 9.2E+00 5.0E+02 Actinium 2.9E+01 3.0 1.7E+00 5.0E+02 Bioaccumulation factor Thorium Lognormala L/kg 1.1E+02 2.5 1.0E+01 1.2E+03 MO0406SPAETPBM.002 [DIRS 170150] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-20 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Protactinium 1.2E+01 2.0 2.0E+00 7.1E+01 Uranium 1.4E+01 3.0 8.4E-01 2.3E+02 Neptunium 3.0E+01 2.9 1.9E+00 4.7E+02 Plutonium 4.1E+01 4.7 7.9E-01 2.2E+03 Americium 5.2E+01 2.3 5.8E+00 4.6E+02 Carbon Fixed – 1.0 – – – Water concentration modifying factor, presentday climate Other elements Uniform – – – 2.2 6.1 Carbon Fixed – 1.0 – – – Water concentration modifying factor, future climate Other elements Uniform – – – 1.5 3.3 MO0406SPAETPBM.002 [DIRS 170150] S P E C I A L C A R B O N – 1 4 M O D E L C-14 emission rate Fixed 1/yr 22 – – – MO0406SPAETPBM.002 [DIRS 170150] Annual water demand Fixed m3/yr 3,714,450 – – – MO0406SPAETPBM.002 [DIRS 170150] Inhalation – – 2.1 2.8 Annual average wind speed Crops Uniform m/s – – 1.5 2.3 MO0406SPAETPBM.002 [DIRS 170150] Inhalation 2 – – – C-14 mixing height Crops Fixed m 1 – – – MO0406SPAETPBM.002 [DIRS 170150] Fraction of air-derived carbon in plants Fixed – 0.98 – – – MO0406SPAETPBM.002 [DIRS 170150] Fraction of soil-derived carbon in plants Fixed – 0.02 – – – MO0406SPAETPBM.002 [DIRS 170150] Leafy vegetables 0.09 – – – Other vegetables 0.09 – – – Fruit 0.09 – – – Grain 0.40 – – – Fraction of stable carbon in plants Forage Fixed – 0.09 – – – MO0406SPAETPBM.002 [DIRS 170150] Fraction of stable carbon in soil Fixed – 0.03 – – – MO0406SPAETPBM.002 [DIRS 170150] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-21 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Concentration of stable carbon in air Fixed kg/m3 1.8E-04 – – – MO0406SPAETPBM.002 [DIRS 170150] Concentration of stable carbon in water Fixed kg/L 2.0E-05 – – – MO0406SPAETPBM.002 [DIRS 170150] Meat 0.24 – – – Milk 0.07 – – – Poultry 0.2 – – – Fraction of stable carbon in animal products Eggs Fixed – 0.15 – – – MO0406SPAETPBM.002 [DIRS 170150] E X T E R N A L E X P O S U R E S U B M O D E L Outdoor workers – – 2.9 8.1 Indoor workers – – Calculated Calculated Commuters – – 33.9 44.5 Population proportion Nonworkers Uniform % – – 34.4 44.0 MO0407SPACRBSM.002 [DIRS 170677] Active outdoors 3.1 0.2 2.6 3.7 Inactive outdoors 4.0 0.3 3.3 4.8 Active indoors 6.6 Calculated – – Asleep indoors 8.3 0.1 8.0 8.6 Time spent by outdoor workers Away Lognormalb hr/day 2.0 0.4 1.2 3.3 Active outdoors 0.3 0.1 0.1 0.7 Inactive outdoors 1.3 0.2 0.9 1.9 Active indoors 12.1 Calculated – – Asleep indoors 8.3 0.1 8.0 8.6 Time spent by indoor workers Away Lognormalb hr/day 2.0 0.4 1.2 3.3 Active outdoors 0.3 0.1 0.1 0.7 Inactive outdoors 1.4 0.2 1.0 2.0 Active indoors 6.0 Calculated – – Asleep indoors 8.3 0.1 8.0 8.6 Time spent by commuters Away Lognormalb hr/day 8.0 0.5 6.8 9.4 MO0407SPACRBSM.002 [DIRS 170677] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-22 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Active outdoors 0.3 0.1 0.1 0.7 Inactive outdoors 1.2 0.2 0.8 1.8 Active indoors 12.2 Calculated – – Asleep indoors 8.3 0.1 8.0 8.6 Time spent by non workers Away Lognormalb hr/day 2.0 0.4 1.2 3.3 C-14 0.2 – – – Cl-36 0.4 – – – Se-79 0.1 – – – Sr-90 0.4 – – – Tc-99 0.2 – – – Sn-126 0.4 – – – I-129 0.1 – – – Cs-135 0.1 – – – Cs-137 0.4 – – – Pu-242 0.1 – – – U-238 0.4 – – – Pu-238 0.1 – – – U-234 0.2 – – – Th-230 0.3 – – – Ra-226 0.4 – – – Pb-210 0.4 – – – Pu-240 0.1 – – – U-236 0.1 – – – Th-232 0.2 – – – Ra-228 0.4 – – – U-232 0.3 – – – Th-228 0.4 – – – Am-243 0.4 – – – Pu-239 0.3 – – – U-235 0.4 – – – Building shielding factor Pa-231 Fixed – 0.4 – – – MO0407SPACRBSM.002 [DIRS 170677] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-23 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference Ac-227 0.4 – – – Am-241 0.2 – – – Np-237 0.4 – – – U-233 0.4 – – – Th-229 0.4 – – – Dose coefficient for exposure to contaminated soil (infinite depth) Fixed (Sv/yr)/ (Bq/m3) See Table 4.1-4 – – – MO0407SPACRBSM.002 [DIRS 170677] I N H A L A T I O N S U B M O D E L Active outdoors 1.57 – – – Inactive outdoors 1.08 – – – Active indoors 1.08 – – – Asleep indoors 0.39 – – – Breathing rate Away Fixed m3/hr 1.08 c – – – MO0407SPACRBSM.002 [DIRS 170677] Dose conversion factor for inhalation Fixed Sv/Bq See Table 4.1-3 – – – MO0407SPACRBSM.002 [DIRS 170677] Fraction of houses with evaporative coolers Binomial – 0.738 Batch size = 187 – – MO0407SPACRBSM.002 [DIRS 170677] Present-day climate Uniform – – – 0.32 0.46 Evaporative cooler use factor Future climate Uniform – – – 0.03 0.14 MO0407SPACRBSM.002 [DIRS 170677] Outdoors Uniform – – – 0.5 0.7 Equilibrium factor for 222Rn decay products Indoors Uniform – – – 0.3 0.5 MO0406SPAETPBM.002 [DIRS 170150] Dose conversion factor for inhalation of 222Rn decay products Fixed Sv/Bq 1.33E-8 – – – MO0407SPACRBSM.002 [DIRS 170677] Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-24 September 2004 Table 4.1-1. Summary of Input Parameter Values and Their Uncertainty Distributions (Continued) Parameter Name Distribution Type Units Mean, Mode or Fixed Value SD or SE Minimum or Value for CD Maximum or Percentile for CD DTN/Reference I N G E S T I O N S U B M O D E L Consumption rate of water Fixed L/day 2.0 – – – MO0407SPACRBSM.002 [DIRS 170677] Leafy vegetables 3.78 0.88 – – Other vegetables 4.73 0.67 – – Fruit 12.68 1.36 – – Grain 0.23 0.11 – – Meat 2.85 0.65 – – Milk 4.66 1.68 – – Poultry 0.42 0.13 – – Eggs 5.30 0.83 – – Consumption rate of locally produced food Fish Lognormalb kg/yr 0.23 0.10 – – MO0407SPACRBSM.002 [DIRS 170677] Inadvertent soil ingestion rate Cumulative mg/day – – 50 100 200 0% 50% 100% MO0407SPACRBSM.002 [DIRS 170677] Dose conversion factor for ingestion Fixed Sv/Bq See Table 4.1-3 – – – MO0407SPACRBSM.002 [DIRS 170677] SD = standard deviation; SE = standard error; CD = cumulative distribution a Lognormal distribution defined using geometric mean and geometric standard deviation b Lognormal distributions defined using arithmetic mean and arithmetic standard deviation c Breathing rate away (not in contaminated area) has no effect on the results of BDCF calculations. Any value can be used. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-25 September 2004 Table 4.1-2. Primary Radionuclides and Their Decay Products Included in the Biosphere Model Primary Radionuclide Short-lived Decay Product Branching Fraction, % Half-life Carbon-14 (14C) 100 5.730E+03 years Chlorine-36 (36Cl) 100 3.01E+05 years Selenium-79 (79Se) 100 6.50E+04 years Strontium-90 (90Sr) 100 2.912E+01 years Yttrium-90 (90Y) 100 6.40E+01 hours Technetium-99 (99Tc) 100 2.13E+05 years Tin-126 (126Sn) 100 1.0E+05 years Antimony-126m (126mSb) 100 1.90E+01 minutes Antimony-126 (126Sb) 14 1.24E+01 days Iodine-129 (129I) 100 1.57E+07 years Cesium-135 (135Cs) 100 2.3E+06 years Cesium-137 (137Cs) 100 3.00E+01 years Barium-137m (137mBa) 94.60 2.552E+00 minutes T h o r i u m S e r i e s ( 4n ) Plutonium-240 (240Pu) 100 6.537E+03 years Uranium-236 (236U) 100 2.3415E+07 years Thorium-232 (232Th) 100 1.405E+10 years Radium-228 (228Ra) 100 5.75E+00 years Actinium-228 (228Ac) 100 6.13E+00 hours Uranium-232 (232U) 100 7.2E+01 years Thorium-228 (228Th) 100 1.9131E+00 years Radium-224 (224Ra) 100 3.66E+00 days Radon-220 (220Rn) 100 5.56E+01 seconds Polonium-216 (216Po) 100 1.5 E-01 seconds Lead-212 (212Pb) 100 1.064E+01 hours Bismuth-212 (212Bi) 100 6.055 E+01 minutes Polonium-212 (212Po) 64.07 3.05 E-07 seconds Thallium-208 (208Tl) 35.93 3.07E+00 minutes N e p t u n i u m S e r i e s ( 4n + 1 ) Americium-241 (241Am) 100 4.322E+02 years Neptunium-237 (237Np) 100 2.14E+06 years Protactinium-233 (233Pa) 100 2.70 E+01 days Uranium-233 (233U) 100 1.585E+05 years Thorium-229 (229Th) 100 7.340E+03 years Radium-225 (225Ra) 100 1.48E+01 days Actinium-225 (225Ac) 100 1.00E+01 days Francium-221 (221Fr) 100 4.8E+00 minutes Astatine-217 (217At) 100 3.23E-02 seconds Bismuth-213 (213Bi) 100 4.565E+01 minutes Polonium-213 (213Po) 97.84 4.2E-06 seconds Thallium-209 (209Tl) 2.16 2.20 E+00 minutes Lead-209 (209Pb) 100 3.253E+00 hours Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-26 September 2004 Table 4.1-2. Primary Radionuclides and Their Decay Products Included in the Biosphere Model (Continued) Primary Radionuclide Short-lived Decay Product Branching Fraction, % Half-life U r a n i u m S e r i e s ( 4n + 2 ) Plutonium-242 (242Pu) 100 3.763E+05 years Uranium-238 (238U) 100 4.468E+09 years Thorium-234 (234Th) 100 2.410E+01 days Protactinium-234m (234mPa) 99.80 1.17E+00 minutes Protactinium-234 (234Pa) 0.33 6.70E+00 hours Plutonium-238 (238Pu) 100 8.774E+01 years Uranium-234 (234U) 100 2.445E+05 years Thorium-230 (230Th) 100 7.7E+04 years Radium-226 (226Ra) 100 1.600E+03 years Radon-222 (222Rn) 100 3.8235E+00 days Polonium-218 (218Po) 100 3.05E+00 minutes Lead-214 (214Pb) 99.98 2.68 E+01 minutes Astatine-218 (218At) 0.02 2.E+00 seconds Bismuth-214 (214Bi) 100 1.99E+01 minutes Polonium-214 (214Po) 99.98 1.643E-04 seconds Thallium-210 (210Tl) 0.02 1.3E+00 minutes Lead-210 (210Pb) 100 2.23 E+01 years Bismuth-210 (210Bi) 100 5.012E+00 days Polonium-210 (210Po) 100 1.3838 E+02 days A c t i n i u m S e r i e s ( 4n + 3 ) Americium-243 (243Am) 100 7.380E+03 years Neptunium-239 (239Np) 100 2.355E+00 days Plutonium-239 (239Pu) 100 2.4065E+04 years Uranium-235 (235U) 100 7.038E+08 years Thorium-231 (231Th) 100 2.552E+01 hours Protactinium-231 (231Pa) 100 3.276E+04 years Actinium-227 (227Ac) 100 2.1773E+01 years Thorium-227 (227Th) 98.62 1.8718E+01 days Francium-223 (223Fr) 1.38 2.18E+01 minutes Radium-223 (223Ra) 100 1.1434E+01 days Radon-219 (219Rn) 100 3.96 E+00 seconds Polonium-215 (215Po) 100 1.78 E-03 seconds Lead-211 (211Pb) 100 3.61 E+01 minutes Bismuth-211 (211Bi) 100 2.14 E+00 minutes Thallium-207 (207Tl) 99.72 4.77 E+00 minutes Polonium-211 (211Po) 0.28 5.16E-01 seconds Source: DTN: MO0407SPACRBSM.002 [DIRS 170677]. NOTE: Short-lived decay products of primary radionuclides are modeled to be in secular equilibrium with their parents. . Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-27 September 2004 Table 4.1-3. Dose Conversion Factors for Inhalation and Ingestion of Radionuclides of Interest Dose Conversion Factors (Sv/Bq) Primary Radionuclide Short-lived Decay Product Inhalation Ingestion Carbon-14 (14C) (as CO2) 6.36E-12 5.64E-10 Chlorine-36 (36Cl) 5.93E-09 8.18E-10 Selenium-79 (79Se) 2.66E-09 2.35E-09 Strontium-90 (90Sr) 6.47E-08 3.85E-08 Yttrium-90 (90Y) 2.28E-09 2.91E-09 Technetium-99 (99Tc) 2.25E-09 3.95E-10 Tin-126 (126Sn) 2.69E-08 5.27E-09 Antimony-126m (126mSb) 9.17E-12 2.54E-11 Antimony-126 (126Sb) 3.17E-09 2.89E-09 Iodine-129 (129I) 4.69E-08 7.46E-08 Cesium-135 (135Cs) 1.23E-09 1.91E-09 Cesium-137 (137Cs) 8.63E-09 1.35E-08 Barium-137m (137mBa) – – T h o r i u m S e r i e s ( 4n ) Plutonium-240 (240Pu) 1.16E-04 9.56E-07 Uranium-236 (236U) 3.39E-05 7.26E-08 Thorium-232 (232Th) 4.43E-04 7.38E-07 Radium-228 (228Ra) 1.29E-06 3.88E-07 Actinium-228 (228Ac) 8.33E-08 5.85E-10 Uranium-232 (232U) 1.78E-04 3.54E-07 Thorium-228 (228Th) 9.23E-05 1.07E-07 Radium-224 (224Ra) 8.53E-07 9.89E-08 Radon-220 (220Rn) – – Polonium-216 (216Po) – – Lead-212 (212Pb) 4.56E-08 1.23E-08 Bismuth-212 (212Bi) 5.83E-09 2.87E-10 Polonium-212 (212Po) – – Thallium-208 (208Tl) – – N e p t u n i u m S e r i e s ( 4n + 1 ) Americium-241 (241Am) 1.20E-04 9.84E-07 Neptunium-237 (237Np) 1.46E-04 1.20E-06 Protactinium-233 (233Pa) 2.58E-09 9.81E-10 Uranium-233 (233U) 3.66E-05 7.81E-08 Thorium-229 (229Th) 5.80E-04 9.54E-07 Radium-225 (225Ra) 2.10E-06 1.04E-07 Actinium-225 (225Ac) 2.92E-06 3.00E-08 Francium-221 (221Fr) – – Astatine-217 (217At) – – Bismuth-213 (213Bi) 4.63E-09 1.95E-10 Polonium-213 (213Po) – – Thallium-209 (209Tl) – – Lead-209 (209Pb) 2.56E-11 5.75E-11 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-28 September 2004 Table 4.1-3. Dose Conversion Factors for Inhalation and Ingestion of Radionuclides of Interest (Continued) Dose Conversion Factors (Sv/Bq) Primary Radionuclide Short-lived Decay Product Inhalation Ingestion U r a n i u m S e r i e s ( 4n + 2 ) Plutonium-242 (242Pu) 1.11E-04 9.08E-07 Uranium-238 (238U) 3.20E-05 6.88E-08 Thorium-234 (234Th) 9.47E-09 3.69E-09 Protactinium-234m (234mPa) – – Protactinium-234 (234Pa) 2.20E-10 5.84E-10 Plutonium-238 (238Pu) 1.06E-04 8.65E-07 Uranium-234 (234U) 3.58E-05 7.66E-08 Thorium-230 (230Th) 8.80E-05 1.48E-07 Radium-226 (226Ra) 2.32E-06 3.58E-07 Radon-222 (222Rn) – – Polonium-218 (218Po) – – Lead-214 (214Pb) 2.11E-09 1.69E-10 Astatine-218 (218At) – – Bismuth-214 (214Bi) 1.78E-09 7.64E-11 Polonium-214 (214Po) – – Thallium-210 (210Tl) – – Lead-210 (210Pb) 3.67E-06 1.45E-06 Bismuth-210 (210Bi) 5.29E-08 1.73E-09 Polonium-210 (210Po) 2.54E-06 5.14E-07 A c t i n i u m S e r i e s ( 4n + 3 ) Americium-243 (243Am) 1.19E-04 9.79E-07 Neptunium-239 (239Np) 6.78E-10 8.82E-10 Plutonium-239 (239Pu) 1.16E-04 9.56E-07 Uranium-235 (235U) 3.32E-05 7.19E-08 Thorium-231 (231Th) 2.37E-10 3.65E-10 Protactinium-231 (231Pa) 3.47E-04 2.86E-06 Actinium-227 (227Ac) 1.81E-03 3.80E-06 Thorium-227 (227Th) 4.37E-06 1.03E-08 Francium-223 (223Fr) 1.68E-09 2.33E-09 Radium-223 (223Ra) 2.12E-06 1.78E-07 Radon-219 (219Rn) – – Polonium-215 (215Po) – – Lead-211 (211Pb) 2.35E-09 1.42E-10 Bismuth-211 (211Bi) – – Thallium-207 (207Tl) – – Polonium-211 (211Po) – – Source: MO0407SPACRBSM.002 [DIRS 170677]. NOTES: 1 Sv = 100 rem 1 Ci = 3.7ื1010 Bq Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-29 September 2004 Table 4.1-4. Dose Coefficients for Exposure to Contaminated Soil for Radionuclides of Interest Primary Radionuclide Short-lived Decay Product Dose Coefficient for Infinite Depth (Sv/s per Bq/m3) Carbon-14 (14C) 7.20E-23 Chlorine-36 (36Cl) 1.28E-20 Selenium-79 (79Se) 9.96E-23 Strontium-90 (90Sr) 3.77E-21 Yttrium-90 (90Y) 1.28E-19 Technetium-99 (99Tc) 6.72E-22 Tin-126 (126Sn) 7.89E-19 Antimony-126m (126mSb) 4.98E-17 Antimony-126 (126Sb) 9.16E-17 Iodine-129 (129I) 6.93E-20 Cesium-135 (135Cs) 2.05E-22 Cesium-137 (137Cs) 4.02E-21 Barium-137m (137mBa) 1.93E-17 T h o r i u m S e r i e s ( 4n ) Plutonium-240 (240Pu) 7.85E-22 Uranium-236 (236U) 1.15E-21 Thorium-232 (232Th) 2.79E-21 Radium-228 (228Ra) 0.00E+00 Actinium-228 (228Ac) 3.20E-17 Uranium-232 (232U) 4.83E-21 Thorium-228 (228Th) 4.25E-20 Radium-224 (224Ra) 2.74E-19 Radon-220 (220Rn) 1.23E-20 Polonium-216 (216Po) 5.58E-22 Lead-212 (212Pb) 3.77E-18 Bismuth-212 (212Bi) 6.27E-18 Polonium-212 (212Po) 0.00E+00 Thallium-208 (208Tl) 1.23E-16 N e p t u n i u m S e r i e s ( 4n + 1 ) Americium-241 (241Am) 2.34E-19 Neptunium-237 (237Np) 4.17E-19 Protactinium-233 (233Pa) 5.46E-18 Uranium-233 (233U) 7.48E-21 Thorium-229 (229Th) 1.72E-18 Radium-225 (225Ra) 5.90E-20 Actinium-225 (225Ac) 3.41E-19 Francium-221 (221Fr) 8.22E-19 Astatine-217 (217At) 9.49E-21 Bismuth-213 (213Bi) 4.10E-18 Polonium-213 (213Po) 0.00E+00 Thallium-209 (209Tl) 6.92E-17 Lead-209 (209Pb) 4.14E-21 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-30 September 2004 Table 4.1-4. Dose Coefficients for Exposure to Contaminated Soil for Radionuclides of Interest (Continued) Primary Radionuclide Short-lived Decay Product Dose Coefficient for Infinite Depth (Sv/s per Bq/m3) U r a n i u m S e r i e s ( 4n + 2 ) Plutonium-242 (242Pu) 6.85E-22 Uranium-238 (238U) 5.52E-22 Thorium-234 (234Th) 1.29E-19 Protactinium-234m (234mPa) 4.80E-19 Protactinium-234 (234Pa) 6.18E-17 Plutonium-238 (238Pu) 8.10E-22 Uranium-234 (234U) 2.15E-21 Thorium-230 (230Th) 6.47E-21 Radium-226 (226Ra) 1.70E-19 Radon-222 (222Rn) 1.26E-20 Polonium-218 (218Po) 3.02E-22 Lead-214 (214Pb) 7.18E-18 Astatine-218 (218At) 3.13E-20 Bismuth-214 (214Bi) 5.25E-17 Polonium-214 (214Po) 2.75E-21 Thallium-210 (210Tl) – Lead-210 (210Pb) 1.31E-20 Bismuth-210 (210Bi) 1.93E-20 Polonium-210 (210Po) 2.80E-22 A c t i n i u m S e r i e s ( 4n + 3 ) Americium-243 (243Am) 7.60E-19 Neptunium-239 (239Np) 4.03E-18 Plutonium-239 (239Pu) 1.58E-21 Uranium-235 (235U) 3.86E-18 Thorium-231 (231Th) 1.95E-19 Protactinium-231 (231Pa) 1.02E-18 Actinium-227 (227Ac) 2.65E-21 Thorium-227 (227Th) 2.79E-18 Francium-223 (223Fr) 1.06E-18 Radium-223 (223Ra) 3.23E-18 Radon-219 (219Rn) 1.65E-18 Polonium-215 (215Po) 5.44E-21 Lead-211 (211Pb) 1.64E-18 Bismuth-211 (211Bi) 1.37E-18 Thallium-207 (207Tl) 1.06E-19 Polonium-211 (211Po) 2.55E-19 Source: MO0407SPACRBSM.002 [DIRS 170677]. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-31 September 2004 Table 4.1-5. Comparison of Input Parameters for This and Previous Revision of the Analysis Previous Revision Current Revision Parameter Name DTN Parameter Value and Percentile for Cumulative Distribution DTN Parameter Value and Percentile for Cumulative Distribution Agricultural and Environmental Input Parameters Average annual irrigation rate, present-day climate, normal distribution (m/yr) MO0306SPAAEIBM.001 [DIRS 163812] Normal distribution Mean = 0.94 Standard Error = 0.08 Minimum = 0.73 Maximum = 1.15 MO0403SPAAEIBM.002 [DIRS 169392] Normal distribution Mean = 0.95 Standard Error = 0.08 Minimum = 0.74 Maximum = 1.16 Irrigation application, present-day climate, leafy vegetables (mm) MO0306SPAAEIBM.001 [DIRS 163812] 6.0 7.4 8.4 10.0 10.9 20.8 22.0 23.6 27.8 0% 5% 20% 35% 50% 65% 80% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] 6.0 7.5 8.4 10.0 10.9 20.8 22.0 23.5 27.7 0% 5% 20% 35% 50% 65% 80% 95% 100% Irrigation application, present-day climate, other vegetables (mm) MO0306SPAAEIBM.001 [DIRS 163812] 8.0 9.0 18.7 19.7 21.2 32.9 34.9 41.2 48.6 0% 5% 20% 35% 50% 65% 80% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] 8.0 9.1 18.9 19.8 21.2 33.3 34.8 44.7 52.7 0% 5% 20% 35% 50% 65% 80% 95% 100% Irrigation application, present-day climate, fruits (mm) MO0306SPAAEIBM.001 [DIRS 163812] 5.0 6.0 30.2 35.5 48.4 49.2 58.1 0% 5% 28% 51% 72% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] 5.0 6.0 30.3 35.4 48.4 49.4 58.3 0% 5% 28% 51% 72% 95% 100% Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-32 September 2004 Table 4.1-5. Comparison of Input Parameters for This and Previous Revision of the Analysis (Continued) Previous Revision Current Revision Parameter Name DTN Parameter Value and Percentile for Cumulative Distribution DTN Parameter Value and Percentile for Cumulative Distribution Irrigation application, present-day climate, grains (mm) MO0306SPAAEIBM.001 [DIRS 163812] 43.0 48.7 50.1 50.3 77.9 91.9 0% 5% 35% 65% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] 43.0 48.6 50.1 50.4 77.9 91.9 0% 5% 35% 65% 95% 100% Irrigation application, present-day climate, cattle forage (mm) MO0306SPAAEIBM.001 [DIRS 163812] 50.0 56.5 57.5 60.2 71.0 0% 5% 72% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] 50.0 56.3 57.6 60.0 71.0 0% 5% 72% 95% 100% Daily average irrigation rate, present-day climate, leafy vegetables (mm/day) MO0306SPAAEIBM.001 [DIRS 163812] 4.00 5.11 5.19 5.21 5.38 5.46 5.98 7.06 0% 5% 20% 35% 50% 80% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] 4.00 5.11 5.19 5.21 5.38 5.48 6.00 7.08 0% 5% 20% 35% 50% 80% 95% 100% Daily average irrigation rate, present-day climate, other vegetables (mm/day) MO0306SPAAEIBM.001 [DIRS 163812] 5.00 6.05 6.65 6.85 7.62 8.19 8.32 9.18 10.83 0% 5% 20% 35% 50% 65% 80% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] 5.00 6.07 6.65 6.93 7.67 8.36 9.03 9.26 10.93 0% 5% 20% 35% 50% 65% 80% 95% 100% Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-33 September 2004 Table 4.1-5. Comparison of Input Parameters for This and Previous Revision of the Analysis (Continued) Previous Revision Current Revision Parameter Name DTN Parameter Value and Percentile for Cumulative Distribution DTN Parameter Value and Percentile for Cumulative Distribution Daily average irrigation rate, present-day climate, fruits (mm/day) MO0306SPAAEIBM.001 [DIRS 163812] 4.00 5.38 7.00 7.56 8.35 8.60 10.15 0% 5% 28% 51% 72% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] 4.00 5.40 7.02 7.59 8.38 8.67 10.23 0% 5% 28% 51% 72% 95% 100% Daily average irrigation rate, present-day climate, grains (mm/day) MO0306SPAAEIBM.001 [DIRS 163812] 3.00 3.44 3.58 3.86 7.67 9.05 0% 5% 35% 65% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] 3.00 3.44 3.58 3.87 7.69 9.07 0% 5% 35% 65% 95% 100% Daily average irrigation rate, present-day climate, cattle forage (mm/day) MO0306SPAAEIBM.001 [DIRS 163812] 5.00 5.84 6.18 9.00 10.62 0% 5% 73% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] 5.00 5.85 6.18 9.02 10.64 0% 5% 73% 95% 100% Overwatering rate, presentday climate (m/yr) MO0306SPAAEIBM.001 [DIRS 163812] 0.009 0.030 0.045 0.076 0.128 0.233 0.275 0% 19% 38% 57% 76% 95% 100% MO0403SPAAEIBM.002 [DIRS 169392] 0.009 0.030 0.045 0.077 0.129 0.233 0.275 0% 19% 38% 57% 76% 95% 100% Environmental Transport Input Parameters Cesium transfer factor for leafy vegetables (both climates) MO0306SPAETPBM.001 [DIRS 163814] Lognormal distribution a GM = 1.2E-01 GSD = 2.5 Minimum = 1.2E-02 Maximum = 1.2E+00 MO0406SPAETPBM.002 [DIRS 170150] Lognormal distribution a GM = 8.5E-02 GSD = 2.5 Minimum = 7.7E-03 Maximum = 9.4E-01 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-34 September 2004 Table 4.1-5. Comparison of Input Parameters for This and Previous Revision of the Analysis (Continued) Previous Revision Current Revision Parameter Name DTN Parameter Value and Percentile for Cumulative Distribution DTN Parameter Value and Percentile for Cumulative Distribution Cesium transfer coefficient for eggs MO0306SPAETPBM.001 [DIRS 163814] Lognormal distribution a GM = 5.9E-01 GSD = 2.3 Minimum = 7.2E-02 Maximum = 4.8E+00 MO0406SPAETPBM.002 [DIRS 170150] Lognormal distribution a GM = 3.5E-01 GSD = 5.8 Minimum = 3.7E-03 Maximum = 3.3E+01 Selenium bioaccumulation factor MO0306SPAETPBM.001 [DIRS 163814] Upper truncation limit for the lognormal distribution Max = 1.2E+03 MO0406SPAETPBM.002 [DIRS 170150] Upper truncation limit for the lognormal distribution Max = 1.4E+03 Characteristics of the Receptor Half-life of Pu-238 MO0306SPACRBSM.001 [DIRS 163813] 87.74E+01 years b MO0407SPACRBSM.002 [DIRS 170677] 8.774E+01 years Inhalation Exposure Input Parameters Parameter whose value changed is not used in the groundwater exposure scenario MO0305SPAINEXI.001 [DIRS 163808] N/A MO0407SPAINEXI.002 [DIRS 170597] N/A Soil-related Input Parameters The DTN change concerns description of the parameter applicability for different climate states; parameter values remained the same MO0305SPASRPBM.001 [DIRS 163815] N/A MO0407SPASRPBM.002 [DIRS 170755] N/A GM = geometric mean; GSD = geometric standard deviation a Lognormal distribution defined using geometric mean and geometric standard deviation b Typographical error in the DTN; the correct value was used in the model. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-35 September 2004 4.1.2 Calculation of Conversion Factors for Groundwater Protection Standard Conversion factors for beta- and photon- emitting radionuclides were calculated using the data from Federal Guidance Report No. 11 (FGR 11) (DOE 2004 [DIRS 169713]). The values included in FGR 11 are considered established fact. Data from FGR 12 (Eckerman and Ryman 1993 [DIRS 107684]) and the CRC Handbook of Chemistry and Physics (Lide and Frederikse 1997 [DIRS 103178]) regarding fundamental properties of nuclear transformations (such as the type and energy of radiation and the half-life of radionuclides) were also used. These data are considered established fact. The data described above are listed and used in Section 6.3. 4.2 CRITERIA Three requirements from the Project Requirements Document (Canori and Leitner 2003 [DIRS 166275], Table 2-3) are applicable to this analysis (Table 4.2-1). Table 4.2-1. Requirements Applicable to this Analysis Requirement Number Requirement Title Related Regulation PRD-002/T-015 Requirements for Performance Assessment 10 CFR 63.114 PRD-002/T-026 Required Characteristics of the Reference Biosphere 10 CFR 63.305 PRD-002/T-028 Required Characteristics of the Reasonably Maximally Exposed Individual 10 CFR 63.312 Source: Canori and Leitner 2003 [DIRS 166275], Table 2-3. In addition to the requirements listed in Table 4.2-1, definition of terms in 10 CFR 63.2 and description of concepts in 10 CFR 63.102 [DIRS 156605] that are relevant to biosphere modeling are also applicable to this analysis. Listed below are NRC (U.S. Nuclear Regulatory Commission) acceptance criteria (AC) from Sections 2.2.1.2.13 (Redistribution of Radionuclides in Soil) and 2.2.1.3.14 (Biosphere Characteristics) of the Yucca Mountain Review Plan, Final Report (NRC 2003 [DIRS 163274]) (YMRP), based on the requirements of 10 CFR 63.114, 63.305, and 63.312 [DIRS 156605], that were considered when modeling biosphere characteristics. Acceptance Criteria from Section 2.2.1.3.13, Redistribution of Radionuclides in Soil Acceptance Criterion 1, System Description and Model Integration Are Adequate. (1) Total system performance assessment adequately incorporates important features, physical phenomena and couplings between different models, and uses consistent and appropriate assumptions throughout the abstraction of redistribution of radionuclides in the soil abstraction process; (2) The total system performance assessment model abstraction identifies and describes aspects of redistribution of radionuclides in soil that are important to repository Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-36 September 2004 performance, including the technical bases for these descriptions. For example, the abstraction should include modeling of the deposition of contaminated material in the soil and determination of the depth distribution of the deposited radionuclides; (3) Relevant site features, events, and processes have been appropriately modeled in the abstraction of redistribution of radionuclides, from surface processes, and sufficient technical bases are provided; and (4) Guidance in NUREG–1297 and NUREG–1298, or other acceptable approaches for peer reviews, is followed. Acceptance Criterion 2, Data Are Sufficient for Model Justification. (1) Behavioral, hydrological, and geochemical values used in the license application are adequately justified (e.g., irrigation and precipitation rates, erosion rates, radionuclide solubility values, etc.). Adequate descriptions of how the data were used, interpreted, and appropriately synthesized into the parameters are provided; and (2) Sufficient data (e.g., field, laboratory, and natural analog data) are available to adequately define relevant parameters and conceptual models necessary for developing the abstraction of redistribution of radionuclides in soil in the total system performance assessment. Acceptance Criterion 3, Data Uncertainty Is Characterized and Propagated Through the Model Abstraction. (1) Models use parameter values, assumed ranges, probability distributions, and bounding assumptions that are technically defensible, reasonably account for uncertainties and variabilities, do not result in an under-representation of the risk estimate, and are consistent with the characteristics of the reasonably maximally exposed individual in 10 CFR Part 63; (2) The technical bases for the parameter values and ranges in the total system performance assessment abstraction are consistent with data from the Yucca Mountain region, e.g., Amargosa Valley survey, studies of surface processes in the Fortymile Wash drainage basin, applicable laboratory testings, natural analogs, or other valid sources of data. For example, soil types, crop types, plow depths, and irrigation rates should be consistent with current farming practices, and data on the airborne particulate concentration should be based on the resuspension of appropriate material in a climate and level of disturbance similar to that which is expected to be found at the location of the reasonably maximally exposed individual, during the compliance time period; (3) Uncertainty is adequately represented in parameters for conceptual models, process models, and alternative conceptual models considered in developing the total system performance assessment abstraction of redistribution of radionuclides in soil, either through sensitivity analyses, conservative limits, or bounding values supported by Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-37 September 2004 data, as necessary. Correlations between input values are appropriately established in the total system performance assessment. Acceptance Criteria from Section 2.2.1.3.14, Biosphere Characteristics Acceptance Criterion 1, System Description and Model Integration Are Adequate. (3) Assumptions are consistent between the biosphere characteristics modeling and other abstractions. For example, the U.S. Department of Energy should ensure that the modeling of features, events, and processes, such as climate change, soil types, sorption coefficients, volcanic ash properties, and the physical and chemical properties of radionuclides are consistent with assumptions in other total system performance assessment abstractions; and (4) Guidance in NUREG–1297 and NUREG–1298 or in other acceptable approaches for peer reviews, is followed. Acceptance Criterion 2, Data Are Sufficient for Model Justification. (1) The parameter values used in the license application are adequately justified (e.g., behaviors and characteristics of the residents of the Town of Amargosa Valley, Nevada, characteristics of the reference biosphere, etc.) and consistent with the definition of the reasonably maximally exposed individual in 10 CFR Part 63. Adequate descriptions of how the data were used, interpreted, and appropriately synthesized into the parameters are provided; and (2) Data are sufficient to assess the degree to which features, events, and processes related to biosphere characteristics modeling have been characterized and incorporated in the abstraction. As specified in 10 CFR Part 63, the U.S. Department of Energyshould ensure that the modeling of features, events, and processes, such as climate change, soil types, sorption coefficients, volcanic ash properties, and the physical and chemical properties of radionuclides are consistent with assumptions in other total system performance assessment abstractions. Acceptance Criterion 3, Data Uncertainty Is Characterized and Propagated Through the Model Abstraction. (1) Models use parameter values, assumed ranges, probability distributions, and bounding assumptions that are technically defensible, reasonably account for uncertainties and variabilities, do not result in an under-representation of the risk estimate, and are consistent with the definition of the reasonably maximally exposed individual in 10 CFR Part 63; (2) The technical bases for the parameter values and ranges in the abstraction, such as consumption rates, plant and animal uptake factors, mass-loading factors, and biosphere dose conversion factors, are consistent with site characterization data, and are technically defensible; Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 4-38 September 2004 (4) Uncertainty is adequately represented in parameter development for conceptual models and process-level models considered in developing the biosphere characteristics modeling, either through sensitivity analyses, conservative limits, or bounding values supported by data, as necessary. Correlations between input values are appropriately established in the total system performance assessment, and the implementation of the abstraction does not inappropriately bias results to a significant degree. Despite the title of YMRP Section 2.2.1.3.12, Concentrations of Radionuclides in Groundwater, the ACs in that section do not apply to this report on BDCFs for the groundwater exposure scenario and conversion factors for evaluating compliance with the groundwater protection standard because these ACs address only the evaluation of the concentration of radionuclides in the groundwater and not the dose which would result from drinking or being exposed to that water. Also, despite the title of YMRP Section 2.2.1.4.3, Analysis of Performance that Demonstrates Compliance with the Separate Ground-Water Protection Standards, and some references to dose, the ACs in that section do not apply to this report because they address only the evaluation of radionuclide concentrations and locations. Nevertheless, to the extent that these ACs are intended to address compliance with the separate groundwater protection standard, the conversion factors developed in this report are a necessary and accurate component of such a compliance demonstration, as discussed in Sections 4.1.2 and 6.3. 4.3 CODES, STANDARDS, AND REGULATIONS No codes or standards, other than those identified in the Project Requirements Document (Canori and Leitner 2003 [DIRS 166275], Table 2-3) and determined to be applicable, were used in this analysis. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 5-1 September 2004 5. ASSUMPTIONS No assumptions were used in this analysis. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 5-2 September 2004 INTENTIONALLY LEFT BLANK Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-1 September 2004 6. SCIENTIFIC ANALYSIS DISCUSSION The objectives of this analysis were to calculate: 1. BDCFs for the groundwater exposure scenario—these BDCFs are used as input to the TSPA-LA model and allow calculating the annual dose to the reasonably maximally exposed individual (RMEI) from a given concentration of radionuclides in groundwater. The dose to the RMEI is used to evaluate compliance with the individual protection standard (10 CFR 63.311 [DIRS 156605]). 2. Conversion factors that are used to calculate gross alpha particle activity in groundwater and the annual dose from beta- and photon-emitting radionuclides resulting from drinking 2 liters of water per day—these conversion factors are used in the TSPA-LA for evaluating compliance with the radionuclide concentration and dose limits of the groundwater protection standard (10 CFR 63.331 [DIRS 156605]). A radionuclide-specific BDCF for the groundwater exposure scenario is numerically equal to the all-pathway annual dose that a specified receptor (RMEI) would receive if groundwater containing a unit activity concentration of a given radionuclide were extracted from a well and used by the receptor for irrigation or domestic purposes. BDCFs for the groundwater exposure scenario apply to the TSPA cases that consider the release of radionuclides to groundwater. Scenario classes considered for TSPA include the nominal scenario class and the disruptive scenario classes (BSC 2003 [DIRS 166296], pp. 51 to 52). The nominal scenario class represents the most likely evolution of the repository system and includes favorable and some potentially adverse future conditions. The disruptive event scenario classes consider combinations of FEPs that have a low probability of occurrence but may produce additional potentially adverse future conditions. The disruptive event scenario classes include the igneous (which includes the igneous intrusion and volcanic eruption cases) and seismic classes, as well as a special case analyzing the stylized intrusion of a human into the repository. Both types of TSPA scenario classes (i.e., the nominal and disruptive) may result in the release of radionuclides to the groundwater. Assessment of doses for such releases involves BDCFs for the groundwater exposure scenario. Biosphere exposure scenarios should not be confused with TSPA scenario classes. The biosphere exposure scenarios consider radiological consequences of radionuclide releases to the reference biosphere in a given medium, such as the groundwater, irrespective of the cause of contamination in the groundwater. 6.1 GENERAL CONSIDERATIONS 6.1.1 Radionuclides Included in the Analysis The radionuclides of interest for the biosphere model depend on the exposure scenario, as discussed in the Biosphere Model Report (BSC 2004 [DIRS 169460], Section 6.1.3). The following twenty-eight radionuclides were identified as important for the TSPA-LA for scenario classes involving radionuclide releases to groundwater: carbon-14 (14C), chlorine-36 (36Cl), selenium-79 (79Se), strontium-90 (90Sr), technetium-99 (99Tc), tin-126 (126Sn), iodine-129 (129I), cesium-135 (135Cs), cesium-137 (137Cs), lead-210 (210Pb), radium-226 (226Ra), actinium-227 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-2 September 2004 (227Ac), thorium-229 (229Th), thorium-230 (230Th), thorium-232 (232Th), protactinium-231 (231Pa), uranium-232 (232U), uranium-233 (233U), uranium-234 (234U), uranium-236 (236U), uranium-238 (238U), neptunium-237 (237Np), plutonium-238 (238Pu), plutonium-239 (239Pu), plutonium-240 (240Pu), plutonium-242 (242Pu), americium-241 (241Am), and americium-243 (243Am) (BSC 2004 [DIRS 169460], Section 6.1.3). These radionuclides are referred to in this analysis as the primary radionuclides. The list includes radionuclides that are of potential importance during both the first 20,000 years and the period of up to 1,000,000 years (BSC 2003 [DIRS 166296], Section 1.3). The biosphere model accounts for the decay products of the primary radionuclides. The short-lived decay products (half-lives less than 180 days) are considered to be in secular equilibrium with the parent radionuclide and their contributions to the BDCFs are included in the BDCF for the long-lived radionuclide (either as a primary radionuclide or its long-lived decay product) (BSC 2004 [DIRS 169460], Section 6.3.5). These decay products for radionuclides of interest are listed in Table 4.1-2. The biosphere model also accounts for the decay and ingrowth of the long-lived decay products in the soil, and adds BDCF contributions of the long-lived decay products to that of the parent primary radionuclide (BSC 2004 [DIRS 169460], Section 6.4.1.2). Two decay products of the primary radionuclides, 228Th and 228Ra, have halflives greater than 180 days and are not automatically included in the BDCFs of the parent when the biosphere model is executed. For biosphere modeling, 228Th and 228Ra are treated like primary radionuclides. After BDCFs are calculated for these radionuclides, their BDCFs are added to the BDCF of the parent primary radionuclide. In the case of 232Th, the BDCF includes the contribution from 228Ra, 228Th, and their short-lived decay products. The BDCF for 232U includes the contribution from 228Th and its short-lived decay products. 6.1.2 Description of the Groundwater Exposure Scenario A detailed description of the groundwater exposure scenario, including the associated conceptual and mathematical models, is presented in the Biosphere Model Report (BSC 2004 [DIRS 169460], Sections 6.3.1 and 6.4). A brief summary of the main concepts and the modeling approach for the groundwater exposure scenario is presented in this section. Radionuclide release to the reference biosphere, environmental transport, and exposure of the receptor are shown schematically in Figure 6.1-1. The source of radionuclides in the biosphere is contaminated groundwater extracted from a well, which is the interface between the geosphere and biosphere. The biosphere model does not consider water treatment between extraction and use, and therefore, radionuclide concentrations in the well water are the same as those in the groundwater. This and other biosphere analyses frequently use the term groundwater, rather than well water, when referring to the water used in the reference biosphere. Radionuclide transport in the reference biosphere is initiated when contaminated groundwater is used for agricultural and domestic purposes. Five modes of groundwater use are considered in the model: human consumption, domestic use, crop irrigation, animal consumption, and fish farming. 6-3 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-3 September 2004 Figure 6.1-1. Conceptual Representation of the Biosphere Model for the Groundwater Exposure Scenario Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-4 September 2004 After radionuclides enter the reference biosphere, migration through the biosphere occurs due to a number of transport processes that lead to radionuclide contamination and accumulation in environmental media (e.g., soil, air, flora, and fauna). The following environmental transport processes are explicitly included in the biosphere model: • Radionuclide accumulation in soil as a result of long-term irrigation with contaminated water • Resuspension of contaminated soil • Radionuclide deposition on crop surfaces by dry processes (resuspension of contaminated soil and subsequent adhesion of soil particles on crop surfaces) • Radionuclide deposition on crop surfaces by wet processes resulting from using contaminated irrigation water • Translocation of contaminants from the deposition site to the edible tissues of vegetation • Post–deposition retention by crops (including weathering processes) • Radionuclide uptake by crops through the roots • Release of gaseous radionuclides (222Rn, 14CO2) from the soil • Absorption of 14CO2 by crops from the atmosphere • Radionuclide uptake by animals through consumption of contaminated feed, water, and soil, followed by transfer to animal products • Radionuclide transfer from water to air via evaporative coolers • Radionuclide transfer from water to fish (aquatic food). Exposure of humans to radionuclides in the environment arises when people come in direct (inhalation and ingestion) or indirect (external exposure) contact with contaminated environmental media. Table 6.1-1 provides a summary of human exposure pathways considered in the biosphere model, as well as environmental media and typical activities that may potentially lead to radiation exposure. Other activities and the associated exposures were evaluated for inclusion in the biosphere model (BSC 2004 [DIRS 169460]) but were not included because of low consequences. Such an approach did not underestimate the risk to the RMEI. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-5 September 2004 Table 6.1-1. Receptor Exposure Pathways for the Groundwater Exposure Scenario Environmental Medium Exposure Mode Exposure Pathways Examples of Typical Activities Water Ingestion Water intake. Drinking water and water-based beverages and water used in food preparation. Ingestion Inadvertent soil ingestion. Recreational activities, occupational activities, gardening, and consumption of fresh fruit and vegetables. Soil External External radiation exposure. Activities on or near contaminated soils. Air Inhalation Breathing resuspended particles, gases (222Rn and progeny, plus 14CO2), and aerosols from evaporative coolers. Any outdoor activities, including soildisturbing activities related to work and recreation. Domestic activities, including sleeping. Plants Ingestion Consumption of locally produced crops: leafy vegetables, other vegetables, fruit, and grain. Eating contaminated crop foodstuffs. Animals Ingestion Consumption of locally produced animal products: meat, poultry, milk, and eggs. Eating contaminated animal product foodstuffs. Fish Ingestion Consumption of locally produced freshwater fish. Eating fish. Source: BSC 2004 [DIRS 169460], Table 6.3-1. 6.1.3 Consideration of Climate Change Climate refers to the meteorological conditions that characteristically prevail in a particular region. The climate model for the Yucca Mountain region was formulated using paleoclimate and paleoenvironmental reconstructions based on microfossil evaluations in Owens Lake, California, and cores and calcite isotope records from Devils Hole, Death Valley National Park, Nevada. The sequence and duration of past climate periods are identified and applied to the Yucca Mountain site, which has a similar climate setting. The climate at Yucca Mountain is expected to change in the future. Although forecasting long-term (e.g., for the next 10,000 years) climate change is speculative, the future climate at Yucca Mountain was forecasted based on the study of past climates (BSC 2004 [DIRS 170002], Section 1). Temperature and precipitation records from present-day meteorological stations at colder and wetter sites were selected to represent future climate states (BSC 2004 [DIRS 170002], Section 6.6.1). The forecasted future climate states, durations, and future climate analogue locations are summarized in Table 6.1-2. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-6 September 2004 Table 6.1-2. Predicted Future Climates and the Future Climate Analogue Locations Climate State Duration Representative Meteorological Stations Present-day interglacial climate 400 to 600 years Yucca Mountain region Monsoon climate 900 to 1,400 years Average lower bound: Yucca Mountain region Average upper bound: Nogales, Arizona Hobbs, New Mexico Glacial transition climate 8,000 to 8,700 years Average lower bound: Beowawe, Nevada Delta, Utah Average upper bound: Spokane, Washington Rosalia, Washington St. John, Washington Source: BSC 2004 [DIRS 170002], Table 6-1. For modeling climate change for TSPA, the climate shifts in a series of step changes between three different climate states in the first 10,000 years: present-day climate, monsoon climate (about twice the precipitation of the present-day climate), and glacial transition climate (colder than monsoon but similar precipitation) (BSC 2003 [DIRS 166296], p. 79). Within the TSPALA model, these shifts require coordinating the coupled submodels because they must all simultaneously change to the appropriate climate state. To support climate change modeling for TSPA, BDCFs are developed for the three climate states (Section 6.2.2). A proportionality function was developed based on BDCFs for the present-day (interglacial) climate and BDCFs for the average upper bound of the glacial transition climate. These climates represent the two extreme conditions, with respect to temperature and precipitation, forecasted to occur in the Yucca Mountain region during the 10,000-year postclosure period. To determine the dependence of BDCFs on climate, the range of each climate-dependent biosphere model input value was calculated. The range for each parameter spanned from the value for the present-day climate to the value for the upper bound of the glacial transition climate. Model simulations were run using these parameter ranges as input. Rank correlation coefficients were calculated for the climate-dependent model-input parameters and the model output (i.e., the BDCFs), as described in Section 6.2.2. Correlation coefficients were highest for the long-term average annual irrigation rate (Table 6.2-3). The BDCFs for a given radionuclide appear to be proportional to the value of the annual average irrigation rate. Using this proportionality, BDCFs for the monsoon climate and the glacial transition climate for each radionuclide were calculated by interpolation between the values (extremes) for the present-day climate and the upper bound of the glacial transition climate (Section 6.2.2). Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-7 September 2004 6.1.4 Definition of the Receptor The regulations for licensing the repository include an individual protection standard for the performance of the repository. This standard is expressed as the annual dose limit to a hypothetical person called the RMEI (10 CFR 63.311 [DIRS 156605]). Analysis of annual dose includes potentially pathways of radionuclide transport and exposure (10 CFR 63.311 [DIRS 156605]). Changes in the reference biosphere, other than climate changes, are not included. The RMEI is a hypothetical receptor that (10 CFR 63.312 [DIRS 156605]): • Lives above the highest concentration of radionuclides in the plume of contamination • Has a diet and lifestyle representative of people who now reside in the Amargosa Valley based on surveys of the people residing in the Amargosa Valley that determine current diets and lifestyles, and then use the mean values of these factors in the assessments conducted for 10 CFR 63.311 and 10 CFR 63.321 • Uses well water with average concentrations of radionuclides based on an annual water demand of 3,000 acre-feet • Drinks 2 liters of water per day from wells drilled into the groundwater from a point above the highest concentration of radionuclides in the plume of contamination • Is an adult who is metabolically and physiologically consistent with present knowledge of adults. To meet the requirements of 10 CFR 63.312(b) [DIRS 156605], the dietary and lifestyle characteristics of the RMEI were determined based on surveys of people living in the Amargosa Valley combined with national information on behavior patterns. Characteristics of the RMEI were developed in a separate analysis (BSC 2004 [DIRS 169671]). 6.1.5 Biosphere Model This analysis was performed using a verified and validated model, ERMYN, which is described in the Biosphere Model Report (BSC 2004 [DIRS 169460]). The model files were obtained from the Model Warehouse (DTN: MO0306MWDBGSMF.001 [DIRS 163816]). Additional verification of the model files for GoldSim version 8.01 SP4 is presented in Appendix E. The ERMYN model (BSC 2004 [DIRS 169460]), which this analysis uses to calculate BDCFs, models biosphere processes for radionuclides released from the repository to the biosphere, the environmental transport of these radionuclides, and human exposure. The Biosphere Model Report (BSC 2004 [DIRS 169460]), which describes the ERMYN model: 1. Describes the biosphere model objectives, reference biosphere, human receptor, exposure scenarios, environmental transport pathways, and human exposure pathways (BSC 2004 [DIRS 169460], Section 6.1). Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-8 September 2004 2. Develops the conceptual model based on site-specific FEPs, the reference biosphere and human receptor, and a number of other approximations (BSC 2004 [DIRS 169460], Sections 6.2 and 6.3). 3. Describes the mathematical model and submodels based on the conceptual model and other published biosphere models (BSC 2004 [DIRS 169460], Sections 6.4 and 6.5). 4. Summarizes model input parameters and uncertainty distributions (BSC 2004 [DIRS 169460], Section 6.6). 5. Identifies model improvements compared with the previous biosphere model (BSC 2004 [DIRS 169460], Section 6.7). 6. Constructs the ERMYN implementation tool based on the mathematical model using GoldSim stochastic simulation software (BSC 2004 [DIRS 169460], Sections 6.8 and 6.9). 7. Verifies the ERMYN implementation tool in GoldSim (BSC 2004 [DIRS 169460], Section 6.10). 8. Validates the ERMYN model by comparing the conceptual and mathematical models and by comparing the numerical results with results from other published biosphere models (BSC 2004 [DIRS 169460], Section 7). The ERMYN model was designed to perform an environmental radiation dose assessment and can calculate radionuclide-specific dose or provide a radionuclide-specific BDCF for a given receptor. Use of the ERMYN model in performance assessment is limited to the calculation of BDCFs. Input parameters for the biosphere model are developed and documented in a series of five model parameter reports: • Agricultural and Environmental Parameters for the Biosphere Model (BSC 2004 [DIRS 169673]). • Characteristics of the Receptor for the Biosphere Model (BSC 2004 [DIRS 169671]). • Environmental Transport Input Parameters for the Biosphere Model (BSC 2004 [DIRS 169672]). • Inhalation Exposure Input Parameters for the Biosphere Model (BSC 2004 [DIRS 169458]). • Soil-Related Input Parameters for the Biosphere Model (BSC 2004 [DIRS 169459]). The architecture of the biosphere model for the groundwater exposure scenario, including the submodels, is shown in Figure 6.1-2. The submodels address radionuclide transport to, and Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-9 September 2004 accumulation in, specific environmental media (e.g., soil, air, plants, animals, and fish) and the inhalation, ingestion, and external exposure pathways. Figure 6.1-2. Relationships Among Submodels for the Groundwater Exposure Scenario 6.2 DEVELOPMENT OF BIOSPHERE DOSE CONVERSION FACTORS FOR THE GROUNDWATER EXPOSURE SCENARIO The BDCFs for the groundwater exposure scenario were calculated, using probabilistic analysis, in a series of simulations for each of the 28 primary radionuclides and 2 long-lived decay products, 228Th and 228Ra (Section 6.1.1). Each simulation resulted in 1,000 model realizations. A model realization is one of the possible model outcomes obtained as a result of a single round of sampling of the model input parameters. This section describes the format and the summary of the results of biosphere modeling for the groundwater exposure scenario, as well as their use in the TSPA model. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-10 September 2004 6.2.1 Modeling Methods: Treatment of Uncertainty The probabilistic approach was chosen to develop BDCFs. This approach allows statistical sampling of parameter values defined by their probability distribution functions. This method, called Monte Carlo analysis, provides a quantitative evaluation of the parameter uncertainties and their impacts on the modeling outcome. Uncertainty in the model outcome is represented by the probability distribution functions of the BDCFs. Input parameter values were sampled using the Latin Hypercube sampling method for consistency with the sampling technique to be used in TSPA (BSC 2003 [DIRS 166296], Section 7.3). With Latin Hypercube sampling, the probability distribution is divided into intervals of equal probability. The code then randomly samples a value within each interval, which results in a more even and consistent sampling compared with the conventional Monte Carlo random sampling scheme. The value of the random seed was set to 1. 6.2.2 Modeling Methods: Incorporation of Climate Change The biosphere model was constructed for a reference biosphere with an arid or semi-arid climate. The climate during the compliance period is projected to change from the present-day (interglacial) climate, through a monsoon climate, to a glacial transition climate. Although the monsoon climate generally is wetter, and the glacial transition climate is wetter and cooler than the present-day climate, the radionuclide environmental transport pathways and the human exposure pathways are expected to remain essentially unchanged. The conceptual and mathematical structure of the ERMYN model was designed such that it is appropriate for the entire 10,000-year postclosure period. Climate change is addressed through model input parameters, which use different values depending on the climate. Detailed model input was developed for the anticipated extremes of climate, the present-day climate and the upper bound of the glacial transition climate, which is forecasted to start in about 2,000 years and last through the compliance period (BSC 2004 [DIRS 170002]). For the upper bound of the glacial transition climate, climate-dependent model input parameters were based on future climate analogue sites represented by meteorological conditions in east central Washington state. Although these are extremes in climate predictions, they remain arid to semiarid. During the compliance period, the climate conditions are expected to be variable and may fall between the two extremes for which input data were developed. The approach adopted, to provide the TSPA-LA with BDCFs representing possible future climate variation between the two extremes, is provided below. BDCFs were first calculated for two climates (the present-day climate and one future climate state, represented by the average upper bound of the glacial transition climate) representing the upper and lower bounds of the expected range of the temperature and precipitation over the 10,000-year postclosure period. The mean values of the BDCFs for these two climate states, and the ratio of the two, are shown in Table 6.2-1. In the next step, the BDCFs for the monsoon and the glacial transition climates were calculated as described in this section. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-11 September 2004 Table 6.2-1. Mean Biosphere Dose Conversion Factors for Climate Extremes and Their Ratios Mean BDCF, rem/yr per pCi/L Radionuclide Present-Day Climate Glacial Transition Climate- Upper Bound BDCF Ratio (Glacial Transition to Present- Day Climate) C-14 9.10E-06 8.52E-06 0.94 Cl-36 2.07E-05 1.55E-05 0.75 Se-79 6.19E-05 3.97E-05 0.64 Sr-90 1.64E-04 1.43E-04 0.87 Tc-99 2.26E-06 1.93E-06 0.85 Sn-126 6.33E-03 3.51E-03 0.55 I-129 3.36E-04 2.91E-04 0.86 Cs-135 5.57E-05 3.39E-05 0.61 Cs-137 4.82E-04 2.85E-04 0.59 Pb-210 9.04E-03 7.48E-03 0.83 Ra-226 9.69E-02 5.71E-02 0.59 Ac-227 3.11E-02 1.75E-02 0.56 Th-229 3.41E-02 1.84E-02 0.54 Th-230 2.93E-02 1.72E-02 0.59 Th-232 4.45E-02 2.44E-02 0.55 Pa-231 1.01E-01 5.76E-02 0.57 U-232 5.82E-03 3.26E-03 0.56 U-233 1.86E-03 1.06E-03 0.57 U-234 1.28E-03 7.27E-04 0.57 U-236 1.14E-03 6.43E-04 0.57 U-238 1.13E-03 6.44E-04 0.57 Np-237 6.98E-03 5.13E-03 0.73 Pu-238 4.69E-03 3.38E-03 0.72 Pu-239 9.25E-03 5.96E-03 0.64 Pu-240 9.01E-03 5.83E-03 0.65 Pu-242 8.91E-03 5.73E-03 0.64 Am-241 6.83E-03 4.65E-03 0.68 Am-243 9.57E-03 6.14E-03 0.64 Source: MO0407SPAINEXI.002 [DIRS 170597]; MO0407SPASRPBM.002 [DIRS 170755]; MO0403SPAAEIBM.002 [DIRS 169392]; MO0407SPACRBSM.002 [DIRS 170677]; MO0406SPAETPBM.002 [DIRS 170150]; MO0306MWDBGSMF.001 [DIRS 163816]. NOTE: The mean BDCF values and their ratios were calculated using Excel (GW BDCF Realizations_MC and FC_Rev 3.xls; Appendix B). The BDCF values for the upper bound of the glacial transition climate are consistently lower than the corresponding values for the present-day climate. The differences between the BDCFs are about a factor of less than two. For example, the ratios of the BDCFs for the glacial transition and the present-day climates for four radionuclides identified as important in the previous TSPA effort (BSC 2001 [DIRS 154659], Figures 4.1-8a and 4.1-8b) were 0.94 for 14C, 0.85 for 99Tc, 0.86 for 129I, and 0.73 for 237Np. Inspection of the BDCF distributions for the present-day climate (see Table 6.2-5) indicates that the BDCF variability, as measured by the 95- to the 5-percentile point, is a factor of about 4.2 for 14C, 3.4 for 99Tc, 2.1 for 129I, and 2.7 for 237Np. Variability in the BDCF values due to normal parametric uncertainty dominates the change in expected mean BDCF values caused by extreme climate change. It was therefore Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-12 September 2004 appropriate to use interpolation between the two extreme climate states, for which detailed information was available, to generate BDCFs for the expected distribution of climates in the future. To evaluate this approach, the influence of climate change on the BDCF values was investigated. For the input parameters that are affected by climate change (Table 6.2-2), uniform distributions of parameter values were constructed ranging between the parameter averages for the extreme climates (i.e., the present-day and the upper bound of the glacial transition climates). The uniform distribution was selected because it is the simplest distribution that captures the range of parameter values. Table 6.2-2. Climate-dependent Input Parameters and Their Average Values for the Present-Day Climate and the Upper Bound of the Glacial Transition Climate Parameter Present-Day Climate Glacial Transition Climate (Upper Bound) Growing time, other vegetables 80 days 100 days Growing time, fruits 160 days 105 days Growing time, grains 200 days 185 days Growing time, cattle forage 75 days 90 days Irrigation application, leafy vegetables 14.7 mm 14.6 mm Irrigation application, other vegetables 26.0 mm 25.0 mm Irrigation application, fruits 33.9 mm 34.2 mm Irrigation application, grains 56.7 mm 51.3 mm Irrigation application, cattle forage 57.8 mm 53.5 mm Average annual irrigation rate 0.95 m/yr 0.50 m/yr Daily average irrigation rate, leafy vegetables 5.41 mm/day 3.81 mm/day Daily average irrigation rate, other vegetables 7.71 mm/day 3.84 mm/day Daily average irrigation rate, fruits 7.41 mm/day 3.90 mm/day Daily average irrigation rate, grains 4.64 mm/day 3.36 mm/day Daily average irrigation rate, cattle forage 6.55 mm/day 4.14 mm/day Overwatering rate 0.079 m/yr 0.067 m/yr Water concentration modifying factor (for fisheries) 4.15 a 2.4 a Evaporative cooler use factor 0.39 0.085 Source: MO0403SPAAEIBM.002 [DIRS 169392]; MO0407SPACRBSM.002 [DIRS 170677]; MO0406SPAETPBM.002 [DIRS 170150]. a All radionuclides except C-14, for which 1 was used. The model was then executed using these distributions for the climate-dependent parameters with the other input parameter distributions and values left unchanged. BDCF values for 1,000 model realizations were calculated for each primary radionuclide (Section 6.1.1). The influence of climate-dependent input parameters on the model output was determined by calculating rank correlation coefficients for the BDCFs and climate-dependent input parameters (Table 6.2-3). Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-13 September 2004 Table 6.2-3. Correlations (Rank Correlation Coefficients) Between BDCFs and Climate-Dependent Input Parameters Growing time Irrigation Application Radio-nuclide Other Vegetables Fruits Grains Cattle Forage Leafy Vegetables Other Vegetables Fruits Grains Cattle Forage C-14 -0.0186 -0.0041 0.0004 -0.0266 0.0369 0.0170 -0.0177 -0.0331 0.0106 Cl-36 -0.0103 0.0040 0.0290 0.0100 0.0007 -0.0305 0.0140 0.0294 -0.0230 Se-79 0.0031 0.0324 -0.0234 0.0102 -0.0195 0.0155 0.0341 -0.0419 0.0020 Sr-90 0.0019 0.0325 0.0189 -0.0076 0.0746 0.0082 0.0669 0.0057 -0.0422 Tc-99 0.0507 0.0947 0.0235 0.0422 0.0209 0.0135 0.0194 0.0485 -0.1193 Sn-126 0.0189 0.0391 0.0490 0.0141 0.0477 -0.0167 -0.0193 -0.0397 0.0210 I-129 0.0203 0.0245 -0.0308 0.0312 -0.0171 0.0417 0.0334 0.0134 -0.0539 Cs-135 0.0223 0.0464 0.0163 -0.0126 -0.0162 0.0654 0.0064 0.0192 -0.0236 Cs-137 0.0394 -0.0030 0.0441 -0.0017 0.0294 -0.0016 0.0215 0.0082 -0.0517 Pb-210 0.0203 0.0138 0.0056 -0.0145 0.0272 0.0296 0.0173 -0.0426 -0.0099 Ra-226 -0.0057 0.0480 0.0178 0.0011 0.0267 0.0078 0.0341 -0.0375 0.0296 Ac-227 -0.0033 -0.0213 0.0299 -0.0192 0.0253 -0.0198 -0.0347 -0.0121 -0.0133 Th-229 0.0160 0.0402 0.0348 -0.0214 -0.0079 -0.0356 0.0081 -0.0047 -0.0111 Th-230 0.0054 0.0604 0.0151 -0.0098 -0.0012 0.0055 0.0182 -0.0097 0.0458 Th-232 0.0199 0.0491 0.0273 -0.0299 -0.0016 -0.0379 0.0127 -0.0102 -0.0067 Pa-231 0.0353 0.0638 0.0347 0.0134 -0.0152 -0.0218 0.0271 -0.0286 -0.0012 U-232 -0.0477 -0.0149 -0.0091 -0.0493 -0.0075 0.0190 -0.0111 -0.0078 -0.0109 U-233 -0.0375 -0.0010 -0.0313 -0.0361 -0.0415 0.0294 -0.0078 -0.0077 -0.0032 U-234 -0.0421 -0.0055 -0.0296 -0.0364 -0.0339 0.0320 -0.0036 -0.0065 -0.0088 U-236 -0.0453 -0.0087 -0.0301 -0.0400 -0.0316 0.0343 -0.0042 -0.0069 -0.0104 U-238 -0.0443 -0.0085 -0.0314 -0.0411 -0.0321 0.0344 -0.0036 -0.0076 -0.0104 Np-237 -0.0019 0.0577 0.0147 -0.0197 0.0233 0.0008 -0.0266 0.0137 -0.0052 Pu-238 0.0134 0.0162 0.0188 -0.0182 0.0162 -0.0025 -0.0059 0.0195 -0.0229 Pu-239 0.0508 0.0459 0.0176 -0.0033 0.0136 -0.0138 0.0165 -0.0139 -0.0141 Pu-240 0.0486 0.0448 0.0174 -0.0026 0.0143 -0.0137 0.0163 -0.0130 -0.0153 Pu-242 0.0517 0.0467 0.0177 -0.0032 0.0131 -0.0140 0.0165 -0.0142 -0.0140 Am-241 0.0193 0.0210 0.0417 -0.0098 0.0111 -0.0294 0.0318 -0.0125 -0.0152 Am-243 0.0278 0.0446 0.0285 -0.0103 -0.0053 -0.0190 0.0446 -0.0335 -0.0005 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-14 September 2004 Table 6.2-3. Correlations (Rank Correlation Coefficients) Between the BDCFs and Climate-dependent Input Parameters (Continued) Daily Average Irrigation Rate Radionuclide Average Annual Irrigation Rate Leafy Vegetables Other Vegetables Fruits Grains Cattle Forage Overwatering Rate Water concentration modifying factor Evaporative Cooler Use Factor C-14 -0.0900 0.0121 0.1062 0.0619 0.0020 0.0675 -0.0011 0.0000 0.0073 Cl-36 0.2499 -0.0313 0.0439 0.0063 -0.0136 0.0187 -0.0284 0.0462 -0.0091 Se-79 0.1326 0.0482 0.0268 0.0015 -0.0189 0.0140 0.0339 0.0105 -0.0027 Sr-90 0.2336 0.0344 0.0094 0.0619 -0.0230 0.0564 -0.0233 0.0581 0.0302 Tc-99 0.1896 0.0688 0.0264 0.0024 -0.0357 0.0055 -0.0453 0.0124 0.0405 Sn-126 0.2343 -0.0116 0.0265 0.0055 0.0196 -0.0208 -0.0059 -0.0097 0.0207 I-129 0.0799 0.0429 0.0132 0.0124 0.0111 0.0534 0.0222 0.0019 -0.0053 Cs-135 0.0881 0.0273 -0.0124 0.0163 -0.0313 -0.0216 -0.0054 0.1291 0.0068 Cs-137 0.2018 0.0053 -0.0199 0.0436 -0.0202 -0.0579 -0.0155 0.1207 0.0317 Pb-210 0.0730 0.0308 0.0480 -0.0204 -0.0005 -0.0104 0.0694 0.1329 0.0198 Ra-226 0.3578 -0.0125 0.0528 -0.0050 -0.0099 0.0072 -0.0266 0.0058 -0.0955 Ac-227 0.1138 0.0451 0.0956 0.0172 0.0008 -0.0055 -0.0180 0.0367 0.3832 Th-229 0.2144 0.0037 0.0694 0.0077 0.0313 0.0217 0.0077 -0.0177 0.0366 Th-230 0.1972 0.0139 0.0328 -0.0116 0.0145 0.0136 -0.0147 -0.0327 -0.0715 Th-232 0.2522 0.0025 0.0571 0.0044 0.0353 0.0198 0.0055 -0.0235 0.0106 Pa-231 0.2171 0.0066 0.0758 0.0059 0.0326 -0.0111 -0.0082 -0.0224 -0.0290 U-232 0.1043 0.0069 0.0551 -0.0310 -0.0396 0.0310 -0.0367 0.0573 0.2617 U-233 0.0379 -0.0111 0.0165 -0.0317 -0.0454 0.0496 -0.0420 0.0279 0.0930 U-234 0.0417 -0.0095 0.0198 -0.0302 -0.0504 0.0484 -0.0388 0.0329 0.1256 U-236 0.0384 -0.0085 0.0227 -0.0301 -0.0514 0.0476 -0.0352 0.0359 0.1341 U-238 0.0394 -0.0097 0.0202 -0.0298 -0.0516 0.0477 -0.0355 0.0359 0.1279 Np-237 0.1605 0.0288 0.0813 0.0171 -0.0276 0.0190 -0.0275 0.0117 0.1824 Pu-238 0.1578 0.0098 0.1095 0.0337 0.0007 -0.0008 0.0293 0.0412 0.2320 Pu-239 0.2064 0.0144 0.0998 0.0186 0.0136 -0.0121 0.0138 -0.0074 0.0501 Pu-240 0.2100 0.0132 0.1023 0.0195 0.0132 -0.0114 0.0134 -0.0053 0.0541 Pu-242 0.2050 0.0147 0.0991 0.0181 0.0135 -0.0129 0.0139 -0.0081 0.0486 Am-241 0.2218 0.0460 0.1010 0.0266 -0.0243 -0.0070 -0.0198 0.0374 0.1258 Am-243 0.1998 0.0464 0.0882 0.0135 0.0013 -0.0151 -0.0245 0.0094 0.0412 Source: MO0407SPAINEXI.002 [DIRS 170597]; MO0407SPASRPBM.002 [DIRS 170755]; MO0403SPAAEIBM.002 [DIRS 169392]; MO0407SPACRBSM.002 [DIRS 170677]; MO0406SPAETPBM.002 [DIRS 170150]; MO0306MWDBGSMF.001 [DIRS 163816]. NOTE: Values were calculated using Excel (Correlations for climate dependent parameters_Rev 3.xls; Appendix B). Correlation coefficients in shaded cells differ significantly from zero at the 99% confidence level. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-15 September 2004 The shaded cells contain correlation coefficients with values that differ from zero at the 99 percent confidence level (see Section 6.2.3 for discussion of the statistical test to determine values of correlation coefficients that represent true correlation at a given confidence level). The calculations were carried out using Excel (Correlations for climate dependent parameters_Rev 3.xls; Appendix B). The parameter for which rank correlation coefficients are consistently among the highest is the average annual irrigation rate (Table 6.2-3). The second highest correlation coefficients are for the evaporative cooler use factor. The relationships between the average annual irrigation rate and the BDCFs for 99Tc, 129I, and 237Np are shown in Table 6.2-4 . If the raw individual realization data are plotted, the stochastic variability among BDCFs from the multiple random inputs results in plots that show little discernable trend. To generate graphs illustrating the trend, averaging over realizations to minimize the impact of other variables was required. The results of model realizations were sorted by annual irrigation rate, and the irrigation rate and the corresponding BDCFs were averaged in blocks of 100 values. Graphical representations for selected radionuclides are shown in Table 6.2-4. The graphs were generated in Excel (Dependence of BDCFs on Irrigation Rate_Rev 3.xls; Appendix B). BDCFs for 9 radionuclides also show a positive correlation with the evaporative cooler use factor, and BDCFs for 3 radionuclides show a positive correlation with the water concentration modifying factor. There is a positive correlation between the average annual irrigation rate, the evaporative cooler use factor, and the fishpond water concentration modifying factor because all these parameters have higher values in hotter climates. Therefore, the annual average irrigation rate was considered a surrogate parameter to represent the dependence of the BDCFs on the evaporative cooler use factor and the water concentration modifying factor. The correlation between the average annual irrigation rate and the BDCF for 14C is negative. This is because the BDCF for 14C depends on the concentration of 14C in the air, which is proportional to the square root of the irrigated area; which in turn, is inversely proportional to the amount of average annual irrigation (i.e., for a given volume of water, a greater area can be irrigated if the irrigation rate is lower). In spite of this, the mean BDCF for 14C for the upper bound of the glacial transition climate is less than the mean BDCF for the present-day climate (Table 6.2-1) due to the combined influence of other climate-dependent parameters, which reduce the BDCF value for 14C for the upper bound of the glacial transition climate. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-16 September 2004 Table 6.2-4. Dependence of BDCFs for 99Tc, 129I, and 237Np on Annual Average Irrigation Rate Realization Number a Irrigation Rate b BDCF c T e c h n e t i u m – 9 9 1-100 5.22E-01 1.61E-06 101-200 5.67E-01 1.64E-06 201-300 6.11E-01 1.58E-06 301-400 6.54E-01 1.65E-06 401-500 6.99E-01 1.72E-06 501-600 7.44E-01 1.82E-06 601-700 7.89E-01 1.89E-06 701-800 8.34E-01 1.75E-06 801-900 8.79E-01 1.85E-06 901-1000 9.24E-01 1.85E-06 1.5E-06 1.6E-06 1.7E-06 1.8E-06 1.9E-06 2.0E-06 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Annual average irrigation rate, m/yr BDCF, rem/yr per pCi/L I o d i n e – 1 2 9 1-100 5.22E-01 2.92E-04 101-200 5.67E-01 2.97E-04 201-300 6.11E-01 2.95E-04 301-400 6.54E-01 2.90E-04 401-500 6.99E-01 2.98E-04 501-600 7.44E-01 3.05E-04 601-700 7.89E-01 3.11E-04 701-800 8.34E-01 3.08E-04 801-900 8.79E-01 3.11E-04 901-1000 9.24E-01 3.10E-04 2.8E-04 2.9E-04 2.9E-04 3.0E-04 3.0E-04 3.1E-04 3.1E-04 3.2E-04 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Annual average irrigation rate, m/yr BDCF, rem/yr per pCi/L N e p t u n i u m – 2 3 7 1-100 5.22E-01 5.21E-03 101-200 5.67E-01 5.45E-03 201-300 6.11E-01 5.41E-03 301-400 6.54E-01 5.42E-03 401-500 6.99E-01 5.66E-03 501-600 7.44E-01 5.88E-03 601-700 7.89E-01 5.61E-03 701-800 8.34E-01 5.57E-03 801-900 8.79E-01 5.95E-03 901-1000 9.24E-01 6.09E-03 5.0E-03 5.2E-03 5.4E-03 5.6E-03 5.8E-03 6.0E-03 6.2E-03 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Annual average irrigation rate, m/yr BDCF, rem/yr per pCi/L Source: MO0407SPAINEXI.002 [DIRS 170597]; MO0407SPASRPBM.002 [DIRS 170755]; MO0306MWDBGSMF.001 [DIRS 163816]; MO0403SPAAEIBM.002 [DIRS 169392]; MO0407SPACRBSM.002 [DIRS 170677]; MO0406SPAETPBM.002 [DIRS 170150]. NOTE: Values were calculated using Excel (Dependence of BDCFs on Irrigation Rate_Rev 3.xls; Appendix B). a Realization number after sorting by annual average irrigation rate. b Average of the long-term irrigation rate (annual average irrigation rate) for the range of realizations. c Average of the BDCFs for the range of realizations. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-17 September 2004 Given that the BDCFs can be shown to increase linearly with the value of a climate-dependent parameter, the annual average irrigation rate (Table 6.2-4), the BDCFs for the average upper bound of the monsoon and the average lower bound of the glacial transition climates were calculated by interpolation between the BDCF values for the present-day and the upper bound of the glacial transition climates. The strength of the observed dependencies shows that BDCFs can be scaled with the average annual irrigation rate. Based on the future climate analogue sites (DTN: MO0403SPAAEIBM.002 [DIRS 169392]), values of the average annual irrigation rates are: • 0.95 m/yr for the present-day climate and the lower bound of the monsoon climate • 0.88 m/yr for the lower bound of the glacial transition climate (based on Delta, Utah) • 0.52 m/yr for the upper bound of the monsoon climate (based on Nogales, Arizona) • 0.50 m/yr for the upper bound of the glacial transition climate (based on Spokane and other locations in east central Washington). Because differences between the irrigation rates for the upper bound of the monsoon (0.52 m/yr) and the upper bound of the glacial transition climates (0.50 m/yr) are small, one value of 0.50 m/yr is used. The relationship between the average annual irrigation rates and the BDCFs for the climate states under consideration is shown in Figure 6.2-1. 0.50 0.88 0.95 Annual average irrigation rate (m/yr) Biosphere Dose Conversion Factor Monsoon Climate Glacial Transition Climate Glacial Transition Climate Monsoon Climate BDCF for lower bound of glacial transition climate BDCF for upper bound of glacial transition climate and upper bound of monsoon climate BDCF for present-day climate and lower bound of monsoon climate Figure 6.2-1. Scaling of the Biosphere Dose Conversion Factors Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-18 September 2004 BDCF values for the lower bound of the glacial transition climate can be calculated as: ) ( 50 . 0 95 . 0 50 . 0 88 . 0 UBGT IC UBGT LBGT BDCF BDCF BDCF BDCF - - - + = (Eq. 6.2-1) where BDCFLBGT = BDCF for the lower bound of glacial transition climate BDCFUBGT = BDCF for the upper bound of glacial transition climate BDCFIC = BDCF for the present-day climate (interglacial) 50 . 0 95 . 0 50 . 0 88 . 0 - - = Scaling factor equal to the difference in average annual irrigation rates between the lower and upper bounds of the glacial transition climate divided by the difference in average annual irrigation rates between the present-day climate and the upper bound of the glacial transition climate. BDCF values for individual realizations for the monsoon and the glacial transition climates were then calculated by randomly sampling over the range of BDCF values for these climates. For the monsoon climate, the sampling was over the entire range between the two extreme BDCF values for an individual realization (i.e., the values for the present-day climate and the upper bound of the glacial transition climate), and was calculated as RAND BDCF BDCF BDCF BDCF UBGT IC UBGT MC ) ( - + = (Eq. 6.2-2) where BDCFMC = BDCF for the monsoon climate RAND = random number greater than or equal to 0 and less than 1 For the glacial transition climate, the sampling was between the value for the lower and upper bounds of the glacial transition climate and was calculated as RAND BDCF BDCF BDCF BDCF UBGT IC UBGT GTC ) ( 50 . 0 95 . 0 50 . 0 88 . 0 - - - + = (Eq. 6.2-3) where BDCFGTC = BDCF for the glacial transition climate These calculations were performed using Excel (GW BDCF Realizations_MC and FC_Rev 3.xls; Appendix B). 6.2.3 Modeling Results: Biosphere Dose Conversion Factors BDCFs for the present-day climate, monsoon climate, and glacial transition climate were calculated as described in the previous section. The BDCFs for a specific climate state consist of a set of 1,000 row vectors, with vector elements representing BDCFs for different radionuclides and a row (vector) number corresponding to a model realization. The full sets of BDCF vectors for the three climate states are given in GW BDCF Realizations_MC and FC_Rev 3.xls Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-19 September 2004 (Appendix B). Summary statistics for the BDCFs are presented in Tables 6.2-5 to 6.2-7 for the present-day climate, monsoon climate, and glacial transition climate, respectively. The statistics include the mean, standard deviation (STD), minimum, maximum, and percentiles of cumulative distribution in increments of 5 percent. In all of the tables containing the results, the values for 232Th include contributions from 228Ra and 228Th and their short-lived decay products. Similarly, values for 232U include contributions from 228Th and its short-lived decay products. In addition, the combined value of BDCF for 226Ra and 210Pb is provided, in case the concentration of 210Pb in groundwater is not calculated in the TSPA-LA model. The combined 226Ra - 210Pb value was calculated for the activity concentration of 210Pb in groundwater equal to that of 226Ra, i.e., for the condition of radioactive equilibrium between these two radionuclides. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-20 September 2004 Table 6.2-5. Biosphere Dose Conversion Factors Statistics for the Present-Day Climate, rem/yr per pCi/L. C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Pb-210 Ra-226 Mean 9.10E-06 2.07E-05 6.19E-05 1.64E-04 2.26E-06 6.33E-03 3.36E-04 5.57E-05 4.82E-04 9.04E-03 9.69E-02 STD 6.67E-06 4.23E-05 1.05E-04 2.57E-05 2.38E-06 3.94E-03 1.14E-04 4.01E-05 2.28E-04 3.54E-03 4.77E-02 Minimum 4.15E-06 3.43E-06 9.71E-06 1.23E-04 1.18E-06 2.03E-04 2.21E-04 1.15E-05 1.52E-04 5.80E-03 2.48E-03 5% 4.92E-06 5.21E-06 1.50E-05 1.35E-04 1.31E-06 1.12E-03 2.43E-04 1.90E-05 2.33E-04 6.26E-03 3.89E-02 10% 5.20E-06 5.78E-06 1.77E-05 1.39E-04 1.36E-06 1.85E-03 2.51E-04 2.22E-05 2.59E-04 6.45E-03 4.69E-02 15% 5.47E-06 6.52E-06 1.98E-05 1.43E-04 1.42E-06 2.57E-03 2.58E-04 2.53E-05 2.84E-04 6.61E-03 5.26E-02 20% 5.66E-06 7.07E-06 2.18E-05 1.45E-04 1.46E-06 3.15E-03 2.64E-04 2.82E-05 3.01E-04 6.76E-03 5.79E-02 25% 5.90E-06 7.73E-06 2.40E-05 1.48E-04 1.51E-06 3.60E-03 2.70E-04 3.10E-05 3.26E-04 6.94E-03 6.25E-02 30% 6.09E-06 8.65E-06 2.65E-05 1.50E-04 1.55E-06 3.97E-03 2.78E-04 3.35E-05 3.47E-04 7.11E-03 6.75E-02 35% 6.34E-06 9.51E-06 2.82E-05 1.52E-04 1.61E-06 4.25E-03 2.84E-04 3.62E-05 3.64E-04 7.25E-03 7.20E-02 40% 6.54E-06 1.05E-05 3.05E-05 1.54E-04 1.67E-06 4.56E-03 2.91E-04 3.91E-05 3.85E-04 7.46E-03 7.73E-02 45% 6.83E-06 1.16E-05 3.29E-05 1.56E-04 1.72E-06 5.08E-03 2.99E-04 4.17E-05 4.03E-04 7.69E-03 8.20E-02 50% 7.04E-06 1.28E-05 3.57E-05 1.59E-04 1.78E-06 5.54E-03 3.09E-04 4.53E-05 4.27E-04 7.94E-03 8.81E-02 55% 7.36E-06 1.42E-05 3.84E-05 1.62E-04 1.85E-06 5.98E-03 3.16E-04 4.85E-05 4.51E-04 8.20E-03 9.33E-02 60% 7.78E-06 1.56E-05 4.25E-05 1.64E-04 1.93E-06 6.47E-03 3.29E-04 5.17E-05 4.74E-04 8.47E-03 9.93E-02 65% 8.35E-06 1.76E-05 4.75E-05 1.66E-04 2.03E-06 6.96E-03 3.39E-04 5.57E-05 5.09E-04 8.83E-03 1.06E-01 70% 8.84E-06 1.93E-05 5.33E-05 1.71E-04 2.14E-06 7.75E-03 3.50E-04 6.09E-05 5.38E-04 9.19E-03 1.14E-01 75% 9.55E-06 2.22E-05 6.15E-05 1.75E-04 2.30E-06 8.53E-03 3.64E-04 6.60E-05 5.73E-04 9.66E-03 1.21E-01 80% 1.06E-05 2.53E-05 7.22E-05 1.79E-04 2.49E-06 9.35E-03 3.83E-04 7.35E-05 6.21E-04 1.04E-02 1.32E-01 85% 1.19E-05 2.91E-05 9.01E-05 1.86E-04 2.85E-06 1.03E-02 4.07E-04 8.74E-05 6.76E-04 1.12E-02 1.44E-01 90% 1.40E-05 3.71E-05 1.19E-04 1.95E-04 3.46E-06 1.16E-02 4.50E-04 1.04E-04 7.51E-04 1.26E-02 1.63E-01 95% 2.05E-05 5.33E-05 1.67E-04 2.13E-04 4.41E-06 1.42E-02 5.18E-04 1.32E-04 9.28E-04 1.60E-02 1.84E-01 Maximum 9.35E-05 8.85E-04 1.89E-03 3.78E-04 6.19E-05 2.03E-02 1.98E-03 4.77E-04 1.69E-03 3.66E-02 4.27E-01 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-21 September 2004 Table 6.2-5. Biosphere Dose Conversion Factors Statistics for the Present-Day Climate, rem/yr per pCi/L (Continued) Ra-226 +Pb-210 Ac-227 Th-229 Th-230 Th-232 Pa-231 U-232 U-233 U-234 U-236 U-238 Mean 1.06E-01 3.11E-02 3.41E-02 2.93E-02 4.45E-02 1.01E-01 5.82E-03 1.86E-03 1.28E-03 1.14E-03 1.13E-03 STD 4.81E-02 1.08E-02 1.86E-02 2.58E-02 2.28E-02 6.66E-02 2.33E-03 2.20E-03 1.13E-03 9.64E-04 9.56E-04 Minimum 1.18E-02 1.36E-02 4.80E-03 1.04E-03 6.60E-03 1.01E-02 1.83E-03 2.36E-04 2.29E-04 2.17E-04 2.17E-04 5% 4.67E-02 1.76E-02 1.28E-02 5.82E-03 1.81E-02 3.13E-02 2.73E-03 3.46E-04 3.29E-04 3.10E-04 3.07E-04 10% 5.54E-02 1.94E-02 1.54E-02 7.26E-03 2.10E-02 3.71E-02 3.22E-03 4.18E-04 3.98E-04 3.73E-04 3.69E-04 15% 6.13E-02 2.05E-02 1.75E-02 8.88E-03 2.39E-02 4.42E-02 3.55E-03 5.00E-04 4.57E-04 4.25E-04 4.19E-04 20% 6.70E-02 2.19E-02 1.96E-02 1.01E-02 2.65E-02 4.96E-02 3.91E-03 5.61E-04 5.10E-04 4.76E-04 4.70E-04 25% 7.15E-02 2.32E-02 2.11E-02 1.13E-02 2.87E-02 5.49E-02 4.16E-03 6.06E-04 5.62E-04 5.26E-04 5.17E-04 30% 7.62E-02 2.42E-02 2.29E-02 1.29E-02 3.07E-02 6.12E-02 4.46E-03 6.67E-04 6.06E-04 5.64E-04 5.56E-04 35% 8.14E-02 2.53E-02 2.46E-02 1.44E-02 3.21E-02 6.57E-02 4.72E-03 7.45E-04 6.57E-04 6.12E-04 5.97E-04 40% 8.56E-02 2.66E-02 2.65E-02 1.61E-02 3.50E-02 7.11E-02 4.91E-03 8.22E-04 7.27E-04 6.71E-04 6.58E-04 45% 9.06E-02 2.80E-02 2.85E-02 1.83E-02 3.71E-02 7.61E-02 5.18E-03 9.13E-04 7.90E-04 7.31E-04 7.25E-04 50% 9.67E-02 2.94E-02 3.00E-02 2.08E-02 4.00E-02 8.28E-02 5.45E-03 1.05E-03 8.57E-04 7.87E-04 7.84E-04 55% 1.03E-01 3.09E-02 3.19E-02 2.32E-02 4.24E-02 8.85E-02 5.69E-03 1.16E-03 9.85E-04 9.04E-04 8.99E-04 60% 1.09E-01 3.23E-02 3.36E-02 2.62E-02 4.45E-02 9.76E-02 5.99E-03 1.35E-03 1.08E-03 9.95E-04 9.90E-04 65% 1.15E-01 3.37E-02 3.62E-02 2.87E-02 4.71E-02 1.06E-01 6.34E-03 1.56E-03 1.22E-03 1.11E-03 1.10E-03 70% 1.24E-01 3.51E-02 3.88E-02 3.40E-02 5.02E-02 1.16E-01 6.68E-03 1.83E-03 1.36E-03 1.24E-03 1.23E-03 75% 1.32E-01 3.69E-02 4.19E-02 3.84E-02 5.45E-02 1.25E-01 7.12E-03 2.15E-03 1.54E-03 1.39E-03 1.40E-03 80% 1.41E-01 3.90E-02 4.56E-02 4.47E-02 5.95E-02 1.43E-01 7.50E-03 2.61E-03 1.82E-03 1.60E-03 1.62E-03 85% 1.54E-01 4.12E-02 5.05E-02 5.23E-02 6.64E-02 1.61E-01 7.96E-03 3.20E-03 2.11E-03 1.88E-03 1.89E-03 90% 1.70E-01 4.49E-02 5.82E-02 6.30E-02 7.48E-02 1.95E-01 8.76E-03 4.36E-03 2.73E-03 2.40E-03 2.35E-03 95% 1.94E-01 5.03E-02 7.11E-02 8.67E-02 8.82E-02 2.34E-01 9.98E-03 6.49E-03 3.63E-03 3.06E-03 3.07E-03 Maximum 4.37E-01 1.09E-01 1.20E-01 1.63E-01 1.46E-01 5.68E-01 1.68E-02 1.55E-02 7.76E-03 6.87E-03 6.68E-03 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-22 September 2004 Table 6.2-5. Biosphere Dose Conversion Factors Statistics for the Present-Day Climate, rem/yr per pCi/L (Continued) Np-237 Pu-238 Pu-239 Pu-240 Pu-242 Am-241 Am-243 Mean 6.98E-03 4.69E-03 9.25E-03 9.01E-03 8.91E-03 6.83E-03 9.57E-03 STD 2.50E-03 1.14E-03 3.75E-03 3.52E-03 3.67E-03 2.06E-03 4.23E-03 Minimum 3.85E-03 2.90E-03 3.73E-03 3.73E-03 3.56E-03 2.97E-03 2.96E-03 5% 4.45E-03 3.37E-03 5.09E-03 5.04E-03 4.86E-03 4.29E-03 4.75E-03 10% 4.77E-03 3.57E-03 5.54E-03 5.47E-03 5.30E-03 4.71E-03 5.35E-03 15% 4.99E-03 3.68E-03 5.96E-03 5.87E-03 5.70E-03 5.02E-03 5.81E-03 20% 5.19E-03 3.81E-03 6.28E-03 6.21E-03 6.01E-03 5.21E-03 6.25E-03 25% 5.37E-03 3.91E-03 6.60E-03 6.53E-03 6.32E-03 5.40E-03 6.71E-03 30% 5.56E-03 4.04E-03 6.85E-03 6.77E-03 6.55E-03 5.58E-03 7.02E-03 35% 5.75E-03 4.13E-03 7.18E-03 7.08E-03 6.87E-03 5.86E-03 7.35E-03 40% 5.91E-03 4.26E-03 7.60E-03 7.51E-03 7.28E-03 6.05E-03 7.71E-03 45% 6.10E-03 4.35E-03 7.96E-03 7.79E-03 7.64E-03 6.26E-03 8.17E-03 50% 6.37E-03 4.45E-03 8.35E-03 8.20E-03 8.02E-03 6.45E-03 8.62E-03 55% 6.57E-03 4.56E-03 8.72E-03 8.57E-03 8.41E-03 6.62E-03 9.11E-03 60% 6.82E-03 4.70E-03 9.14E-03 8.94E-03 8.77E-03 6.87E-03 9.48E-03 65% 7.06E-03 4.82E-03 9.64E-03 9.37E-03 9.28E-03 7.09E-03 1.01E-02 70% 7.44E-03 4.99E-03 1.02E-02 9.99E-03 9.84E-03 7.42E-03 1.07E-02 75% 7.89E-03 5.19E-03 1.09E-02 1.06E-02 1.05E-02 7.75E-03 1.14E-02 80% 8.30E-03 5.42E-03 1.16E-02 1.13E-02 1.13E-02 8.14E-03 1.24E-02 85% 8.82E-03 5.68E-03 1.28E-02 1.23E-02 1.23E-02 8.68E-03 1.36E-02 90% 9.89E-03 6.12E-03 1.42E-02 1.38E-02 1.38E-02 9.38E-03 1.49E-02 95% 1.19E-02 6.82E-03 1.68E-02 1.62E-02 1.62E-02 1.08E-02 1.77E-02 Maximum 2.49E-02 1.41E-02 2.76E-02 2.66E-02 2.67E-02 1.71E-02 3.68E-02 Source: MO0407SPAINEXI.002 [DIRS 170597]; MO0407SPASRPBM.002 [DIRS 170755]; MO0306MWDBGSMF.001 [DIRS 163816]; MO0403SPAAEIBM.002 [DIRS 169392]; MO0407SPACRBSM.002 [DIRS 170677];, MO0406SPAETPBM.002 [DIRS 170150]. NOTE: See Excel file GW BDCF Realizations_MC and FC_Rev 3.xls in Appendix B for details of calculations. STD = standard deviation. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-23 September 2004 Table 6.2-6. Biosphere Dose Conversion Factors Statistics for the Monsoon Climate, rem/yr per pCi/L. C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Pb-210 Ra-226 Mean 8.80E-06 1.83E-05 5.07E-05 1.53E-04 2.10E-06 4.96E-03 3.13E-04 4.44E-05 3.83E-04 8.26E-03 7.65E-02 STD 6.67E-06 4.04E-05 7.82E-05 2.22E-05 2.14E-06 3.23E-03 9.42E-05 3.16E-05 1.87E-04 2.82E-03 3.99E-02 Minimum 3.79E-06 3.13E-06 8.91E-06 1.21E-04 1.15E-06 1.54E-04 2.19E-04 9.72E-06 1.16E-04 5.60E-03 2.23E-03 5% 4.65E-06 4.64E-06 1.35E-05 1.30E-04 1.27E-06 8.91E-04 2.35E-04 1.55E-05 1.81E-04 6.03E-03 2.83E-02 10% 4.88E-06 5.18E-06 1.50E-05 1.33E-04 1.30E-06 1.40E-03 2.42E-04 1.78E-05 2.02E-04 6.22E-03 3.52E-02 15% 5.18E-06 5.60E-06 1.71E-05 1.35E-04 1.34E-06 1.99E-03 2.48E-04 2.03E-05 2.22E-04 6.32E-03 3.98E-02 20% 5.37E-06 6.19E-06 1.85E-05 1.37E-04 1.38E-06 2.42E-03 2.53E-04 2.23E-05 2.36E-04 6.46E-03 4.50E-02 25% 5.59E-06 6.62E-06 2.01E-05 1.39E-04 1.42E-06 2.66E-03 2.58E-04 2.48E-05 2.53E-04 6.57E-03 4.84E-02 30% 5.81E-06 7.21E-06 2.19E-05 1.41E-04 1.46E-06 2.98E-03 2.63E-04 2.74E-05 2.71E-04 6.68E-03 5.22E-02 35% 6.01E-06 8.12E-06 2.36E-05 1.43E-04 1.50E-06 3.26E-03 2.70E-04 2.95E-05 2.87E-04 6.85E-03 5.68E-02 40% 6.28E-06 8.92E-06 2.53E-05 1.45E-04 1.54E-06 3.55E-03 2.76E-04 3.18E-05 3.04E-04 7.03E-03 6.08E-02 45% 6.53E-06 9.76E-06 2.70E-05 1.47E-04 1.60E-06 3.91E-03 2.82E-04 3.38E-05 3.21E-04 7.18E-03 6.43E-02 50% 6.77E-06 1.06E-05 2.90E-05 1.49E-04 1.65E-06 4.22E-03 2.90E-04 3.64E-05 3.40E-04 7.34E-03 6.92E-02 55% 7.03E-06 1.16E-05 3.15E-05 1.50E-04 1.71E-06 4.69E-03 2.95E-04 3.87E-05 3.59E-04 7.54E-03 7.27E-02 60% 7.51E-06 1.30E-05 3.47E-05 1.53E-04 1.78E-06 4.99E-03 3.04E-04 4.14E-05 3.81E-04 7.79E-03 7.82E-02 65% 8.03E-06 1.47E-05 3.92E-05 1.55E-04 1.86E-06 5.44E-03 3.14E-04 4.46E-05 4.06E-04 8.08E-03 8.27E-02 70% 8.56E-06 1.66E-05 4.45E-05 1.58E-04 1.99E-06 6.03E-03 3.23E-04 4.94E-05 4.25E-04 8.43E-03 9.00E-02 75% 9.26E-06 1.87E-05 5.08E-05 1.61E-04 2.11E-06 6.64E-03 3.38E-04 5.32E-05 4.57E-04 8.78E-03 9.65E-02 80% 1.04E-05 2.21E-05 6.04E-05 1.65E-04 2.30E-06 7.47E-03 3.53E-04 5.80E-05 4.97E-04 9.25E-03 1.07E-01 85% 1.16E-05 2.59E-05 7.48E-05 1.70E-04 2.56E-06 8.18E-03 3.74E-04 6.65E-05 5.43E-04 1.01E-02 1.14E-01 90% 1.37E-05 3.32E-05 9.45E-05 1.78E-04 3.17E-06 9.06E-03 4.05E-04 8.14E-05 6.18E-04 1.12E-02 1.27E-01 95% 2.03E-05 4.94E-05 1.33E-04 1.93E-04 4.08E-06 1.11E-02 4.68E-04 1.00E-04 7.13E-04 1.41E-02 1.51E-01 Maximum 9.33E-05 8.37E-04 1.05E-03 3.74E-04 5.40E-05 2.00E-02 1.58E-03 4.21E-04 1.62E-03 2.84E-02 3.96E-01 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-24 September 2004 Table 6.2-6. Biosphere Dose Conversion Factors Statistics for the Monsoon Climate, rem/yr per pCi/L (Continued) Ra-226 +Pb-210 Ac-227 Th-229 Th-230 Th-232 Pa-231 U-232 U-233 U-234 U-236 U-238 Mean 8.48E-02 2.45E-02 2.64E-02 2.32E-02 3.45E-02 7.95E-02 4.60E-03 1.46E-03 9.93E-04 8.79E-04 8.80E-04 STD 4.01E-02 8.34E-03 1.50E-02 2.08E-02 1.88E-02 5.35E-02 1.82E-03 1.75E-03 8.80E-04 7.45E-04 7.36E-04 Minimum 1.01E-02 1.27E-02 4.48E-03 7.47E-04 6.02E-03 9.79E-03 1.80E-03 2.34E-04 2.25E-04 2.11E-04 2.11E-04 5% 3.58E-02 1.50E-02 9.40E-03 4.39E-03 1.30E-02 2.50E-02 2.34E-03 2.98E-04 2.89E-04 2.67E-04 2.64E-04 10% 4.30E-02 1.59E-02 1.15E-02 5.65E-03 1.58E-02 2.97E-02 2.59E-03 3.48E-04 3.17E-04 3.01E-04 3.03E-04 15% 4.77E-02 1.69E-02 1.34E-02 6.76E-03 1.80E-02 3.39E-02 2.82E-03 3.86E-04 3.57E-04 3.37E-04 3.36E-04 20% 5.32E-02 1.75E-02 1.46E-02 7.93E-03 1.97E-02 3.79E-02 3.06E-03 4.32E-04 3.91E-04 3.66E-04 3.61E-04 25% 5.64E-02 1.83E-02 1.61E-02 9.09E-03 2.17E-02 4.23E-02 3.29E-03 4.79E-04 4.32E-04 4.01E-04 3.94E-04 30% 6.04E-02 1.92E-02 1.73E-02 1.03E-02 2.33E-02 4.65E-02 3.48E-03 5.15E-04 4.75E-04 4.37E-04 4.36E-04 35% 6.46E-02 2.00E-02 1.85E-02 1.13E-02 2.50E-02 5.12E-02 3.70E-03 5.66E-04 5.16E-04 4.79E-04 4.79E-04 40% 6.92E-02 2.07E-02 2.00E-02 1.30E-02 2.64E-02 5.58E-02 3.89E-03 6.31E-04 5.71E-04 5.25E-04 5.13E-04 45% 7.23E-02 2.17E-02 2.12E-02 1.44E-02 2.80E-02 5.95E-02 4.07E-03 7.05E-04 6.09E-04 5.61E-04 5.69E-04 50% 7.71E-02 2.26E-02 2.30E-02 1.63E-02 2.96E-02 6.39E-02 4.27E-03 7.96E-04 6.83E-04 6.20E-04 6.21E-04 55% 8.11E-02 2.37E-02 2.46E-02 1.87E-02 3.15E-02 7.02E-02 4.48E-03 9.14E-04 7.51E-04 6.88E-04 6.82E-04 60% 8.65E-02 2.48E-02 2.63E-02 2.03E-02 3.46E-02 7.56E-02 4.71E-03 1.05E-03 8.14E-04 7.65E-04 7.57E-04 65% 9.18E-02 2.58E-02 2.84E-02 2.33E-02 3.74E-02 8.16E-02 4.94E-03 1.23E-03 9.43E-04 8.59E-04 8.49E-04 70% 9.80E-02 2.70E-02 3.05E-02 2.69E-02 4.01E-02 9.23E-02 5.18E-03 1.40E-03 1.07E-03 9.62E-04 9.35E-04 75% 1.06E-01 2.90E-02 3.26E-02 3.03E-02 4.29E-02 1.02E-01 5.46E-03 1.68E-03 1.23E-03 1.10E-03 1.04E-03 80% 1.15E-01 3.06E-02 3.56E-02 3.52E-02 4.69E-02 1.13E-01 5.85E-03 1.97E-03 1.41E-03 1.24E-03 1.24E-03 85% 1.23E-01 3.27E-02 3.88E-02 4.15E-02 5.23E-02 1.26E-01 6.44E-03 2.45E-03 1.71E-03 1.45E-03 1.46E-03 90% 1.37E-01 3.50E-02 4.40E-02 4.88E-02 5.77E-02 1.48E-01 6.99E-03 3.27E-03 2.09E-03 1.74E-03 1.83E-03 95% 1.59E-01 3.93E-02 5.69E-02 6.56E-02 6.95E-02 1.88E-01 7.99E-03 4.93E-03 2.87E-03 2.43E-03 2.40E-03 Maximum 4.06E-01 9.57E-02 9.68E-02 1.41E-01 1.28E-01 5.05E-01 1.44E-02 1.33E-02 7.41E-03 6.27E-03 4.74E-03 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-25 September 2004 Table 6.2-6. Biosphere Dose Conversion Factors Statistics for the Monsoon Climate, rem/yr per pCi/L (Continued) Np-237 Pu-238 Pu-239 Pu-240 Pu-242 Am-241 Am-243 Mean 6.05E-03 4.07E-03 7.57E-03 7.41E-03 7.31E-03 5.74E-03 7.88E-03 STD 2.02E-03 9.48E-04 3.00E-03 2.89E-03 3.03E-03 1.69E-03 3.41E-03 Minimum 3.57E-03 2.62E-03 3.25E-03 3.15E-03 3.19E-03 2.84E-03 2.94E-03 5% 4.07E-03 3.01E-03 4.32E-03 4.33E-03 4.11E-03 3.75E-03 4.08E-03 10% 4.28E-03 3.14E-03 4.71E-03 4.65E-03 4.46E-03 4.04E-03 4.55E-03 15% 4.41E-03 3.22E-03 4.94E-03 4.91E-03 4.68E-03 4.24E-03 4.97E-03 20% 4.62E-03 3.33E-03 5.21E-03 5.15E-03 4.94E-03 4.40E-03 5.23E-03 25% 4.77E-03 3.40E-03 5.46E-03 5.33E-03 5.17E-03 4.57E-03 5.48E-03 30% 4.90E-03 3.48E-03 5.71E-03 5.63E-03 5.42E-03 4.73E-03 5.80E-03 35% 5.03E-03 3.57E-03 5.96E-03 5.88E-03 5.74E-03 4.90E-03 6.12E-03 40% 5.16E-03 3.67E-03 6.19E-03 6.14E-03 6.05E-03 5.05E-03 6.38E-03 45% 5.30E-03 3.75E-03 6.44E-03 6.40E-03 6.33E-03 5.21E-03 6.73E-03 50% 5.45E-03 3.84E-03 6.75E-03 6.74E-03 6.59E-03 5.37E-03 6.99E-03 55% 5.66E-03 3.97E-03 7.10E-03 7.00E-03 6.88E-03 5.52E-03 7.29E-03 60% 5.84E-03 4.07E-03 7.48E-03 7.26E-03 7.20E-03 5.77E-03 7.78E-03 65% 6.10E-03 4.19E-03 7.83E-03 7.60E-03 7.48E-03 6.03E-03 8.21E-03 70% 6.39E-03 4.33E-03 8.20E-03 7.99E-03 7.93E-03 6.28E-03 8.75E-03 75% 6.70E-03 4.45E-03 8.75E-03 8.55E-03 8.50E-03 6.50E-03 9.44E-03 80% 7.06E-03 4.65E-03 9.43E-03 9.10E-03 9.13E-03 6.82E-03 1.01E-02 85% 7.64E-03 4.92E-03 1.05E-02 1.01E-02 9.94E-03 7.26E-03 1.10E-02 90% 8.44E-03 5.27E-03 1.15E-02 1.13E-02 1.11E-02 7.81E-03 1.21E-02 95% 1.01E-02 5.91E-03 1.37E-02 1.33E-02 1.33E-02 8.98E-03 1.49E-02 Maximum 1.85E-02 1.02E-02 2.45E-02 2.30E-02 2.63E-02 1.67E-02 2.73E-02 Source: MO0407SPAINEXI.002 [DIRS 170597]; MO0407SPASRPBM.002 [DIRS 170755]; MO0306MWDBGSMF.001 [DIRS 163816]; MO0403SPAAEIBM.002 [DIRS 169392]; MO0407SPACRBSM.002 [DIRS 170677]; MO0406SPAETPBM.002 [DIRS 170150]. NOTE: See Excel file GW BDCF Realizations_MC and FC_Rev 3.xls in Appendix B for details of calculations. STD = standard deviation. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-26 September 2004 Table 6.2-7. Biosphere Dose Conversion Factors Statistics for the Glacial Transition Climate, rem/yr per pCi/L. C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Pb-210 Ra-226 Mean 8.77E-06 1.77E-05 4.97E-05 1.52E-04 2.07E-06 4.71E-03 3.10E-04 4.33E-05 3.66E-04 8.18E-03 7.37E-02 STD 6.67E-06 3.79E-05 8.73E-05 2.09E-05 2.13E-06 3.02E-03 9.10E-05 3.14E-05 1.76E-04 2.85E-03 3.83E-02 Minimum 3.78E-06 3.19E-06 8.85E-06 1.22E-04 1.16E-06 1.53E-04 2.17E-04 1.03E-05 1.22E-04 5.68E-03 2.21E-03 5% 4.61E-06 4.48E-06 1.32E-05 1.29E-04 1.26E-06 8.26E-04 2.33E-04 1.53E-05 1.73E-04 6.04E-03 2.73E-02 10% 4.89E-06 5.05E-06 1.53E-05 1.32E-04 1.30E-06 1.43E-03 2.41E-04 1.79E-05 1.94E-04 6.17E-03 3.38E-02 15% 5.13E-06 5.54E-06 1.67E-05 1.35E-04 1.34E-06 1.90E-03 2.47E-04 2.02E-05 2.14E-04 6.30E-03 3.90E-02 20% 5.33E-06 6.09E-06 1.82E-05 1.37E-04 1.37E-06 2.34E-03 2.52E-04 2.23E-05 2.31E-04 6.42E-03 4.24E-02 25% 5.56E-06 6.53E-06 1.94E-05 1.38E-04 1.41E-06 2.62E-03 2.57E-04 2.45E-05 2.47E-04 6.54E-03 4.71E-02 30% 5.77E-06 7.16E-06 2.13E-05 1.40E-04 1.45E-06 2.84E-03 2.62E-04 2.59E-05 2.61E-04 6.65E-03 5.04E-02 35% 5.98E-06 7.95E-06 2.26E-05 1.42E-04 1.49E-06 3.11E-03 2.67E-04 2.85E-05 2.73E-04 6.78E-03 5.48E-02 40% 6.19E-06 8.60E-06 2.46E-05 1.44E-04 1.53E-06 3.47E-03 2.72E-04 3.08E-05 2.91E-04 6.92E-03 5.88E-02 45% 6.47E-06 9.55E-06 2.63E-05 1.46E-04 1.58E-06 3.75E-03 2.78E-04 3.28E-05 3.07E-04 7.12E-03 6.28E-02 50% 6.70E-06 1.06E-05 2.85E-05 1.48E-04 1.63E-06 4.06E-03 2.85E-04 3.51E-05 3.26E-04 7.27E-03 6.70E-02 55% 6.99E-06 1.16E-05 3.12E-05 1.50E-04 1.69E-06 4.38E-03 2.94E-04 3.87E-05 3.41E-04 7.49E-03 7.07E-02 60% 7.46E-06 1.26E-05 3.36E-05 1.52E-04 1.75E-06 4.79E-03 3.01E-04 4.07E-05 3.60E-04 7.70E-03 7.45E-02 65% 8.04E-06 1.42E-05 3.68E-05 1.54E-04 1.82E-06 5.19E-03 3.08E-04 4.32E-05 3.85E-04 7.98E-03 8.08E-02 70% 8.50E-06 1.62E-05 4.27E-05 1.57E-04 1.95E-06 5.63E-03 3.21E-04 4.63E-05 4.08E-04 8.27E-03 8.58E-02 75% 9.25E-06 1.82E-05 4.80E-05 1.59E-04 2.07E-06 6.27E-03 3.35E-04 4.99E-05 4.39E-04 8.67E-03 9.25E-02 80% 1.03E-05 2.14E-05 5.60E-05 1.63E-04 2.25E-06 6.95E-03 3.48E-04 5.63E-05 4.71E-04 9.10E-03 1.00E-01 85% 1.15E-05 2.51E-05 7.07E-05 1.69E-04 2.56E-06 7.77E-03 3.69E-04 6.48E-05 5.13E-04 9.84E-03 1.07E-01 90% 1.37E-05 3.22E-05 9.23E-05 1.76E-04 3.13E-06 8.86E-03 3.98E-04 7.95E-05 5.80E-04 1.09E-02 1.25E-01 95% 2.03E-05 4.47E-05 1.40E-04 1.91E-04 3.93E-06 1.07E-02 4.57E-04 9.82E-05 6.99E-04 1.35E-02 1.44E-01 Maximum 9.32E-05 7.32E-04 1.73E-03 3.47E-04 5.44E-05 1.85E-02 1.61E-03 3.29E-04 1.49E-03 3.08E-02 3.71E-01 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-27 September 2004 Table 6.2-7. Biosphere Dose Conversion Factors Statistics for the Glacial Transition Climate, rem/yr per pCi/L (Continued) Ra-226 +Pb-210 Ac-227 Th-229 Th-230 Th-232 Pa-231 U-232 U-233 U-234 U-236 U-238 Mean 8.19E-02 2.33E-02 2.53E-02 2.23E-02 3.30E-02 7.58E-02 4.38E-03 1.40E-03 9.57E-04 8.50E-04 8.50E-04 STD 3.86E-02 7.30E-03 1.45E-02 1.99E-02 1.77E-02 5.04E-02 1.68E-03 1.70E-03 8.52E-04 7.22E-04 7.11E-04 Minimum 1.04E-02 1.27E-02 4.50E-03 8.89E-04 5.63E-03 9.74E-03 1.70E-03 2.27E-04 2.23E-04 2.14E-04 2.11E-04 5% 3.51E-02 1.48E-02 9.60E-03 4.25E-03 1.29E-02 2.38E-02 2.28E-03 2.84E-04 2.84E-04 2.64E-04 2.66E-04 10% 4.15E-02 1.57E-02 1.14E-02 5.57E-03 1.54E-02 2.92E-02 2.59E-03 3.35E-04 3.17E-04 2.93E-04 2.96E-04 15% 4.67E-02 1.65E-02 1.28E-02 6.49E-03 1.73E-02 3.33E-02 2.81E-03 3.74E-04 3.53E-04 3.23E-04 3.24E-04 20% 5.11E-02 1.72E-02 1.42E-02 7.56E-03 1.91E-02 3.77E-02 3.00E-03 4.21E-04 3.82E-04 3.51E-04 3.53E-04 25% 5.49E-02 1.79E-02 1.55E-02 8.62E-03 2.05E-02 4.16E-02 3.17E-03 4.58E-04 4.19E-04 3.87E-04 3.82E-04 30% 5.86E-02 1.85E-02 1.67E-02 9.73E-03 2.19E-02 4.47E-02 3.36E-03 5.03E-04 4.51E-04 4.19E-04 4.14E-04 35% 6.26E-02 1.93E-02 1.79E-02 1.09E-02 2.36E-02 4.94E-02 3.53E-03 5.51E-04 4.89E-04 4.52E-04 4.49E-04 40% 6.65E-02 2.01E-02 1.91E-02 1.23E-02 2.54E-02 5.27E-02 3.71E-03 6.07E-04 5.29E-04 4.87E-04 4.89E-04 45% 7.06E-02 2.10E-02 2.02E-02 1.37E-02 2.71E-02 5.64E-02 3.88E-03 6.83E-04 5.85E-04 5.35E-04 5.44E-04 50% 7.51E-02 2.17E-02 2.17E-02 1.53E-02 2.86E-02 6.09E-02 4.06E-03 7.73E-04 6.48E-04 5.93E-04 5.99E-04 55% 7.85E-02 2.25E-02 2.31E-02 1.76E-02 3.08E-02 6.73E-02 4.23E-03 8.80E-04 7.13E-04 6.54E-04 6.57E-04 60% 8.30E-02 2.33E-02 2.48E-02 1.99E-02 3.30E-02 7.25E-02 4.47E-03 1.01E-03 7.95E-04 7.28E-04 7.36E-04 65% 8.94E-02 2.44E-02 2.65E-02 2.27E-02 3.50E-02 7.90E-02 4.70E-03 1.16E-03 8.94E-04 8.22E-04 8.29E-04 70% 9.50E-02 2.56E-02 2.88E-02 2.56E-02 3.73E-02 8.58E-02 4.91E-03 1.36E-03 1.02E-03 9.19E-04 9.20E-04 75% 1.01E-01 2.70E-02 3.08E-02 2.96E-02 4.05E-02 9.39E-02 5.15E-03 1.57E-03 1.19E-03 1.05E-03 1.07E-03 80% 1.09E-01 2.86E-02 3.39E-02 3.31E-02 4.40E-02 1.06E-01 5.50E-03 1.95E-03 1.37E-03 1.19E-03 1.18E-03 85% 1.17E-01 3.05E-02 3.77E-02 3.93E-02 4.91E-02 1.21E-01 5.93E-03 2.40E-03 1.63E-03 1.44E-03 1.41E-03 90% 1.33E-01 3.33E-02 4.25E-02 4.79E-02 5.78E-02 1.42E-01 6.56E-03 3.26E-03 1.98E-03 1.73E-03 1.76E-03 95% 1.53E-01 3.71E-02 5.70E-02 6.39E-02 6.63E-02 1.81E-01 7.54E-03 4.62E-03 2.65E-03 2.31E-03 2.29E-03 Maximum 3.80E-01 7.01E-02 9.81E-02 1.18E-01 1.12E-01 3.91E-01 1.37E-02 1.33E-02 6.27E-03 5.36E-03 5.02E-03 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-28 September 2004 Table 6.2-7. Biosphere Dose Conversion Factors Statistics for the Glacial Transition Climate, rem/yr per pCi/L (Continued) Np-237 Pu-238 Pu-239 Pu-240 Pu-242 Am-241 Am-243 Mean 5.92E-03 3.92E-03 7.36E-03 7.20E-03 7.10E-03 5.60E-03 7.60E-03 STD 2.05E-03 8.86E-04 2.90E-03 2.73E-03 2.78E-03 1.62E-03 3.14E-03 Minimum 3.60E-03 2.62E-03 3.20E-03 3.17E-03 3.06E-03 2.87E-03 2.90E-03 5% 4.00E-03 2.98E-03 4.27E-03 4.24E-03 4.06E-03 3.70E-03 4.02E-03 10% 4.21E-03 3.10E-03 4.57E-03 4.57E-03 4.36E-03 4.01E-03 4.49E-03 15% 4.35E-03 3.19E-03 4.79E-03 4.82E-03 4.62E-03 4.18E-03 4.79E-03 20% 4.49E-03 3.28E-03 5.05E-03 5.05E-03 4.86E-03 4.34E-03 5.08E-03 25% 4.66E-03 3.35E-03 5.30E-03 5.30E-03 5.15E-03 4.49E-03 5.34E-03 30% 4.77E-03 3.43E-03 5.55E-03 5.54E-03 5.36E-03 4.67E-03 5.69E-03 35% 4.94E-03 3.49E-03 5.82E-03 5.75E-03 5.60E-03 4.81E-03 5.98E-03 40% 5.07E-03 3.58E-03 6.10E-03 5.97E-03 5.84E-03 4.95E-03 6.26E-03 45% 5.20E-03 3.63E-03 6.34E-03 6.21E-03 6.10E-03 5.10E-03 6.53E-03 50% 5.38E-03 3.71E-03 6.59E-03 6.47E-03 6.41E-03 5.25E-03 6.79E-03 55% 5.56E-03 3.79E-03 6.89E-03 6.77E-03 6.67E-03 5.38E-03 7.20E-03 60% 5.71E-03 3.89E-03 7.18E-03 7.11E-03 6.99E-03 5.53E-03 7.63E-03 65% 5.90E-03 4.00E-03 7.63E-03 7.48E-03 7.40E-03 5.75E-03 8.05E-03 70% 6.15E-03 4.12E-03 8.06E-03 7.84E-03 7.83E-03 5.96E-03 8.52E-03 75% 6.55E-03 4.28E-03 8.49E-03 8.38E-03 8.32E-03 6.26E-03 9.05E-03 80% 6.92E-03 4.44E-03 9.16E-03 8.91E-03 8.80E-03 6.67E-03 9.76E-03 85% 7.34E-03 4.65E-03 1.01E-02 9.82E-03 9.56E-03 7.06E-03 1.06E-02 90% 8.17E-03 4.99E-03 1.13E-02 1.09E-02 1.08E-02 7.69E-03 1.17E-02 95% 9.89E-03 5.55E-03 1.31E-02 1.25E-02 1.28E-02 8.79E-03 1.36E-02 Maximum 2.34E-02 1.25E-02 2.36E-02 2.40E-02 2.05E-02 1.52E-02 3.10E-02 Source: MO0407SPAINEXI.002 [DIRS 170597]; MO0407SPASRPBM.002 [DIRS 170755]; MO0306MWDBGSMF.001 [DIRS 163816]; MO0403SPAAEIBM.002 [DIRS 169392]; MO0407SPACRBSM.002 [DIRS 170677]; MO0406SPAETPBM.002 [DIRS 170150]. NOTE: See Excel file GW BDCF Realizations_MC and FC_Rev 3.xls in Appendix B for details of calculations. STD = standard deviation. . Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-29 September 2004 Some of the BDCFs for the groundwater scenario are correlated (Table 6.2-8). To show correlations between the BDCFs, rank correlation coefficients for present-day climate BDCFs were calculated for selected radionuclides. These calculations were done using Excel (Correlations for Groundwater BDCFs MC_Rev 3.xls; Appendix B). Certain correlation coefficients in Table 6.2-8 are shown as zero. The lack of correlation was determined by performing a statistical test on the correlation coefficients. The null hypothesis was that the (true) population correlation coefficient is zero. If the calculated value of the correlation coefficient for the sampling distribution is r, values of t can be calculated as 2 ) 1 ( 2 - - = n r r t (Eq. 6.2-4) where n is the number of data points in the sampling distribution (i.e., 1,000). The t-values then can be compared with Student’s t-values for n – 2 degrees of freedom (Steel and Torrie 1980 [DIRS 150857], pp. 278 to 279). Values of t calculated for different values of r are listed in Table 6.2-9. The null hypothesis that the population correlation coefficient is equal to zero (no correlation) can be rejected at the 99 percent confidence level if the value of t is less than 2.576 (Lide and Frederikse 1997 [DIRS 103178], p. A-105) because the one-tail area under the probability distribution function for t is equal to 0.995 for t = 2.576. This corresponds to the value of r equal to 0.0813. The distribution of t approaches a normal distribution when the degrees of freedom are large, which is the case here. Thus, for correlation coefficients less than 0.0813, the value is set to zero in Table 6.2-8. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-30 September 2004 Table 6.2-8. Rank Correlation Coefficients for the Present-Day Climate Biosphere Dose Conversion Factors for Individual Radionuclides C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Pb-210 Ra-226 Ac-227 Th-229 Th-230 C-14 1.000 Cl-36 0 1.000 Se-79 0 0.211 1.000 Sr-90 0 0.390 0.197 1.000 Tc-99 0 0.494 0.196 0.388 1.000 Sn-126 0 0.226 0.213 0.155 0.193 1.000 I-129 0 0.301 0.171 0.318 0.328 0.117 1.000 Cs-135 0.129 0.108 0.128 0.147 0 0.154 0.096 1.000 Cs-137 0 0 0 0.252 0 0 0 0.693 1.000 Pb-210 0 0 0 0.159 0 0 0.131 0.140 0.189 1.000 Ra-226 0 0 0.210 0.154 0 0.429 0.100 0.203 0.152 0.085 1.000 Ac-227 0 0 0 0.126 0.101 0 0 0 0.179 0 0.086 1.000 Th-229 0 0.126 0.190 0.111 0.127 0.323 0.088 0.197 0.111 0 0.424 0.389 1.000 Th-230 0 0.122 0.231 0 0.105 0.458 0.104 0.236 -0.091 0 0.704 0 0.676 1.000 Th-232 0 0.134 0.212 0.121 0.136 0.385 0.105 0.218 0.102 0 0.507 0.304 0.976 0.780 Pa-231 0 0.132 0.194 0.109 0.156 0.362 0.085 0.163 0 0 0.423 0.186 0.752 0.538 U-232 0 0.146 0 0.156 0.166 0 0 0 0.129 0 0.083 0.675 0.336 0 U-233 0 0.187 0 0 0.179 0.163 0 0.090 0 0 0.115 0.243 0.328 0.255 U-234 0 0.174 0 0.089 0.175 0.142 0 0.084 0 0 0.112 0.317 0.310 0.209 U-236 0 0.168 0 0.093 0.169 0.127 0 0 0 0 0.093 0.338 0.308 0.177 U-238 0 0.171 0 0.095 0.171 0.128 0 0 0 0 0.093 0.319 0.294 0.176 Np-237 0 0.389 0.170 0.249 0.385 0.188 0.187 0.098 0 0 0.147 0.500 0.413 0.225 Pu-238 0 0 0 0.196 0.108 0 0 0.098 0.284 0.111 0.150 0.764 0.490 0 Pu-239 0 0.153 0.163 0.132 0.162 0.329 0.099 0.190 0 0 0.412 0.368 0.784 0.514 Pu-240 0 0.151 0.159 0.138 0.162 0.320 0.098 0.188 0 0 0.406 0.383 0.784 0.497 Pu-242 0 0.153 0.164 0.130 0.163 0.332 0.099 0.191 0 0 0.414 0.363 0.783 0.520 Am-241 0 0.130 0.142 0.218 0.161 0.217 0.118 0.139 0.209 0 0.293 0.549 0.675 0.263 Am-243 0 0.139 0.187 0.151 0.152 0.335 0.113 0.171 0 0 0.392 0.307 0.678 0.470 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-31 September 2004 Table 6.2-8. Rank Correlations Coefficients for the Present-Day Climate Biosphere Dose Conversion Factors for Individual Radionuclides (Continued) Th-232 Pa-231 U-232 U-233 U-234 U-236 U-238 Np-237 Pu-238 Pu-239 Pu-240 Pu-242 Am-241 Am-243 C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Pb-210 Ra-226 Ac-227 Th-229 Th-230 Th-232 1.000 Pa-231 0.729 1.000 U-232 0.271 0.204 1.000 U-233 0.314 0.295 0.790 1.000 U-234 0.286 0.271 0.836 0.991 1.000 U-236 0.276 0.267 0.852 0.984 0.998 1.000 U-238 0.266 0.257 0.845 0.986 0.998 0.999 1.000 Np-237 0.368 0.361 0.445 0.326 0.344 0.349 0.339 1.000 Pu-238 0.392 0.342 0.554 0.205 0.260 0.284 0.267 0.425 1.000 Pu-239 0.740 0.753 0.329 0.333 0.329 0.331 0.317 0.448 0.617 1.000 Pu-240 0.737 0.749 0.340 0.331 0.329 0.332 0.319 0.452 0.639 0.999 1.000 Pu-242 0.742 0.754 0.325 0.333 0.329 0.330 0.317 0.447 0.610 1.000 0.999 1.000 Am-241 0.600 0.569 0.462 0.286 0.313 0.329 0.314 0.489 0.624 0.658 0.668 0.654 1.000 Am-243 0.655 0.643 0.283 0.288 0.285 0.284 0.273 0.417 0.384 0.665 0.663 0.665 0.902 1.000 Source: MO0407SPAINEXI.002 [DIRS 170597]; MO0407SPASRPBM.002 [DIRS 170755]; MO0306MWDBGSMF.001 [DIRS 163816]; MO0403SPAAEIBM.002 [DIRS 169392]; MO0407SPACRBSM.002 [DIRS 170677]; MO0406SPAETPBM.002 [DIRS 170150]. NOTE: See Excel file Correlations for Groundwater BDCFs MC_Rev 3.xls in Appendix B for details of calculations. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-32 September 2004 Table 6.2-9. Calculated Values of Correlation Coefficient and Variable t Calculated Correlation Coefficient, r t 0.0000 0.000 0.0100 0.316 0.0200 0.632 0.0300 0.948 0.0400 1.265 0.0500 1.582 0.0600 1.899 0.0610 1.931 0.0620 1.962 0.0630 1.994 0.0700 2.217 0.0780 2.472 0.0790 2.504 0.0800 2.535 0.0810 2.567 0.0812 2.574 0.0813 2.577 0.0820 2.599 0.1000 3.175 0.1200 3.819 0.1400 4.467 0.1600 5.121 0.1800 5.781 0.2000 6.449 NOTE: See Excel file Correlations for Groundwater BDCFs MC_Rev 3.xls in Appendix B for details of calculations. 6.2.4 TSPA Use of Biosphere Dose Conversion Factors The assessment of annual doses will be carried out in the TSPA-LA model, which uses BDCFs as input parameters. The TSPA-LA model calculates annual fluxes of individual radionuclides at a specified distance from the repository, which, when divided by the annual water demand, yield radionuclide concentrations in the groundwater used by the receptor. The total annual dose is the sum of the annual doses from the 28 radionuclides tracked in the TSPA-LA model. The total annual dose is calculated (BSC 2004 [DIRS 169460], Sections 6.4.10.2 and 6.4.10.4) as . ื = i i i total t Cw BDCF t D ) ( ) ( (Eq. 6.2-5) where Dtotal(t) = time-dependent total annual dose to a defined receptor resulting from the release of radionuclides from the repository; includes contributions from all radionuclides considered in the TSPA-LA (mrem/yr) BDCFi = biosphere dose conversion factor for radionuclide i (mrem/yr per pCi/L) Cwi(t) = time-dependent activity concentration of radionuclide i in the groundwater (pCi/L). Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-33 September 2004 Equation 6.2-5 is based on a linear relationship between groundwater concentrations and dose. The BDCFs are calculated for constant activity concentration of radionuclides in the soil, which occurs after the equilibrium concentration of radionuclides in soil has been reached. Equilibrium conditions are reached if irrigation is sustained for a sufficiently long period of time, which varies among radionuclides from years to thousands of years, depending on the effective removal rate of the radionuclide from soil. Some radionuclides, such as isotopes of thorium, plutonium, and americium, have low removal rates from soils. These radionuclides build up slowly in the soil and it may take on the order of thousands of years to reach equilibrium concentrations. In the event that equilibrium conditions for a radionuclide have not been reached and groundwater concentrations are increasing, this approximation will result in overestimating the dose for that radionuclide (BSC 2004 [DIRS 169460], Section 6.3.1.4). If concentrations in groundwater are decreasing, the dose may be underestimated (BSC 2004 [DIRS 169460], Section 6.3.1.4). However, it is unlikely that groundwater concentrations will decrease until long after the period of 20,000 years used for the TSPA-LA. The annual dose for a point in time, t, is calculated using the activity concentration in water at time t, Cw(t). The product of the radionuclide concentration and the BDCF represents the dose that would prevail if the radionuclide concentration in water, Cw(t), persisted prior to time, t, long enough for this radionuclide to reach equilibrium in the soil. 6.2.5 Pathway Analysis Pathway analysis was conducted to determine the relative importance of individual exposure pathways in terms of contributions to BDCFs for various radionuclides. The biosphere model explicitly addresses 15 exposure pathways, and percent contributions to the BDCF were calculated using the mean values of the BDCFs. The results for the present-day climate BDCFs are presented in Table 6.2-10. These calculations were performed using Excel (GW BDCF Pathway Analysis MC_Rev 3.xls; Appendix B). Pathway contributions differ among radionuclides. Inhalation of particulate matter tends to dominate doses for actinides (e.g., isotopes of thorium, uranium, plutonium, and americium). Inhalation of radioactive aerosols generated by evaporative coolers also is an important inhalation exposure pathway for these radionuclides. Ingestion of water is a consistently high contributor to dose. Other pathways are only important for a few radionuclides. For instance, external exposure is a dominant pathway for 126Sn and 137Cs, inhalation of radon decay products for 226Ra and 230Th, and fish consumption for 14C, isotopes of cesium, and 210Pb. Consumption pathways generally are more important for radionuclides with atomic numbers less than about 88. For the future climate, the importance of the evaporative cooler pathway is greatly reduced, and for most radionuclides, the inhalation of particulate matter and the consumption of water are dominant pathways (Table 6.2-11). These calculations were performed using Excel (GW BDCF Pathway Analysis FC_Rev 3.xls; Appendix B). Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-34 September 2004 Table 6.2-10. Exposure Pathway Contributions (Percent) for the Present-Day Climate Biosphere Dose Conversion Factors Inhalation Ingestion Radionuclide External exposure Particul. Matter Evap. Cooler Radon Water Leafy Veget. Other Veget. Fruit Grain Meat Milk Poultry Eggs Fish Soil C-14 0.0 0.0 0.0 0.0 16.8 2.8 5.0 13.0 0.6 7.0 3.3 0.6 5.5 45.3 0.0 Cl-36 0.1 0.0 0.2 0.0 10.7 3.2 4.9 16.5 2.6 22.7 18.5 0.0 9.0 11.4 0.0 Se-79 0.0 0.1 0.0 0.0 10.3 0.7 0.5 1.6 0.1 55.1 3.2 2.0 21.9 3.8 0.6 Sr-90 0.5 0.1 0.3 0.0 68.2 6.6 3.7 6.2 0.6 3.0 3.7 0.0 1.6 5.1 0.4 Tc-99 0.0 0.0 0.7 0.0 47.2 12.0 2.1 7.7 0.5 4.3 13.5 0.2 10.0 1.6 0.0 Sn-126 98.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.1 1.0 0.0 I-129 0.1 0.1 0.1 0.0 59.9 2.6 0.7 3.0 0.4 5.0 7.5 0.2 14.2 5.4 0.8 Cs-135 0.0 0.1 0.0 0.0 9.3 1.4 0.9 4.2 0.2 10.3 5.8 7.3 5.5 54.0 1.1 Cs-137 43.0 0.0 0.0 0.0 7.6 0.4 0.1 0.5 0.0 1.7 1.0 0.9 0.7 44.1 0.1 Pb-210 0.0 0.2 0.5 0.0 58.8 2.6 0.6 2.3 0.3 0.3 0.2 0.1 1.4 32.4 0.4 Ra-226 6.8 0.3 0.0 89.2 1.0 0.3 0.2 0.6 0.0 0.1 0.1 0.0 0.7 0.1 0.6 Ac-227 0.3 16.8 42.6 0.0 34.7 1.4 0.3 1.2 0.1 0.1 0.0 0.0 0.0 2.2 0.2 Th-229 3.0 71.9 12.5 0.0 8.6 0.5 0.1 0.4 0.0 0.1 0.0 0.0 0.0 1.8 0.9 Th-230 5.7 13.6 2.2 74.5 1.4 0.3 0.1 0.6 0.0 0.1 0.1 0.0 0.6 0.3 0.6 Th-232 25.0 53.9 8.8 0.0 8.2 0.7 0.2 0.6 0.1 0.1 0.1 0.0 0.0 1.5 0.9 Pa-231 1.3 84.7 2.5 0.0 7.7 0.6 0.2 0.8 0.1 0.1 0.0 0.0 0.0 0.2 1.8 U-232 12.3 20.6 33.9 0.0 26.6 1.1 0.3 0.9 0.1 0.1 0.1 0.2 0.8 2.7 0.3 U-233 1.3 68.3 14.3 0.0 11.4 0.6 0.2 0.6 0.1 0.1 0.1 0.2 1.6 0.3 0.9 U-234 0.4 52.3 20.4 4.9 16.2 0.8 0.2 0.7 0.1 0.1 0.1 0.3 2.2 0.5 0.7 U-236 0.0 54.9 21.7 0.0 17.3 0.8 0.2 0.8 0.1 0.1 0.2 0.4 2.3 0.5 0.8 U-238 3.7 52.1 20.6 0.0 17.3 0.8 0.2 0.8 0.1 0.1 0.2 0.4 2.4 0.5 0.8 Np-237 2.6 22.5 15.2 0.0 46.5 2.6 1.0 4.3 0.2 0.9 0.0 0.0 0.0 3.0 1.2 Pu-238 0.0 20.6 16.4 0.0 49.8 2.1 0.5 1.7 0.2 0.0 0.0 0.0 0.0 7.3 1.1 Pu-239 0.0 52.5 9.1 0.0 27.9 1.5 0.3 1.3 0.2 0.0 0.0 0.0 0.1 4.1 2.9 Pu-240 0.0 51.5 9.4 0.0 28.7 1.5 0.3 1.3 0.2 0.0 0.0 0.0 0.1 4.2 2.8 Pu-242 0.0 53.1 9.1 0.0 27.5 1.5 0.3 1.3 0.2 0.0 0.0 0.0 0.1 4.1 2.9 Am-241 0.1 38.2 12.8 0.0 39.0 1.8 0.4 1.6 0.2 0.1 0.0 0.0 0.0 3.7 2.1 Am-243 5.6 49.0 9.1 0.0 27.7 1.5 0.3 1.3 0.1 0.1 0.0 0.0 0.0 2.6 2.7 Source: MO0407SPAINEXI.002 [DIRS 170597]; MO0407SPASRPBM.002 [DIRS 170755]; MO0306MWDBGSMF.001 [DIRS 163816]; MO0403SPAAEIBM.002 [DIRS 169392]; MO0407SPACRBSM.002 [DIRS 170677]; MO0406SPAETPBM.002 [DIRS 170150]. NOTES: See Excel file GW BDCF Pathway Analysis MC_Rev 3.xls in Appendix B for details of calculations. Particul. = Particulate; Evap. = Evaporative; Veget. = Vegetables Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-35 September 2004 Table 6.2-11. Exposure Pathway Contributions (Percent) for the Upper Bound of Glacial Transition Climate Biosphere Dose Conversion Factors Inhalation Ingestion Radionuclide External exposure Particul. Matter Evap. Cooler Radon Water Leafy Veget. Other Veget. Fruit Grain Meat Milk Poultry Eggs Fish Soil C-14 0.0 0.0 0.0 0.0 18.0 2.9 3.7 10.1 0.7 6.4 3.1 0.7 6.2 48.6 0.0 Cl-36 0.1 0.0 0.1 0.0 15.2 3.4 5.1 17.3 2.7 23.5 19.0 0.0 10.6 9.4 0.0 Se-79 0.0 0.1 0.0 0.0 15.0 0.7 0.4 1.4 0.1 48.6 2.9 1.7 19.1 3.2 0.5 Sr-90 0.3 0.1 0.1 0.0 78.4 4.8 2.4 3.9 0.4 2.1 2.6 0.0 1.2 3.4 0.2 Tc-99 0.0 0.0 0.2 0.0 56.4 10.7 1.8 6.3 0.5 3.8 11.8 0.2 9.2 1.1 0.0 Sn-126 97.7 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.1 1.0 0.0 I-129 0.1 0.1 0.0 0.0 69.0 2.1 0.5 1.9 0.3 3.9 5.8 0.2 11.6 3.6 0.6 Cs-135 0.0 0.1 0.0 0.0 15.1 1.3 0.8 3.7 0.2 9.4 5.2 6.6 5.0 51.1 1.0 Cs-137 37.9 0.0 0.0 0.0 12.6 0.4 0.1 0.5 0.0 1.7 1.0 0.9 0.7 42.7 0.1 Pb-210 0.0 0.1 0.1 0.0 71.1 2.2 0.4 1.4 0.2 0.2 0.1 0.0 1.2 22.6 0.3 Ra-226 6.1 0.3 0.0 89.4 1.7 0.3 0.1 0.5 0.0 0.1 0.1 0.0 0.6 0.1 0.5 Ac-227 0.3 15.8 16.4 0.0 61.6 1.8 0.3 1.0 0.2 0.1 0.0 0.0 0.0 2.3 0.2 Th-229 3.0 72.2 5.1 0.0 16.1 0.6 0.1 0.4 0.1 0.1 0.0 0.0 0.1 2.0 0.9 Th-230 5.3 12.6 0.8 77.6 2.4 0.3 0.1 0.5 0.0 0.1 0.1 0.0 0.5 0.3 0.6 Th-232 24.5 52.9 3.5 0.0 14.9 0.8 0.2 0.5 0.1 0.1 0.1 0.0 0.0 1.6 0.9 Pa-231 1.3 81.4 1.0 0.0 13.5 0.7 0.2 0.7 0.1 0.1 0.0 0.0 0.0 0.2 1.8 U-232 12.1 20.3 13.2 0.0 47.5 1.4 0.2 0.9 0.2 0.1 0.1 0.2 1.0 2.8 0.3 U-233 1.4 72.3 5.8 0.0 21.1 0.8 0.2 0.6 0.1 0.1 0.1 0.3 1.8 0.4 0.9 U-234 0.4 54.0 8.1 5.8 29.7 1.0 0.2 0.7 0.1 0.1 0.2 0.4 2.4 0.5 0.8 U-236 0.0 57.0 8.7 0.0 31.8 1.1 0.2 0.8 0.1 0.1 0.2 0.4 2.6 0.6 0.8 U-238 3.8 53.6 8.2 0.0 31.7 1.0 0.2 0.8 0.1 0.1 0.2 0.4 2.6 0.6 0.8 Np-237 2.2 18.9 4.5 0.0 63.7 2.4 0.8 3.6 0.2 0.8 0.0 0.0 0.0 2.4 1.0 Pu-238 0.0 15.2 5.0 0.0 69.2 2.1 0.3 1.2 0.2 0.0 0.0 0.0 0.0 5.9 0.8 Pu-239 0.0 44.4 3.1 0.0 43.5 1.6 0.3 1.0 0.2 0.0 0.0 0.0 0.1 3.7 2.5 Pu-240 0.0 43.3 3.2 0.0 44.4 1.6 0.3 1.0 0.2 0.0 0.0 0.0 0.1 3.8 2.4 Pu-242 0.0 45.0 3.1 0.0 43.0 1.6 0.3 1.0 0.2 0.0 0.0 0.0 0.1 3.7 2.5 Am-241 0.1 30.3 4.1 0.0 57.4 1.9 0.3 1.2 0.2 0.1 0.0 0.0 0.0 3.1 1.7 Am-243 4.8 41.6 3.1 0.0 43.5 1.5 0.3 1.0 0.2 0.1 0.0 0.0 0.0 2.4 2.3 Source: MO0407SPAINEXI.002 [DIRS 170597]; MO0407SPASRPBM.002 [DIRS 170755]; MO0306MWDBGSMF.001 [DIRS 163816]; MO0403SPAAEIBM.002 [DIRS 169392]; MO0407SPACRBSM.002 [DIRS 170677]; MO0406SPAETPBM.002 [DIRS 170150]. NOTES: See Excel file GW BDCF Pathway Analysis FC_Rev 3.xls in Appendix B for details of calculations Particul. = Particulate; Evap. = Evaporative; Veget. = Vegetables . Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-36 September 2004 6.3 DOSE FACTORS FOR GROUNDWATER PROTECTION STANDARD The groundwater protection standard (10 CFR 63.331 [DIRS 156605]) prohibits releasing radionuclides from the repository to the accessible environment in excess of the values in Table 6.3-1 in 3,000-acre feet of water (representative volume) (10 CFR 63.332 [DIRS 156605]). Table 6.3-1. Limits on Radionuclides in the Representative Volume Radionuclide or type of radiation emitted Limit Is natural background included? Combined radium-226 and radium-228 5 picocuries per liter Yes Gross alpha activity (including radium-226 but excluding radon and uranium) 15 picocuries per liter Yes Combined beta and photon emitting radionuclides 0.04 mSv (4 mrem) per year to the whole body or any organ, based on drinking 2 liters of water per day from the representative volume No Source: 10 CFR 63.331 [DIRS 156605]. Gross alpha particle activity means the total radioactivity due to alpha particle emission as inferred from measurements on a dry sample (40 CFR 141.2 [DIRS 103999]). For this analysis, evaluation of gross alpha activity for consideration in TSPA is based on calculation, rather than measurement, of total alpha emissions from the primary radionuclides and their decay products (Section 6.1.1). The calculation of radionuclide concentrations in water are based on the representative volume, which contains 3,000 acre-feet of water (about 3,714,450,000 liters) (10 CFR 63.332 [DIRS 156605]). Table 6.3-2 lists primary radionuclides (Section 6.1.1), short-lived decay products, radionuclide emissions, and applicable limits from the groundwater protection standard. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-37 September 2004 Table 6.3-2. Primary Radionuclides, Decay Products, and Applicable Groundwater Protection Limits Type and Energy of Radiation (MeV per nuclear transformation) Primary Radionuclide and Mode of Decay Short-lived Decay Product and Mode of Decay BF Alpha Electron Photon Half-life Applicable Limit Carbon-14 ฿- 1 - 0.049 - 5730 years 0.04 mSv (4 mrem) per year; ฿, . Chlorine-36 EC ฿+ ฿- 1 - 0.274 < 3.01E+05 years 0.04 mSv (4 mrem) per year; ฿, . Selenium-79 ฿- 1 - 0.056 - 6.50E+04 years 0.04 mSv (4 mrem) per year; ฿, . Strontium-90 ฿- 1 - 0.196 - 29.12 years 0.04 mSv (4 mrem) per year; ฿, . Yttrium-90 ฿- 1 - 0.935 < 64.0 hours 0.04 mSv (4 mrem) per year; ฿, . Technetium-99 ฿- 1 - 0.101 - 2.13E+05 years 0.04 mSv (4 mrem) per year; ฿, . Tin-126 ฿- 1 - 0.172 0.057 1.0E+05 years 0.04 mSv (4 mrem) per year; ฿, . Antimony-126m IT ฿- 1 - 0.591 1.548 19.0 minutes 0.04 mSv (4 mrem) per year; ฿, . Antimony-126 ฿- 0.14 - 0.283 2.834 12.4 days 0.04 mSv (4 mrem) per year; ฿, . Iodine-129 ฿- 1 - 0.064 0.025 1.57E+07 years 0.04 mSv (4 mrem) per year; ฿, . Cesium-135 ฿- 1 - 0.067 - 2.3E+06 years 0.04 mSv (4 mrem) per year; ฿, . Cesium-137 ฿- 1 - 0.187 - 30.0 years 0.04 mSv (4 mrem) per year; ฿, . Barium-137m IT 0.946 - 0.065 0.597 2.552 minutes 0.04 mSv (4 mrem) per year; ฿, . T h o r i u m S e r i e s (4n) Plutonium-240 SF a 1 5.156 0.011 0.002 6.537E+03 years 15 pCi/L; a Uranium-236 a 1 4.505 0.011 0.002 2.3415E+07 year excluded Thorium-232 a 1 3.996 0.012 0.001 1.405E+10 years 15 pCi/L; a Radium-228 ฿- 1 - 0.017 < 5.75E+00 years 5 pCi/L of Ra-226 + Ra-228 0.04 mSv (4 mrem) per year; ฿, . Actinium-228 ฿- 1 - 0.475 0.971 6.13 hours 0.04 mSv (4 mrem) per year; ฿, . Uranium-232 a 1 5.302 0.017 0.002 72 years excluded Thorium-228 a 1 5.400 0.021 0.003 1.9131 years 15 pCi/L; a Radium-224 a 1 5.674 0.002 0.010 3.66 days 15 pCi/L; a Radon-220 a 1 6.288 < < 55.6 seconds excluded Polonium-216 a 1 6.779 < < 0.15 seconds 15 pCi/L; a Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-38 September 2004 Table 6.3-2. Primary Radionuclides, Decay Products, and Applicable Groundwater Protection Limits (Continued) Type and Energy of Radiation (MeV per nuclear transformation) Primary Radionuclide and Mode of Decay Short-lived Decay Product and Mode of Decay BF Alpha Electron Photon Half-life Applicable Limit Lead-212 ฿- 1 - 0.176 0.148 10.64 hours 0.04 mSv (4 mrem) per year; ฿, . Bismuth-212 ฿- a 1 2.174 0.472 0.186 60.55 minutes 15 pCi/L; a 0.04 mSv (4 mrem) per year; ฿, . Polonium-212 a 0.6407 8.785 - - 0.305 ตs 15 pCi/L; a Thallium-208 ฿- 0.3593 - 0.598 3.375 3.07 minutes 0.04 mSv (4 mrem) per year; ฿, . N e p t u n i u m S e r i e s (4n + 1) Americium-241 a 1 5.479 0.052 0.033 432.2 years 15 pCi/L; a Neptunium-237 a 1 4.769 0.070 0.035 2.14E+06 years 15 pCi/L; a Protactinium-233 ฿- 1 - 0.196 0.204 27.0 days 0.04 mSv (4 mrem) per year; ฿, . Uranium-233 a 1 4.817 0.006 0.001 1.585E+05 years excluded Thorium-229 a 1 4.873 0.116 0.096 7340 years 15 pCi/L; a Radium-225 ฿- 1 - 0.107 0.014 14.8 days 0.04 mSv (4 mrem) per year; ฿, . Actinium-225 a 1 5.787 0.022 0.018 10.0 days 15 pCi/L; a Francium-221 a 1 6.304 0.010 0.031 4.8 minutes 15 pCi/L; a Astatine-217 a 1 7.067 < < 32.3 ms 15 pCi/L; a Bismuth-213 ฿- a 1 0.126 0.442 0.133 45.65 minutes 15 pCi/L; a 0.04 mSv (4 mrem) per year; ฿, . Polonium-213 a 0.9784 8.376 - - 4.2 ตs 15 pCi/L; a Thallium-209 ฿- 0.0216 - 0.688 2.032 2.20 minutes 0.04 mSv (4 mrem) per year; ฿, . Lead-209 ฿- - - 0.198 - 3.253 hours 0.04 mSv (4 mrem) per year; ฿, . U r a n i u m S e r i e s (4n + 2) Plutonium-242 SF a 1 4.891 0.009 0.001 3.763E+05 years 15 pCi/L; a Uranium-238 SF a 1 4.187 0.010 0.001 4.468E+09 years excluded Thorium-234 ฿- 1 - 0.060 0.009 24.10 days 0.04 mSv (4 mrem) per year; ฿, . Protactinium-234m ฿- IT 99.80 - 0.822 0.012 1.17 minutes 0.04 mSv (4 mrem) per year; ฿, . Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-39 September 2004 Table 6.3-2. Primary Radionuclides, Decay Products, and Applicable Groundwater Protection Limits (Continued) Type and Energy of Radiation (MeV per nuclear transformation) Primary Radionuclide and Mode of Decay Short-lived Decay Product and Mode of Decay BF Alpha Electron Photon Half-life Applicable Limit Protactinium-234 ฿- 0.33 - 0.494 1.919 6.70 hours 0.04 mSv (4 mrem) per year; ฿, . Plutonium-238 SF a 1 5.487 0.011 0.002 87.74 years 15 pCi/L; a Uranium-234 a 1 4.758 0.013 0.002 2.445E+05 years excluded Thorium-230 a 1 4.671 0.015 0.002 7.7E+04 years 15 pCi/L; a Radium-226 a 1 4.774 0.004 0.007 1600 years 5 pCi/L of Ra-226 + Ra-228 15 pCi/L; a Radon-222 a 1 5.489 < < 3.8235 days excluded Polonium-218 a 1 6.001 < < 3.05 minutes 15 pCi/L; a Lead-214 ฿- 0.9998 - 0.293 0.250 26.8 minutes 0.04 mSv (4 mrem) per year; ฿, . Astatine-218 a 0.0002 6.697 0.040 0.007 2 seconds 15 pCi/L; a Bismuth-214 ฿- 1 - 0.659 1.508 19.9 minutes 15 pCi/L; a 0.04 mSv (4 mrem) per year; ฿, . Polonium-214 a 0.9998 7.687 < < 164.3 ตs 15 pCi/L; a Thallium-210 ฿- 0.0002 - 1.3 minutes 0.04 mSv (4 mrem) per year; ฿, . Lead-210 ฿- 1 - 0.038 0.005 22.3 years 0.04 mSv (4 mrem) per year; ฿, . Bismuth-210 ฿- 1 - 0.389 - 5.012 days 0.04 mSv (4 mrem) per year; ฿, . Polonium-210 a 1 5.297 < < 138.38 days 15 pCi/L; a A c t i n i u m S e r i e s (4n + 3) Americium-243 a 1 5.270 0.022 0.056 7380 years 15 pCi/L; a Neptunium-239 ฿- 1 - 0.260 0.173 2.355 days 0.04 mSv (4 mrem) per year; ฿, . Plutonium-239 a 1 5.148 0.007 < 2.4065E+04 years 15 pCi/L; a Uranium-235 a 1 4.396 0.049 0.156 7.038E+08 years excluded Thorium-231 ฿- 1 - 0.165 0.026 25.52 hours 0.04 mSv (4 mrem) per year; ฿, . Protactinium-231 a 1 4.969 0.065 0.048 3.276E+04 years 15 pCi/L; a Actinium-227 ฿- a 1 0.068 0.016 < 21.773 years 15 pCi/L; a 0.04 mSv (4 mrem) per year; ฿, . Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-40 September 2004 Table 6.3-2. Primary Radionuclides, Decay Products, and Applicable Groundwater Protection Limits (Continued) Type and Energy of Radiation (MeV per nuclear transformation) Primary Radionuclide and Mode of Decay Short-lived Decay Product and Mode of Decay BF Alpha Electron Photon Half-life Applicable Limit Thorium-227 a 0.9862 5.884 0.053 0.110 18.718 days 15 pCi/L; a Francium-223 ฿- 0.0138 - 0.400 0.059 21.8 minutes 0.04 mSv (4 mrem) per year; ฿, . Radium-223 a 1 5.667 0.076 0.134 11.434 days 15 pCi/L; a Radon-219 a 1 6.757 0.006 0.056 3.96 seconds excluded Polonium-215 a 1 7.386 < < 1.78 ms 15 pCi/L; a Lead-211 ฿- 1 - 0.456 0.051 36.1 minutes 0.04 mSv (4 mrem) per year; ฿, . Bismuth-211 a ฿- 1 6.550 0.010 0.047 2.14 minutes 15 pCi/L; a Thallium-207 ฿- 0.9972 - 0.493 0.002 4.77 minutes 0.04 mSv (4 mrem) per year; ฿, . Polonium-211 a 0.0028 7.442 < 0.008 0.516 seconds 15 pCi/L; a Source: Eckerman and Ryman 1993 [DIRS 107684], Table A.1; except for 210Tl for which Lide and Frederikse 1997 [DIRS 103178], p. 11-125 was used. NOTE: Short-lived decay products of primary radionuclides are modeled to be in secular equilibrium with their parents. BF = branching fraction; EC = electron capture; SF = spontaneous fission; IT = isomeric transformation. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-41 September 2004 The combined activity concentration of 226Ra and 228Ra in the groundwater is calculated based on the annual mass flux of these radionuclides and the representative volume. The natural background concentrations of 226Ra and 228Ra in groundwater must be included with the calculated activity (10 CFR 63.331 [DIRS 156605]) for comparison to the limit of 5 pCi/L. For determining alpha activity concentration (including 226Ra but excluding radon and uranium) for comparison with the limit for gross alpha activity of 15 pCi/L, the activity concentration of primary radionuclides in groundwater is calculated based on the annual mass flux of these radionuclides and the representative volume. Alpha particle activity is calculated as the total of alpha emissions from all primary radionuclides and decay products included in the model (Section 6.1.1). Consistent with the approach used in the biosphere model (BSC 2004 [DIRS 169460], Section 6.3.1.4), short-lived decay products of a primary radionuclide are modeled to be in secular equilibrium with the primary radionuclide. After the activity concentration of a primary radionuclide in the groundwater is calculated, the value is multiplied by the number of alpha particles included in the decay chain to calculate the total number of alpha particles associated with the decay of the primary radionuclide. The number of alpha particles is shown in Table 6.3-3. For example, if the calculated activity concentration of 229Th in groundwater is 2 pCi/L, the alpha activity associated with the decay of 229Th is 2 pCi/L ื 5 alpha particles per decay = 10 pCi/L. The natural background concentrations of alpha emitters in groundwater (including 226Ra but excluding radon and uranium) (10 CFR 63.331 [DIRS 156605]) must be included in the calculation of alpha activity concentration. Table 6.3-3. Number of Alpha Particles Emitted per One Decay of a Primary Radionuclide Considered in the Gross Alpha Activity Limit of the Groundwater Protection Standard Primary Radionuclide Short-lived Decay Products Number of Alpha Particles T h o r i u m S e r i e s (4n) Plutonium-240 100% a 1 Uranium-236 b (100%) 0 b Thorium-232 c 100% 1 Uranium-232 b, d (100%) 0 b Thorium-228 c, d 100% 4 b Radium-224 100% Radon-220 b (100%) Polonium-216 100% Bismuth-212 35.93% Polonium-212 64.07% N e p t u n i u m S e r i e s (4n + 1) Americium-241 100% 1 Neptunium-237 100% 1 Uranium-233 b (100%) 0 b Thorium-229 100% 5 Actinium-225 100% Francium-221 100% Astatine-217 100% Bismuth-213 2.16% Polonium-213 97.84% Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-42 September 2004 Table 6.3-3. Number of Alpha Particles Emitted per One Decay of a Primary Radionuclide Considered in the Gross Alpha Activity Limit of the Groundwater Protection Standard (Continued) Primary Radionuclide Short-lived Decay Products Number of Alpha Particles U r a n i u m S e r i e s (4n + 2) Plutonium-242 100% 1 Uranium-238 b (100%) 0 b Plutonium-238 100% 1 Uranium-234 b (100%) 0 b Thorium-230 100% 1 Radium-226 100% 3 b Radon-222 b (100%) Polonium-218 99.98% Astatine-218 0.02% Bismuth-214 0.02% Polonium-214 99.98% Lead-210 ฿- 1 e Polonium-210 100% A c t i n i u m S e r i e s (4n + 3) Americium-243 100% 1 Plutonium-239 100% 1 Uranium-235 b (100%) 0 b Protactinium-231 100% 1 Actinium-227 1.38% 4 b Thorium-227 98.62% Radium-223 100% Radon-219 b (100%) Polonium-215 100% Bismuth-211 99.73% Polonium-211 0.273% a Percent alpha particles emitted per disintegration. b Isotopes of radon and uranium have been excluded, per 10 CFR 63.331 [DIRS 156605]. c 232Th is accompanied in the groundwater by its relatively long-lived decay products, 228Ra and 228Th (and their short-lived decay products), which are not being tracked in TSPA. If radioactive equilibrium between 232Th, 228Ra and 228Th is assumed, the number of alpha particles for 228Th should be added to that for 232Th for a total of 5. (228Ra and its decay product 228Ac are beta-emitters so they do not contribute to the alpha particle number.) d 232U is accompanied in the groundwater by its relatively long-lived decay product, 228Th (and its short-lived decay products). If radioactive equilibrium between 232U and 228Th is assumed, the number of alpha particles for 228Th should be attributed to that for 232U for a total of 4. e If concentration of 210Pb in groundwater is not calculated, it can be assumed that 210Pb is in radioactive equilibrium with 226Ra. If this is the case, the number of alpha particles for 210Pb should be added to that for 226Ra for a total of 4. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-43 September 2004 The alpha particle activity concentration in water is calculated as (Eq. 6.3-1) where C a = total alpha particle activity concentration in groundwater (Bq/m3 or pCi/L) Cwi = activity concentration of a primary radionuclide i in groundwater (Bq/m3 or pCi/L) N a, i = number of alpha particles attributed to one decay of a primary radionuclide i (from Table 6.3-3) The annual dose limit for beta- and photon-emitting radionuclides is 0.04 mSv (4 mrem) per year, based on the consumption of 2 liters of water per day (10 CFR 63.331 [DIRS 156605]). This limit applies to radionuclides other than alpha emitters. Alpha emitters are covered under the gross alpha limit of the groundwater protection standard. If a radionuclide decays with emissions of alpha and beta radiation, this analysis considers the radionuclide for both gross alpha and annual dose. This is the case for several radionuclides (Table 6.3-2). Such an approach is conservative and ensures that all types of radiation emitted from a radionuclide are considered. Dose contributions for beta-photon emitters were calculated using dose conversion factors from FGR 11 (DOE 2004 [DIRS 169713]). These dose conversion factors include contributions from all emissions for each radionuclide. For example, if the fraction of decays of a radionuclide that primarily is a beta emitter undergoes an alpha decay, the dose from alpha particles is included in the dose conversion factor. Radionuclides such as 212Bi that have large fractions of alpha and beta decays are double counted (i.e., they are included in the gross alpha component and the dose component to ensure that all radionuclide emissions are counted). Radionuclides classified as alpha-beta emitters (Eckerman and Ryman 1993 [DIRS 107684], Table A.1), with a large fraction of alpha emission (about 99 percent or more; e.g., 218Po, 99.98 percent a; 211Bi, 99.73 percent a), are not included in calculating beta-photon dose; primary radionuclides that were included are listed in Table 6.3-4. . = i i i N Cw C , a a Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-44 September 2004 Table 6.3-4. Radionuclides and Their Decay Products Included in Calculation of Conversion Factors for Beta-Photon Emitters Primary Radionuclide and Mode of Decay Short-lived Decay Product and Mode of Decay Carbon-14 ฿- Chlorine-36 EC, ฿+, ฿- Selenium-79 ฿- Strontium-90 ฿- Yttrium-90 ฿- Technetium-99 ฿- Antimony-126m IT, ฿- Tin-126 ฿- Antimony-126 ฿- Iodine-129 ฿- Cesium-135 ฿- Cesium-137 ฿- Barium-137m IT T h o r i u m S e r i e s (4n) Radium-228 a ฿- Actinium-228 ฿- Lead-212 ฿- Bismuth-212 ฿- a Thorium-228 a a Thallium-208 ฿- N e p t u n i u m S e r i e s (4n + 1) Neptunium-237 a Protactinium-233 ฿- Radium-225 ฿- Bismuth-213 ฿- a Thallium-209 ฿- Thorium-229 a Lead-209 ฿- U r a n i u m S e r i e s (4n + 2) Thorium-234 ฿- Protactinium-234m ฿- IT Uranium-238 SF, a Protactinium-234 ฿- Lead-214 ฿- Bismuth-214 ฿- Radium-226 a Thallium-210 ฿- Lead-210 ฿- Bismuth-210 ฿- A c t i n i u m S e r i e s (4n + 3) Americium-243 a Neptunium-239 ฿- Francium-223 ฿- Lead-211 ฿- Actinium-227 ฿- a Thallium-207 ฿- a 228Ra and 228Th are not primary radionuclides (their concentration in groundwater are not calculated in TSPA) but they are treated as primary radionuclides in the biosphere model, as described in Section 6.1.1. EC = electron capture, IT = isomeric transformation, SF = spontaneous fission. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-45 September 2004 The annual dose from drinking 2 liters of water per day for a given concentration of a primary beta-photon-emitting radionuclide in groundwater is calculated as . .. . . .. . = . .. . . .. . = L pCi yr mrem CF L pCi Cw yr mrem D or m Bq yr Sv CF m Bq Cw yr Sv D i i i i i i / / ) / ( ) / ( / / ) / ( ) / ( 3 3 (Eq. 6.3-2) where Di = annual dose (committed effective dose equivalent or committed organ dose equivalent) from intake of radionuclide i by ingestion resulting from daily consumption of 2 liters of water (Sv/yr or mrem/yr, depending on the set of units used) Cwi = activity concentration of radionuclide i in groundwater (Bq/m3 or pCi/L, depending on the set of units used) CFi = conversion factor for calculating beta-photon dose from radionuclide i (Sv/yr per Bq/m3 or mrem/yr per pCi/L, depending on the set of units used). The conversion factor, CF, is numerically equal to the annual dose resulting from daily consumption of 2 liters of water containing a unit activity concentration of a given primary radionuclide and associated short-lived decay products. Conversion factors are calculated as rem mrem Sv rem Bq Sv EDCF pCi Bq yr d d L L pCi yr mrem CF or Bq Sv EDCF L m yr d d L m Bq yr Sv CF i i i i 1000 100 10 7 . 3 25 . 365 2 / / 10 25 . 365 2 / / 2 3 3 3 ื ื . .. . . .. . ื ื ื ื = . .. . . .. . . .. . . .. . ื ื ื = . .. . . .. . - - (Eq. 6.3-3) where EDCFi = effective dose conversion factor for ingestion of primary radionuclide i (Sv/Bq) Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-46 September 2004 The total dose from ingesting beta-gamma emitters in the groundwater is calculated as . = i i i CF Cw D (Eq. 6.3-4) The effective dose conversion factor for the ingestion of a primary radionuclide includes contributions from dose conversion factors for the short-lived decay products. The effective dose conversion factor is calculated as the weighted sum of the organ or whole body dose conversion factors for a primary radionuclide and its short-lived decay products, with the weights corresponding to the branching fractions: . ื + = s i s i s i i BF DCF DCF EDCF , , (Eq. 6.3-5) where DCF = dose conversion factor for primary radionuclide i (Sv/Bq), equal to zero if a primary radionuclide is not a beta-photon emitter DCFs,i = dose conversion factor for short-lived beta-photon emitting radionuclide s in a decay chain of a primary radionuclide i (Sv/Bq) BFs,i = branching fraction for short-lived beta-photon emitting radionuclide s in a decay chain of a primary radionuclide i (dimensionless) In this case, the effective dose conversion factors account only for contributions from beta- and photon-emitting radionuclides. Alpha emitters with a fraction of alpha decays greater than 99 percent are not included. Effective dose conversion factors for calculating annual beta-photon dose resulting from consumption of 2 liters of water per day are summarized in Table 6.3-5. The calculations were carried out in Excel (see file Conversion Factors for Groundwater Protection Standard_Rev 3.xls in Appendix B for details). The effective dose conversion factor for 232Th includes contributions from 228Ra and 228Th and their short-lived decay products. 232Th is accompanied in the groundwater by its relatively long -lived decay products, 228Ra and 228Th (and their short-lived decay products), which are not primary radionuclides (Section 6.1.1). The effective dose conversion factor for 232Th is calculated for the conditions of radioactive equilibrium between 232Th, 228Ra, and 228Th. 232Th itself is an alpha emitter, so it does not contribute to the value of its effective dose conversion factor. Similarly, 232U is accompanied in the groundwater by its relatively long-lived decay product, 228Th (and its short-lived decay products). The effective dose conversion factor attributable to 232U is calculated by including the contribution from 228Th and its short-lived decay products under the conditions of radioactive equilibrium between 232U and 228Th. 232U is an alpha emitter, so by itself does not contribute to the value of its effective dose conversion factor. Table 6.3-5 includes the value of the effective dose conversion factor for 226Ra (and its short-lived decay products), 210Pb (and its short-lived decay products) and, separately, the value Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-47 September 2004 for 226Ra that includes a contribution from 210Pb. The latter value was developed so that the contribution of this relatively long-lived radionuclide to the beta-photon dose is accounted for, in case its concentration in groundwater is not calculated in TSPA. 210Pb was screened out from the TSPA-LA calculations for the period of up to 20,000 years (BSC 2004 [DIRS 169460], Section 6.1.3). Tables 6.3-6 and 6.3-7 list conversion factors for calculating the beta-photon doses expressed in the units of Sv/yr per Bq/m3 and mrem/yr per pCi/L, respectively. The conversion factors were calculated using Equation 6.3-3 as shown in Appendix B. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-48 September 2004 Table 6.3-5. Effective Dose Conversion Factors (Sv/Bq) for Radionuclides Included in Calculation of Conversion Factors Organ or Tissue C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Th-232 Adrenal 5.64E-10 7.99E-10 9.06E-10 1.51E-09 6.04E-11 9.21E-10 1.32E-10 1.91E-09 1.50E-08 1.60E-07 Urinary Bladder 5.64E-10 7.99E-10 9.06E-10 1.51E-09 6.04E-11 1.18E-09 1.35E-10 1.91E-09 1.41E-08 1.59E-07 Bone Surface 5.64E-10 7.99E-10 9.06E-10 4.19E-07 6.04E-11 5.09E-09 2.17E-10 1.91E-09 1.26E-08 5.99E-06 Brain 5.64E-10 7.99E-10 9.06E-10 1.26E-14 6.04E-11 7.30E-10 0.00E+00 0.00E+00 0.00E+00 2.54E-13 Breast 5.64E-10 7.99E-10 9.06E-10 1.51E-09 6.04E-11 8.47E-10 3.31E-10 1.91E-09 1.24E-08 1.59E-07 Esophagus 5.64E-10 7.99E-10 9.06E-10 1.51E-09 6.04E-11 5.37E-10 3.51E-10 1.91E-09 1.24E-08 1.59E-07 Stomach Wall 5.64E-10 1.11E-09 9.70E-10 2.82E-09 3.39E-09 2.02E-09 2.19E-10 1.99E-09 1.39E-08 1.62E-07 Small Intestine Wall 5.64E-10 7.99E-10 9.38E-10 4.53E-09 1.19E-10 4.99E-09 1.41E-10 1.91E-09 1.44E-08 1.66E-07 Upper Large Intestine Wall 5.64E-10 7.99E-10 1.10E-09 1.89E-08 4.05E-10 1.69E-08 1.42E-10 1.91E-09 1.42E-08 1.83E-07 Lower Large Intestine Wall 5.64E-10 7.99E-10 1.48E-09 5.13E-08 1.10E-09 4.60E-08 1.39E-10 1.91E-09 1.44E-08 2.00E-07 Kidney 5.64E-10 7.99E-10 1.25E-08 1.51E-09 6.04E-11 8.79E-10 1.34E-10 1.91E-09 1.37E-08 1.69E-07 Liver 5.64E-10 7.99E-10 6.48E-09 1.51E-09 8.23E-11 7.30E-10 1.38E-10 1.91E-09 1.36E-08 1.80E-07 Lung 5.64E-10 7.99E-10 9.06E-10 1.51E-09 6.04E-11 6.10E-10 1.65E-10 1.91E-09 1.27E-08 1.59E-07 Muscle 5.64E-10 7.99E-10 9.06E-10 1.51E-09 6.04E-11 8.47E-10 3.31E-10 1.91E-09 1.24E-08 1.59E-07 Ovaries 5.64E-10 7.99E-10 9.06E-10 1.51E-09 6.04E-11 2.82E-09 1.38E-10 1.91E-09 1.29E-08 1.60E-07 Pancreas 5.64E-10 7.99E-10 3.89E-09 1.51E-09 6.04E-11 8.47E-10 1.41E-10 1.91E-09 1.34E-08 1.59E-07 Red Bone Marrow 5.64E-10 7.99E-10 9.06E-10 1.94E-07 6.04E-11 2.81E-09 2.21E-10 1.91E-09 1.32E-08 6.68E-07 Skin 5.64E-10 7.99E-10 9.06E-10 1.51E-09 6.04E-11 5.67E-10 2.11E-10 1.91E-09 1.04E-08 1.59E-07 Spleen 5.64E-10 7.99E-10 4.32E-09 1.51E-09 6.04E-11 7.80E-10 1.40E-10 1.91E-09 1.37E-08 1.59E-07 Testes 5.64E-10 7.99E-10 9.06E-10 1.51E-09 6.04E-11 7.19E-10 1.29E-10 1.91E-09 1.39E-08 1.59E-07 Thymus 5.64E-10 7.99E-10 9.06E-10 1.51E-09 6.04E-11 5.37E-10 3.51E-10 1.91E-09 1.24E-08 1.59E-07 Thyroid 5.64E-10 7.99E-10 9.06E-10 1.51E-09 1.62E-09 5.54E-10 2.48E-06 1.91E-09 1.26E-08 1.59E-07 Uterus 5.64E-10 7.99E-10 9.06E-10 1.51E-09 6.04E-11 1.44E-09 1.38E-10 1.91E-09 1.44E-08 1.59E-07 Whole Body 5.64E-10 8.18E-10 2.35E-09 4.14E-08 3.95E-10 5.70E-09 7.46E-08 1.91E-09 1.35E-08 4.01E-07 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-49 September 2004 Table 6.3-5. Effective Dose Conversion Factors (Sv/Bq) for Radionuclides Included in Calculation of Conversion Factors (Continued) Organ or Tissue U-232 Np-237 Th-229 U-238 Ra-226 Pb-210 Ra-226 + Pb-210 Am-243 Ac-227 Adrenal 1.67E-09 1.25E-11 3.37E-08 1.76E-12 2.86E-11 1.25E-07 1.25E-07 7.91E-12 4.40E-10 Urinary Bladder 1.72E-09 7.58E-11 3.37E-08 9.45E-12 2.69E-11 1.25E-07 1.25E-07 4.74E-11 1.04E-10 Bone Surface 1.66E-07 1.02E-10 1.78E-06 2.09E-11 1.10E-09 2.16E-05 2.16E-05 3.59E-11 6.73E-05 Brain 0.00E+00 3.41E-13 0.00E+00 1.48E-15 0.00E+00 0.00E+00 0.00E+00 7.93E-14 1.31E-10 Breast 1.68E-09 2.71E-11 3.37E-08 3.73E-12 2.67E-11 1.25E-07 1.25E-07 1.72E-11 1.92E-10 Esophagus 1.64E-09 1.41E-12 3.37E-08 4.35E-13 2.32E-11 1.25E-07 1.25E-07 8.13E-13 1.42E-10 Stomach Wall 4.53E-09 2.92E-10 3.53E-08 9.98E-10 1.74E-09 1.25E-07 1.27E-07 3.46E-10 1.40E-09 Small Intestine Wall 6.84E-09 8.02E-10 3.51E-08 2.55E-09 7.94E-10 1.26E-07 1.27E-07 8.76E-10 8.96E-10 Upper Large Intestine Wall 1.74E-08 3.62E-09 3.99E-08 1.47E-08 3.08E-10 1.32E-07 1.32E-07 3.85E-09 1.78E-09 Lower Large Intestine Wall 2.00E-08 1.02E-08 6.42E-08 4.30E-08 5.62E-11 1.45E-07 1.45E-07 8.72E-09 7.73E-09 Kidney 1.20E-08 3.40E-11 3.43E-08 3.98E-12 1.04E-10 2.82E-06 2.82E-06 2.05E-11 3.54E-10 Liver 2.21E-08 2.41E-11 3.37E-08 4.36E-12 6.00E-11 6.08E-06 6.08E-06 1.54E-11 1.54E-05 Lung 1.64E-09 3.70E-12 3.37E-08 7.55E-13 2.56E-11 1.25E-07 1.25E-07 2.40E-12 2.71E-10 Muscle 1.68E-09 2.71E-11 3.37E-08 3.73E-12 2.67E-11 1.25E-07 1.25E-07 1.72E-11 1.92E-10 Ovaries 1.99E-09 2.58E-10 3.37E-08 3.23E-11 3.71E-11 1.25E-07 1.25E-07 1.62E-10 8.31E-07 Pancreas 1.72E-09 2.93E-11 3.37E-08 3.84E-12 5.44E-11 1.25E-07 1.25E-07 2.16E-11 3.77E-10 Red Bone Marrow 1.51E-08 6.89E-11 1.68E-07 1.87E-11 1.14E-10 1.48E-06 1.48E-06 4.66E-11 5.40E-06 Skin 1.65E-09 8.58E-12 3.37E-08 1.37E-12 2.39E-11 1.25E-07 1.25E-07 5.04E-12 1.37E-10 Spleen 1.69E-09 2.16E-11 3.37E-08 3.13E-12 4.08E-11 1.25E-07 1.25E-07 1.51E-11 1.59E-10 Testes 1.66E-09 2.10E-11 3.37E-08 2.61E-12 2.29E-11 1.25E-07 1.25E-07 1.14E-11 8.31E-07 Thymus 1.64E-09 1.41E-12 3.37E-08 4.35E-13 2.32E-11 1.25E-07 1.25E-07 8.13E-13 1.42E-10 Thyroid 1.63E-09 4.81E-13 3.37E-08 2.94E-13 2.23E-11 1.25E-07 1.25E-07 2.07E-13 1.26E-10 Uterus 1.80E-09 1.03E-10 3.37E-08 1.32E-11 3.53E-11 1.25E-07 1.25E-07 6.88E-11 1.22E-10 Whole Body 1.26E-08 9.81E-10 1.04E-07 3.69E-09 2.45E-10 1.45E-06 1.45E-06 8.82E-10 3.80E-06 NOTE: Calculated in Excel using Equation 6.3-5; file name Conversion Factors for Groundwater Protection Standard_Rev 3.xls – see Appendix B Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-50 September 2004 Table 6.3-6. Conversion Factors (Sv/y per Bq/m3) for Calculating Annual Beta-Gamma Dose for Evaluation of Compliance with the Groundwater Protection Standard Organ or Tissue C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Th-232/Ra- 228 Adrenal 4.12E-10 5.84E-10 6.62E-10 1.10E-09 4.41E-11 6.73E-10 9.64E-11 1.40E-09 1.10E-08 1.17E-07 Urinary Bladder 4.12E-10 5.84E-10 6.62E-10 1.10E-09 4.41E-11 8.64E-10 9.86E-11 1.40E-09 1.03E-08 1.16E-07 Bone Surface 4.12E-10 5.84E-10 6.62E-10 3.06E-07 4.41E-11 3.72E-09 1.59E-10 1.40E-09 9.20E-09 4.37E-06 Brain 4.12E-10 5.84E-10 6.62E-10 9.20E-15 4.41E-11 5.33E-10 0.00E+00 0.00E+00 0.00E+00 1.86E-13 Breast 4.12E-10 5.84E-10 6.62E-10 1.10E-09 4.41E-11 6.19E-10 2.42E-10 1.40E-09 9.06E-09 1.16E-07 Esophagus 4.12E-10 5.84E-10 6.62E-10 1.10E-09 4.41E-11 3.92E-10 2.56E-10 1.40E-09 9.06E-09 1.16E-07 Stomach Wall 4.12E-10 8.11E-10 7.09E-10 2.06E-09 2.48E-09 1.48E-09 1.60E-10 1.45E-09 1.02E-08 1.18E-07 Small Intestine Wall 4.12E-10 5.84E-10 6.85E-10 3.31E-09 8.69E-11 3.64E-09 1.03E-10 1.40E-09 1.05E-08 1.21E-07 Upper Large Intestine Wall 4.12E-10 5.84E-10 8.04E-10 1.38E-08 2.96E-10 1.24E-08 1.04E-10 1.40E-09 1.04E-08 1.34E-07 Lower Large Intestine Wall 4.12E-10 5.84E-10 1.08E-09 3.75E-08 8.04E-10 3.36E-08 1.02E-10 1.40E-09 1.05E-08 1.46E-07 Kidney 4.12E-10 5.84E-10 9.13E-09 1.10E-09 4.41E-11 6.42E-10 9.79E-11 1.40E-09 1.00E-08 1.23E-07 Liver 4.12E-10 5.84E-10 4.73E-09 1.10E-09 6.01E-11 5.33E-10 1.01E-10 1.40E-09 9.93E-09 1.31E-07 Lung 4.12E-10 5.84E-10 6.62E-10 1.10E-09 4.41E-11 4.46E-10 1.21E-10 1.40E-09 9.28E-09 1.16E-07 Muscle 4.12E-10 5.84E-10 6.62E-10 1.10E-09 4.41E-11 6.19E-10 2.42E-10 1.40E-09 9.06E-09 1.16E-07 Ovaries 4.12E-10 5.84E-10 6.62E-10 1.10E-09 4.41E-11 2.06E-09 1.01E-10 1.40E-09 9.42E-09 1.17E-07 Pancreas 4.12E-10 5.84E-10 2.84E-09 1.10E-09 4.41E-11 6.19E-10 1.03E-10 1.40E-09 9.79E-09 1.16E-07 Red Bone Marrow 4.12E-10 5.84E-10 6.62E-10 1.42E-07 4.41E-11 2.05E-09 1.61E-10 1.40E-09 9.64E-09 4.88E-07 Skin 4.12E-10 5.84E-10 6.62E-10 1.10E-09 4.41E-11 4.14E-10 1.54E-10 1.40E-09 7.60E-09 1.16E-07 Spleen 4.12E-10 5.84E-10 3.16E-09 1.10E-09 4.41E-11 5.70E-10 1.02E-10 1.40E-09 1.00E-08 1.16E-07 Testes 4.12E-10 5.84E-10 6.62E-10 1.10E-09 4.41E-11 5.25E-10 9.42E-11 1.40E-09 1.02E-08 1.16E-07 Thymus 4.12E-10 5.84E-10 6.62E-10 1.10E-09 4.41E-11 3.92E-10 2.56E-10 1.40E-09 9.06E-09 1.16E-07 Thyroid 4.12E-10 5.84E-10 6.62E-10 1.10E-09 1.18E-09 4.04E-10 1.81E-06 1.40E-09 9.20E-09 1.16E-07 Uterus 4.12E-10 5.84E-10 6.62E-10 1.10E-09 4.41E-11 1.05E-09 1.01E-10 1.40E-09 1.05E-08 1.16E-07 Whole body 4.12E-10 5.98E-10 1.72E-09 3.03E-08 2.89E-10 4.16E-09 5.45E-08 1.40E-09 9.86E-09 2.93E-07 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-51 September 2004 Table 6.3-6. Conversion Factors (Sv/y per Bq/m3) for Calculating Annual Beta-Gamma Dose to Demonstrate Compliance with the Groundwater Protection Standard (Continued) Organ or Tissue U-232 Np-237 Th-229 U-238 Ra-226 Pb-210 Ra-226+Pb- 210 Am-243 Ac-227 Adrenal 1.22E-09 9.13E-12 2.46E-08 1.29E-12 2.09E-11 9.13E-08 9.13E-08 5.78E-12 3.22E-10 Urinary bladder 1.26E-09 5.54E-11 2.46E-08 6.90E-12 1.97E-11 9.13E-08 9.13E-08 3.46E-11 7.63E-11 Bone surface 1.21E-07 7.45E-11 1.30E-06 1.53E-11 8.04E-10 1.58E-05 1.58E-05 2.62E-11 4.92E-05 Brain 0.00E+00 2.49E-13 0.00E+00 1.08E-15 0.00E+00 0.00E+00 0.00E+00 5.79E-14 9.58E-11 Breast 1.23E-09 1.98E-11 2.46E-08 2.73E-12 1.95E-11 9.13E-08 9.13E-08 1.26E-11 1.40E-10 Esophagus 1.20E-09 1.03E-12 2.46E-08 3.18E-13 1.69E-11 9.13E-08 9.13E-08 5.94E-13 1.04E-10 Stomach wall 3.31E-09 2.13E-10 2.58E-08 7.29E-10 1.27E-09 9.17E-08 9.29E-08 2.53E-10 1.02E-09 Small intestine wall 5.00E-09 5.86E-10 2.56E-08 1.87E-09 5.80E-10 9.21E-08 9.27E-08 6.40E-10 6.55E-10 Upper large intestine wall 1.27E-08 2.64E-09 2.91E-08 1.07E-08 2.25E-10 9.63E-08 9.65E-08 2.81E-09 1.30E-09 Lower large intestine wall 1.46E-08 7.45E-09 4.69E-08 3.14E-08 4.11E-11 1.06E-07 1.06E-07 6.37E-09 5.65E-09 Kidney 8.77E-09 2.48E-11 2.51E-08 2.91E-12 7.61E-11 2.06E-06 2.06E-06 1.50E-11 2.59E-10 Liver 1.62E-08 1.76E-11 2.46E-08 3.19E-12 4.39E-11 4.44E-06 4.44E-06 1.12E-11 1.12E-05 Lung 1.20E-09 2.70E-12 2.46E-08 5.51E-13 1.87E-11 9.13E-08 9.13E-08 1.75E-12 1.98E-10 Muscle 1.23E-09 1.98E-11 2.46E-08 2.73E-12 1.95E-11 9.13E-08 9.13E-08 1.26E-11 1.40E-10 Ovaries 1.45E-09 1.88E-10 2.46E-08 2.36E-11 2.71E-11 9.13E-08 9.14E-08 1.18E-10 6.07E-07 Pancreas 1.26E-09 2.14E-11 2.46E-08 2.80E-12 3.97E-11 9.13E-08 9.14E-08 1.58E-11 2.75E-10 Red bone marrow 1.10E-08 5.03E-11 1.23E-07 1.36E-11 8.36E-11 1.08E-06 1.08E-06 3.40E-11 3.94E-06 Skin 1.20E-09 6.27E-12 2.46E-08 1.00E-12 1.74E-11 9.13E-08 9.13E-08 3.68E-12 1.00E-10 Spleen 1.24E-09 1.58E-11 2.46E-08 2.29E-12 2.98E-11 9.13E-08 9.14E-08 1.10E-11 1.16E-10 Testes 1.21E-09 1.53E-11 2.46E-08 1.90E-12 1.68E-11 9.13E-08 9.13E-08 8.33E-12 6.07E-07 Thymus 1.20E-09 1.03E-12 2.46E-08 3.18E-13 1.69E-11 9.13E-08 9.13E-08 5.94E-13 1.04E-10 Thyroid 1.19E-09 3.51E-13 2.46E-08 2.15E-13 1.63E-11 9.13E-08 9.13E-08 1.51E-13 9.23E-11 Uterus 1.32E-09 7.52E-11 2.46E-08 9.65E-12 2.58E-11 9.13E-08 9.14E-08 5.03E-11 8.90E-11 Whole body 9.19E-09 7.17E-10 7.62E-08 2.70E-09 1.79E-10 1.06E-06 1.06E-06 6.44E-10 2.78E-06 NOTE: Calculated in Excel using Equation 6.3-3; file name Conversion Factors for Groundwater Protection Standard_Rev 3.xls – see Appendix B Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-52 September 2004 Table 6.3-7. Conversion Factors (mrem/yr per pCi/L) for Calculating Annual Beta-Gamma Dose to Evaluate Compliance with the Groundwater Protection Standard Organ or Tissue C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Th-232/Ra- 228 Adrenal 1.52E-03 2.16E-03 2.45E-03 4.08E-03 1.63E-04 2.49E-03 3.57E-04 5.16E-03 4.05E-02 4.32E-01 Urinary bladder 1.52E-03 2.16E-03 2.45E-03 4.08E-03 1.63E-04 3.20E-03 3.65E-04 5.16E-03 3.81E-02 4.29E-01 Bone surface 1.52E-03 2.16E-03 2.45E-03 1.13E+00 1.63E-04 1.38E-02 5.87E-04 5.16E-03 3.41E-02 1.62E+01 Brain 1.52E-03 2.16E-03 2.45E-03 3.41E-08 1.63E-04 1.97E-03 0.00E+00 0.00E+00 0.00E+00 6.87E-07 Breast 1.52E-03 2.16E-03 2.45E-03 4.08E-03 1.63E-04 2.29E-03 8.95E-04 5.16E-03 3.35E-02 4.29E-01 Esophagus 1.52E-03 2.16E-03 2.45E-03 4.08E-03 1.63E-04 1.45E-03 9.49E-04 5.16E-03 3.35E-02 4.29E-01 Stomach wall 1.52E-03 3.00E-03 2.62E-03 7.62E-03 9.16E-03 5.47E-03 5.92E-04 5.38E-03 3.76E-02 4.38E-01 Small intestine wall 1.52E-03 2.16E-03 2.54E-03 1.22E-02 3.22E-04 1.35E-02 3.81E-04 5.16E-03 3.89E-02 4.49E-01 Upper large intestine wall 1.52E-03 2.16E-03 2.97E-03 5.12E-02 1.09E-03 4.57E-02 3.84E-04 5.16E-03 3.84E-02 4.94E-01 Lower large intestine wall 1.52E-03 2.16E-03 4.00E-03 1.39E-01 2.97E-03 1.24E-01 3.76E-04 5.16E-03 3.89E-02 5.40E-01 Kidney 1.52E-03 2.16E-03 3.38E-02 4.08E-03 1.63E-04 2.37E-03 3.62E-04 5.16E-03 3.70E-02 4.57E-01 Liver 1.52E-03 2.16E-03 1.75E-02 4.08E-03 2.22E-04 1.97E-03 3.73E-04 5.16E-03 3.68E-02 4.86E-01 Lung 1.52E-03 2.16E-03 2.45E-03 4.08E-03 1.63E-04 1.65E-03 4.46E-04 5.16E-03 3.43E-02 4.29E-01 Muscle 1.52E-03 2.16E-03 2.45E-03 4.08E-03 1.63E-04 2.29E-03 8.95E-04 5.16E-03 3.35E-02 4.29E-01 Ovaries 1.52E-03 2.16E-03 2.45E-03 4.08E-03 1.63E-04 7.62E-03 3.73E-04 5.16E-03 3.49E-02 4.33E-01 Pancreas 1.52E-03 2.16E-03 1.05E-02 4.08E-03 1.63E-04 2.29E-03 3.81E-04 5.16E-03 3.62E-02 4.29E-01 Red bone marrow 1.52E-03 2.16E-03 2.45E-03 5.24E-01 1.63E-04 7.58E-03 5.97E-04 5.16E-03 3.57E-02 1.81E+00 Skin 1.52E-03 2.16E-03 2.45E-03 4.08E-03 1.63E-04 1.53E-03 5.70E-04 5.16E-03 2.81E-02 4.29E-01 Spleen 1.52E-03 2.16E-03 1.17E-02 4.08E-03 1.63E-04 2.11E-03 3.78E-04 5.16E-03 3.70E-02 4.29E-01 Testes 1.52E-03 2.16E-03 2.45E-03 4.08E-03 1.63E-04 1.94E-03 3.49E-04 5.16E-03 3.76E-02 4.29E-01 Thymus 1.52E-03 2.16E-03 2.45E-03 4.08E-03 1.63E-04 1.45E-03 9.49E-04 5.16E-03 3.35E-02 4.29E-01 Thyroid 1.52E-03 2.16E-03 2.45E-03 4.08E-03 4.38E-03 1.50E-03 6.70E+00 5.16E-03 3.41E-02 4.29E-01 Uterus 1.52E-03 2.16E-03 2.45E-03 4.08E-03 1.63E-04 3.89E-03 3.73E-04 5.16E-03 3.89E-02 4.29E-01 Whole body 1.52E-03 2.21E-03 6.35E-03 1.12E-01 1.07E-03 1.54E-02 2.02E-01 5.16E-03 3.65E-02 1.08E+00 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-53 September 2004 Table 6.3-7. Conversion Factors (mrem/yr per pCi/L) for Calculating Annual Beta-Gamma Dose to Evaluate Compliance with the Groundwater Protection Standard (Continued) Organ or Tissue U-232 Np-237 Th-229 U-238 Ra-226 Pb-210 Ra-226+Pb- 210 Am-243 Ac-227 Adrenal 4.52E-03 3.38E-05 9.11E-02 4.76E-06 7.73E-05 3.38E-01 3.38E-01 2.14E-05 1.19E-03 Urinary bladder 4.66E-03 2.05E-04 9.11E-02 2.55E-05 7.28E-05 3.38E-01 3.38E-01 1.28E-04 2.82E-04 Bone surface 4.49E-01 2.76E-04 4.81E+00 5.65E-05 2.98E-03 5.84E+01 5.84E+01 9.70E-05 1.82E+02 Brain 0.00E+00 9.22E-07 0.00E+00 4.00E-09 0.00E+00 0.00E+00 0.00E+00 2.14E-07 3.54E-04 Breast 4.55E-03 7.32E-05 9.11E-02 1.01E-05 7.23E-05 3.38E-01 3.38E-01 4.65E-05 5.19E-04 Esophagus 4.43E-03 3.81E-06 9.11E-02 1.18E-06 6.27E-05 3.38E-01 3.38E-01 2.20E-06 3.84E-04 Stomach wall 1.22E-02 7.89E-04 9.54E-02 2.70E-03 4.70E-03 3.39E-01 3.44E-01 9.35E-04 3.78E-03 Small intestine wall 1.85E-02 2.17E-03 9.48E-02 6.91E-03 2.15E-03 3.41E-01 3.43E-01 2.37E-03 2.42E-03 Upper large intestine wall 4.69E-02 9.78E-03 1.08E-01 3.98E-02 8.31E-04 3.56E-01 3.57E-01 1.04E-02 4.81E-03 Lower large intestine wall 5.41E-02 2.76E-02 1.73E-01 1.16E-01 1.52E-04 3.93E-01 3.93E-01 2.36E-02 2.09E-02 Kidney 3.25E-02 9.19E-05 9.27E-02 1.08E-05 2.82E-04 7.61E+00 7.61E+00 5.54E-05 9.58E-04 Liver 5.98E-02 6.51E-05 9.11E-02 1.18E-05 1.62E-04 1.64E+01 1.64E+01 4.16E-05 4.16E+01 Lung 4.43E-03 1.00E-05 9.11E-02 2.04E-06 6.91E-05 3.38E-01 3.38E-01 6.49E-06 7.33E-04 Muscle 4.55E-03 7.32E-05 9.11E-02 1.01E-05 7.23E-05 3.38E-01 3.38E-01 4.65E-05 5.19E-04 Ovaries 5.37E-03 6.97E-04 9.11E-02 8.73E-05 1.00E-04 3.38E-01 3.38E-01 4.38E-04 2.25E+00 Pancreas 4.65E-03 7.92E-05 9.11E-02 1.04E-05 1.47E-04 3.38E-01 3.38E-01 5.84E-05 1.02E-03 Red bone marrow 4.08E-02 1.86E-04 4.54E-01 5.04E-05 3.09E-04 4.00E+00 4.00E+00 1.26E-04 1.46E+01 Skin 4.46E-03 2.32E-05 9.11E-02 3.71E-06 6.46E-05 3.38E-01 3.38E-01 1.36E-05 3.71E-04 Spleen 4.57E-03 5.84E-05 9.11E-02 8.47E-06 1.10E-04 3.38E-01 3.38E-01 4.08E-05 4.29E-04 Testes 4.48E-03 5.68E-05 9.11E-02 7.05E-06 6.20E-05 3.38E-01 3.38E-01 3.08E-05 2.25E+00 Thymus 4.43E-03 3.81E-06 9.11E-02 1.18E-06 6.27E-05 3.38E-01 3.38E-01 2.20E-06 3.84E-04 Thyroid 4.40E-03 1.30E-06 9.11E-02 7.95E-07 6.01E-05 3.38E-01 3.38E-01 5.59E-07 3.41E-04 Uterus 4.87E-03 2.78E-04 9.11E-02 3.57E-05 9.53E-05 3.38E-01 3.38E-01 1.86E-04 3.29E-04 Whole body 3.40E-02 2.65E-03 2.82E-01 9.98E-03 6.63E-04 3.92E+00 3.92E+00 2.38E-03 1.03E+01 NOTE: Calculated in Excel using Equation 6.3-5; file name Conversion Factors for Groundwater Protection Standard_Rev 3.xls – see Appendix B Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 6-54 September 2004 INTENTIONALLY LEFT BLANK Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 7-1 September 2004 7. CONCLUSIONS This section summarizes the derivation of BDCFs for the groundwater exposure scenario and the methods for calculating values for evaluation of compliance with the groundwater protection standard. The output of this analysis is included in several data sets, as shown in Table 7-1. Table 7-1. Output Data Tracking Numbers DTN DTN Title DTN Description and Comments MO0307MWDNPBDC.001 Nominal Performance Biosphere Dose Conversion Factors BDCFs for groundwater exposure scenario and conversion factors for evaluating compliance with groundwater protection standard developed in revision 2 of this analysis (BSC 2003 [DIRS 164403]). This set includes conversion factors for calculating alpha activity concentration in groundwater and conversion factors for calculating whole body dose from beta-photon emitting radionuclides from drinking 2 liters of water per day. MO0402SPABPHER.000 Conversion Factors for Beta- Photon Emitting Radionuclides for Groundwater Protection Standard Conversion factors for organs or whole body for calculating beta-photon dose from drinking 2 liters of water per day. The conversion factors for the whole body included in this set are equivalent to the conversion factors included in DTN: MO0307MWDNPBDC.001. (There are differences in the last significant digit between some values of the whole body conversion factors in these two sets that are due to rounding. These differences are negligible.) MO0407MWDBDCFG.000 Biosphere Dose Conversion Factors for the Groundwater Exposure Scenario BDCFs for the groundwater exposure scenario developed in this analysis MO0407SPACFCAC.000 Conversion Factors for Calculating Alpha Activity Concentration in Groundwater Multipliers to be used with activity concentration of a primary radionuclide in groundwater to obtain alpha activity concentration associated with this radionuclide. The values are identical to those in DTN: MO0307MWDNPBDC.001. MO0407MWDGSBMF.000 GoldSim Biosphere Model Files for Calculating Biosphere Dose Conversion Factors for Groundwater Exposure Scenario GoldSim files generated in this analysis. This data set also includes selected GoldSim files generated in the previous revision of this analysis because they are used in impact analysis (Appendix C). The output of this analysis includes the new data developed in this analysis (DTNs: MO0402SPABPHER.000, MO0407MWDBDCFG.000, MO0407SPACFCAC.000, MO0407MWDGSBMF.000) as well as the re-qualified results from the previous revision of the analysis (DTN: MO0307MWDNPBDC.001). The output of the previous analysis was included in one DTN consisting of the following three data sets: BDCFs for the groundwater exposure scenario, conversion factors for beta-photon emitting radionuclides, and the conversion factors for calculating alpha activity concentration in groundwater. In this analysis, these three component data sets are reported in separate DTNs. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 7-2 September 2004 Re-qualification of DTN: MO0307MWDNPBDC.001 was conducted using a corroborating data approach. The BDCFs from DTN: MO0307MWDNPBDC.001 were compared to the new BDCFs developed in this analysis (DTN: MO0407MWDBDCFG.000) in Appendix C with the conclusions given in Section C.3. The results of analyses concerning the BDCF values, presented in Appendix C indicate that the differences between the BDCFs included in DTN: MO0307MWDNPBDC.001 and those in DTN: MO0407MWDBDCFG.000 are negligible and either DTNs can be used in the TSPA-LA model. The impact was evaluated by comparing the mean, 5th percentile and 95th percentile values for the BDCFs for the present-day climate. The differences exceeded 10 percent for 126Sn and 4 isotopes of uranium (233U, 236U, 234U, and 238U). The greatest difference was for 233U (about 23 percent). The values of the BDCFs were developed using the ERMYN biosphere model and remain valid within the application and validation limits of the model (BSC 2004 [DIRS 169460], Section 8.1). Specifically, the BDCFs were developed for a specific assessment context, described in (BSC (2004 [DIRS 169460]), the reference biosphere, and the receptor. If used for other situations, the BDCFs may not apply, as further discussed in Section 7.1.3. The DTN: MO0307MWDNPBDC.001 includes conversion factors for beta-photon emitting radionuclides, and the conversion factors for calculating alpha activity concentration in groundwater. The alpha activity conversion factors included in DTN: MO0407SPACFCAC.000 are the same as those included in DTN: MO0307MWDNPBDC.001. The conversion factors for beta-photon emitting radionuclides included in DTN: MO0307MWDNPBDC.001 applied only to the whole body. The beta-photon conversion factor set in DTN: MO0402SPABPHER.000 also includes the conversion factors for individual organs and tissues. For a few radionuclides, there are differences of less than half of a percent between the whole body conversion factors in the two sets due to rounding. These differences are negligible and both sets can be used interchangeably. 7.1 ANALYSIS SUMMARY 7.1.1 Incorporation of Uncertainty in Biosphere Dose Conversion Factors The BDCFs were calculated in a series of biosphere model realizations using a probabilistic approach that allows statistical sampling of parameter values defined by their probability distribution functions. Such an approach provides a quantitative evaluation of the parameter uncertainties and their impacts on the modeling outcome, the BDCFs. Uncertainty in the model outcome is represented by the probability distribution functions of the BDCFs. The BDCFs were developed for three climate states: the present-day climate, the monsoon climate, and the glacial transition climate (Section 6.2.2). BDCFs for each climate are in the format of 1,000 row vectors. Rows represent individual model realizations, while the vector elements correspond to the BDCFs for individual radionuclides of interest for a given model realization. The BDCFs were calculated for 28 radionuclides, so each row vector has 28 elements. The full set of BDCFs consists of 84,000 values (3 climate states ื 28 radionuclides ื 1,000 model realizations). A vector can be regarded as a one-dimensional array containing the results of a single realization of the biosphere model for the primary radionuclides. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 7-3 September 2004 7.1.2 Biosphere Dose Conversion Factors for the Groundwater Exposure Scenario and Their Use in TSPA Some BDCFs (radionuclide specific) include contributions from decay products (Section 6.1.1). The primary radionuclides and the decay products that were included in the BDCF with the primary radionuclides are presented in Table 7.1-1. Table 7.1-1. Primary Radionuclides and Decay Products Included in the Biosphere Dose Conversion Factors Primary Radionuclide Decay Products Included in BDCF C-14 Cl-36 Se-79 Sr-90 Y-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Ba-137m Pb-210 Bi-210, Po-210 Ra-226 Rn-222, Po-218, Pb-214, At-218, Bi-214, Po-214, Tl-210 Ac-227 Th-227, Fr-223, Ra-223, Rn-219, Po-215, Pb-211, Bi-211, Tl-207, Po-211 Th-229 Ra-225, Ac-225, Fr-221, At-223, Bi-213, Po-213, Tl-209, Pb-209 Th-230 Th-232 Ra-228, Ac-228, Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Po-212, Tl-208 Pa-231 U-232 Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Po-212, Tl-208 U-233 U-234 U-236 U-238 Th-234, Pa-234m, Pa-234 Np-237 Pa-233 Pu-238 Pu-239 Pu-240 Pu-242 Am-241 Am-243 Np-239 The total annual dose is the sum of the annual doses from individual radionuclides. The total annual dose is calculated in TSPA as . ื = i i i total t Cw BDCF t D ) ( ) ( (Eq. 7-1) Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 7-4 September 2004 where Dtotal(t) = time-dependent total annual dose to a defined receptor resulting from the release of radionuclides from the repository; includes contributions from all radionuclides considered in the TSPA-LA (Sv/yr) BDCFi = climate-specific biosphere dose conversion factor for radionuclide i (Sv/yr per Bq/m3) Cwi(t) = time-dependent activity concentration of radionuclide i the groundwater (Bq/m3). Equation 7-1 uses a linear relationship between radionuclide concentrations in groundwater and the resulting doses. Calculations of the total dose for a given point in time should use the set of BDCFs corresponding to the climate at that time. As shown in Table 7.1-1, BDCFs for 226Ra and 210Pb are calculated separately, although 210Pb is a decay product of 226Ra. If the activity concentration of 210Pb in the groundwater is not calculated by the TSPA-LA model, the BDCF for 210Pb should be added to that of 226Ra to account for that part of the uranium decay chain. This summation is based on the condition of radioactive equilibrium between 226Ra, 210Pb, and their short-lived decay products. 7.1.3 Limitations of Biosphere Modeling The ERMYN model applies to the specific environments identified in 10 CFR 63.305 [DIRS 156605]. It uses certain approximations and simplifications. Therefore, the ERMYN model only applies within a certain assessment context (BSC 2004 [DIRS 169460], Section 6.1). The radionuclide sources for the biosphere model are specific to the groundwater exposure scenario. The ERMYN model focuses on the radionuclides that were screened for the TSPA-LA (BSC 2004 [DIRS 169460], Section 6.1.3). The model applies to assessing chronic radiation doses and is valid for all values of input parameters reasonably expected to occur in the arid to semi-arid region surrounding Yucca Mountain. For the contaminated groundwater scenario, the ERMYN model applies to an agricultural situation with long-term irrigation and soil contamination at long-term equilibrium conditions. If soils are not at equilibrium concentrations of radionuclides, the ERMYN model might overestimate the radiation dose. The biosphere model applies to an arid or semi-arid climate, and it is valid only for limited groundwater discharge to the surface and limited surface water transport, as long as the radionuclide concentration in the surface water is the same as in the groundwater and the reference biosphere is not greatly altered. For example, if permanent surface waters such as rivers or lakes are present, the environment would be sufficiently different to change the reference biosphere, and other pathways would have to be added for the ERMYN model to remain valid. 7.1.4 Correlations and Pathway Analysis Rank correlation coefficients for the groundwater exposure scenario BDCF for individual radionuclides are listed in Table 6.2-8. Correlation coefficients generally are the highest for the isotopes of actinides. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 7-5 September 2004 Results of pathway analysis are presented in Tables 6.2-10 and 6.2-11 for the present-day climate and the upper bound of the glacial transition climate, respectively. For both climates, inhalation of particulate matter tends to dominate doses for actinides (e.g., isotopes of thorium, uranium, plutonium, and americium). Inhalation of radioactive aerosols generated by evaporative coolers also is an important inhalation exposure pathway for these radionuclides, especially for the present-day climate. For the upper bound of the glacial transition climate, the importance of the evaporative cooler pathway is greatly reduced. Ingestion of water is a consistently high contributor to dose for all radionuclides and for both climates. Other pathways are only important for a few radionuclides. For instance, external exposure is a dominant pathway for 126Sn and 137Cs, inhalation of radon decay products for 226Ra and 230Th, and fish consumption for 14C, isotopes of cesium, and 210Pb. Consumption pathways generally are more important for radionuclides with atomic numbers less than about 88. 7.1.5 Performance Assessment Calculations for Groundwater Protection Standard For calculating alpha activity concentration in groundwater and the annual dose from beta- and photon-emitting radionuclides for evaluation of compliance with the groundwater protection standard, the methods and the conversion factor values described in Section 6.3 should be used (DTNs: MO0307MWDNPBDC.001 and MO0402SPABPHER.000, for alpha and beta-photon parts of the standard, respectively). Natural background activity concentrations must be added to calculated values for comparison with the combined 226Ra and 228Ra and the gross alpha activity limits. The alpha particle activity concentration in the groundwater should be calculated using Equation 6.3-1 and the number of alpha particles from Table 6.3-3. The beta-gamma dose should be calculated using Equation 6.3-4 and conversion factors from Table 6.3-6 or 6.3-7. 7.2 HOW THE ACCEPTANCE CRITERIA ARE ADDRESSED The primary function of this analysis was to calculate BDCFs for the groundwater exposure scenario. As noted before, this analysis integrates the model (BSC 2004 [DIRS 169460]) and the model input parameters (BSC 2004 [DIRS 169671]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]) to produce the output of the biosphere model. All ACs addressed by the model and input parameters reports are implicitly included in this analysis and the modeling results. In addition, the ACs identified as applicable to this analysis in Section 4.2, that are related to the model abstraction were addressed. The biosphere modeling does not utilize the model abstraction step, but rather, the BDCFs are calculated as the model output. In this sense, the BDCFs, which are the input to the TSPA-LA model, serve as a collapsed model abstraction. The uncertainty in the model and its input parameters is propagated onto and reflected in the BDCFs through the development of the BDCF vectors representing individual model realizations (see Section 7.1.2), consistent with ACs 2.2.1.3.13.3, 2.2.1.3.13.4, and 2.2.1.3.14.3 (see Table 4.2-2). The specific ACs were addressed as follows: Section 2.2.1.3.13.3: Redistribution of Radionuclides in Soils AC 1 (1): As discussed in Sections 1 and 7.1.4, because the BDCFs are used directly in the TSPA, the TSPA adequately incorporates the results of human exposures to groundwater. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 7-6 September 2004 AC 1(2): By including the BDCFs for disruptive events, the TSPA identifies and describes an aspect of radionuclide redistribution in soil that is important to repository performance. See, Section 7.1.2 and 7.1.3. The technical bases for the groundwater exposure scenario are adequately described in Section 6.1.2. AC 1 (3): Relevant site FEPs (Section 1), including climate change (Section 6.1.3), receptor characteristics (Section 6.1.4), and the biosphere model (Section 6.1.5) have been appropriately modeled in the BDCFs. Sufficient technical bases are provided for the BDCFs. AC 1 (4): This report was developed in accordance with the quality assurance (QA) procedures. It commits to NUREG-1297 and NUREG-1298. This commitment is implemented in project procedures. Compliance with project procedures is assessed through QA audits and other oversight activities. AC 2 (1): The BDCF development process described in Section 6 shows that the BDCFs used in the license application are justified. Adequate descriptions of how data was used to develop BDCFs are presented in Section 6.2, which includes a pathway analysis (Section 6.2.4), climate change (Section 6.2.6), and uncertainty (Section 6.2.1). AC 2 (2): As shown in Sections 4.1.1 and 6.3.1, sufficient data is available to adequately define the parameters for the BDCFs. AC 3 (1): The calculations described in Section 6.2.2 for the incorporation of climate change, the resulting BDCFs presented in Section 6.2.3, and the development of dose factors described in Section 6.3 show that the parameter values are technically defensible, reasonably account for uncertainties, and do not result in an under-representation of the risk. AC 3 (2): The model input data related to agriculatural parameters (Section 4.1) are consistent with the current farming practices. Data on the airborne particulate concentration is based on the resuspension of appropriate material in a climate and level of disturbance which is expected to be found at the location of the RMEI. AC 3 (3): Sections 6.2.1 and 7.1.1 shows that uncertainty was adequately represented in the BDCFs by a probability distribution which was generated from a thousand realizations using a Monte Carlo technique. Section 2.2.1.3.14.3: Biosphere Characteristics AC 1 (3): Section 6.1.3 shows how the impact of climate change on the BDCFs is consistent with the three climate states used in other TSPA abstractions. AC 1 (4): This report was developed in accordance with the QA procedures. It commits to NUREG-1297 and NUREG-1298. This commitment is implemented in project procedures. Compliance with project procedures is assessed through QA audits and other oversight activities. AC 2 (1): The BDCF development process described in Section 6 shows that the BDCFs used in the license application are justified. Section 6.1.4 shows that the analysis is consistent with the definition of the RMEI. Adequate descriptions of how data was used to develop BDCFs are Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 7-7 September 2004 presented in Section 6.2, which includes a pathway analysis (Section 6.2.5), climate change (Section 6.2.2), and uncertainty (Section 6.2.1). AC 2 (2): As shown in Sections 4.1.1 and 6.3.1, sufficient data is available to adequately define the degree to which the BDCFs incorporate FEPs and are consistent with the present knowledge of the conditions in the region surrounding Yucca Mountain. AC 3 (1): Sections 6.6.2, 6.2.3, 6.3.2, and 6.1.4 show that the parameter values are technically defensible, reasonably account for uncertainties, do not result in an under-representation of the risk, and are consistent with the definition of the RMEI. AC 3 (2): Section 4.1 shows that the technical bases for the parameter values and ranges used to generate the BDCFs are consistent with site characterization data and technically defensible. AC 3 (4): Sections 6.2.1 and 7.1.1 show that uncertainty is adequately represented in parameter development through a Monte Carlo analysis. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 7-8 September 2004 INTENTIONALLY LEFT BLANK Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 8-1 September 2004 8. INPUTS AND REFERENCES 8.1 DOCUMENTS CITED BSC (Bechtel SAIC Company) 2001. FY01 Supplemental Science and Performance Analyses, Volume 2: Performance Analyses. TDR-MGR-PA-000001 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010724.0110. 154659 BSC (Bechtel SAIC Company) 2003. Nominal Performance Biosphere Dose Conversion Factor Analysis. ANL-MGR-MD-000009 REV 02. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20030728.0008. 164403 BSC (Bechtel SAIC Company) 2003. Total System Performance Assessment- License Application Methods and Approach. TDR-WIS-PA-000006 REV 00 ICN 01. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20031215.0001. 166296 BSC (Bechtel SAIC Company) 2004. Agricultural and Environmental Input Parameters for the Biosphere Model. ANL-MGR-MD-000006, Rev. 02. Las Vegas, Nevada: Bechtel SAIC Company. 169673 BSC (Bechtel SAIC Company) 2004. Biosphere Model Report. MDL-MGR-MD- 000001, Rev. 01. Las Vegas, Nevada: Bechtel SAIC Company. 169460 BSC (Bechtel SAIC Company) 2004. Characteristics of the Receptor for the Biosphere Model. ANL-MGR-MD-000005, Rev. 03. Las Vegas, Nevada: Bechtel SAIC Company. 169671 BSC (Bechtel SAIC Company) 2004. Environmental Transport Input Parameters for the Biosphere Model. ANL-MGR-MD-000007, Rev. 02. Las Vegas, Nevada: Bechtel SAIC Company. 169672 BSC (Bechtel SAIC Company) 2004. Future Climate Analysis. ANL-NBS-GS- 000008, Rev. 01. Las Vegas, Nevada: Bechtel SAIC Company. 170002 BSC (Bechtel SAIC Company) 2004. Inhalation Exposure Input Parameters for the Biosphere Model. ANL-MGR-MD-000001, Rev. 03. Las Vegas, Nevada: Bechtel SAIC Company. 169458 BSC (Bechtel SAIC Company) 2004. Q-List. 000-30R-MGR0-00500-000-000 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: ENG.20040721.0007. 168361 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 8-2 September 2004 BSC (Bechtel SAIC Company) 2004. Soil-Related Input Parameters for the Biosphere Model. ANL-NBS-MD-000009, Rev. 02. Las Vegas, Nevada: Bechtel SAIC Company. 169459 BSC (Bechtel SAIC Company) 2004. Technical Work Plan for Biosphere Modeling and Expert Support. TWP-NBS-MD-000004 REV 03. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20040527.0004. 169573 Canori, G.F. and Leitner, M.M. 2003. Project Requirements Document. TERMGR- MD-000001 REV 02. Las Vegas, Nevada: Bechtel SAIC Company. ACC: DOC.20031222.0006. 166275 [DOE (U.S. Department of Energy)] 2004. "FGR 11 Table 2.2. Ingestion Intakes (for various radionuclides)." [Oak Ridge, Tennessee: U.S. Department of Energy, Oak Ridge National Laboratory]. Accessed March 11, 2004. ACC: MOL.20040504.0294. http://www.ornl.gov/cgibin/ cgiwrap?user=wlj&script=fgrx.pl 169713 Eckerman, K.F. and Ryman, J.C. 1993. External Exposure to Radionuclides in Air, Water, and Soil, Exposure-to-Dose Coefficients for General Application, Based on the 1987 Federal Radiation Protection Guidance. EPA 402-R-93-081. Federal Guidance Report No. 12. Washington, D.C.: U.S. Environmental Protection Agency, Office of Radiation and Indoor Air. TIC: 225472. 107684 GoldSim Technology Group. 2002. GoldSim, Graphical Simulation Environment, User's Guide. Version 7.40. Redmond, Washington: Golder Associates. TIC: 253564. 160643 Lide, D.R. and Frederikse, H.P.R., eds. 1997. CRC Handbook of Chemistry and Physics. 78th Edition. Boca Raton, Florida: CRC Press. TIC: 243741. 103178 NRC (U.S. Nuclear Regulatory Commission) 2003. Yucca Mountain Review Plan, Final Report. NUREG-1804, Rev. 2. Washington, D.C.: U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards. TIC: 254568. 163274 Steel, R.G.D. and Torrie, J.H. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd Edition. New York, New York: McGraw Hill. TIC: 6322. 150857 8.2 CODES, STANDARDS, REGULATIONS, AND PROCEDURES 10 CFR 63. Energy: Disposal of High-Level Radioactive Wastes in a Geologic Repository at Yucca Mountain, Nevada. Readily available. 156605 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 8-3 September 2004 40 CFR 141. Protection of Environment: National Primary Drinking Water Regulations. Readily available. 103999 AP-2.22Q, Rev. 1, ICN 1. Classification Analyses and Maintenance of the Q-List. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. AP-2.27Q, Rev. 1, ICN 3. Planning for Science Activities. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. AP-SIII.2Q, Rev 1 ICN 2. Qualification of Unqualified Data. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. AP-SIII.9Q, Rev.1, ICN 6. Scientific Analyses. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. LP-SI.11Q-BSC Rev. 000. Software Management. Washington, D.C.: U.S. Department of Energy, Office of Civilian Radioactive Waste Management. 8.3 SOURCE DATA, LISTED BY DATA TRACKING NUMBER MO0305SPAINEXI.001. Inhalation Exposure Input Parameters for the Biosphere Model. Submittal date: 05/27/2003. 163808 MO0305SPASRPBM.001. Soil Related Parameters for the Biosphere Model. Submittal date: 05/28/2003. 163815 MO0306MWDBGSMF.001. Biosphere Goldsim Model Files. Submittal date: 06/13/2003. 163816 MO0306SPAAEIBM.001. Agricultural and Environmental Input Parameters for the Biosphere Model. Submittal date: 05/30/2003. 163812 MO0306SPACRBSM.001. Characteristics of the Receptor for the Biosphere Model. Submittal date: 06/11/2003. 163813 MO0306SPAETPBM.001. Environmental Transport Input Parameters for the Biosphere Model. Submittal date: 06/11/2003. 163814 MO0307MWDNPBDC.001. Nominal Performance Biosphere Dose Conversion Factors. Submittal date: 07/08/2003. 164615 MO0307SEPFEPS4.000. LA FEP List. Submittal date: 07/31/2003. 164527 MO0403SPAAEIBM.002. Agricultural and Environmental Input Parameters for 169392 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 8-4 September 2004 the Biosphere Model. Submittal date: 03/22/2004. MO0406SPAETPBM.002. Environmental Transport Input Parameters for the Biosphere Model. Submittal date: 06/24/2004. 170150 MO0407SEPFEPLA.000. LA FEP List. Submittal date: 07/20/2004. 170760 MO0407SPACRBSM.002. Characteristics of the Receptor for the Biosphere Model. Submittal date: 07/19/2004. 170677 MO0407SPAINEXI.002. Inhalation Exposure Input Parameters for the Biosphere Model. Submittal date: 07/12/2004. 170597 MO0407SPASRPBM.002. Soil Related Parameters for the Biosphere Model. Submittal date: 07/20/2004. 170755 8.4 SOFTWARE CODES BSC (Bechtel SAIC Company) 2003. Software Code: GoldSim. V7.50.100. PC. 0344-.50.100-00. 161572 BSC (Bechtel SAIC Company) 2004. Software Code: GoldSim. V8.01 Service Pack 4. PC, Windows 2000. 10344-8.01SP4-00. 169695 8.5 OUTPUT DATA, LISTED BY DATA TRACKING NUMBER MO0307MWDNPBDC.001 Nominal Performance Biosphere Dose Conversion Factors MO0402SPABPHER.000 Conversion Factors for Beta-Photon Emitting Radionuclides for Groundwater Protection Standard MO0407MWDBDCFG.000 Biosphere Dose Conversion Factors for the Groundwater Exposure Scenario MO0407SPACFCAC.000 Conversion Factors for Calculating Alpha Activity Concentration in Groundwater MO0407MWDGSBMF.000 GoldSim Biosphere Model Files for Calculating Biosphere Dose Conversion Factors for Groundwater Exposure Scenario Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 September 2004 APPENDIX A LIST AND DESCRIPTION OF GOLDSIM FILES GENERATED IN THIS ANALYSIS Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 September 2004 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 A-1 September 2004 A. LIST AND DESCRIPTION OF GOLDSIM FILES GENERATED IN THIS ANALYSIS This appendix contains the list and description of GoldSim biosphere model files generated in this analysis. The files are included in DTN: MO0407MWDGSBMF.000. Figure A-1 shows the list of GoldSim files for the present-day climate (file names ERMYN_GW_CCB_) generated using GoldSim 7.50.100 and the old input parameter values (DTN: MO0305SPAINEXI.001 [DIRS 163808], MO0305SPASRPBM.001 [DIRS 163815], MO0306SPAAEIBM.001 [DIRS 163812], MO0306SPACRBSM.001 [DIRS 163813], MO0306SPAETPBM.001 [DIRS 163814]). Figure A-1. GoldSim Files for Calculating BDCFs for the Present-Day Climate Using GoldSim 7.50.100 with Old Input Parameters Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 A-2 September 2004 Figure A-2 shows the list of GoldSim files for the present-day climate (file names ERMYN_GW_MC8_) generated using GoldSim 8.01 SP4 and the new input parameter values (DTN: MO0407SPAINEXI.002 [DIRS 170597], MO0407SPASRPBM.002 [DIRS 170755], MO0403SPAAEIBM.002 [DIRS 169392], MO0407SPACRBSM.002 [DIRS 170677], MO0406SPAETPBM.002 [DIRS 170150]). Figure A-2. GoldSim Files for Calculating BDCFs for the Present-Day Climate Using GoldSim 8.01 SP4 with New Input Parameters Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 A-3 September 2004 Figure A-3 shows the list of GoldSim files for the upper bound of the glacial transition climate (file names ERMYN_GW_FC8_) generated using GoldSim 8.01 SP4 and the new input parameter values. Figure A-3. GoldSim Files for Calculating BDCFs for the Upper Bound Glacial Transition Climate Using GoldSim 8.01 SP4 with New Input Parameters Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 A-4 September 2004 Figure A-4 shows the list of the GoldSim files with modified climate-dependent input parameters (file names ERMYN_GW_Climates8_), as described in Section 6.2.2 and in Appendix B. The files were generated using GoldSim 8.01 SP4 and the new inputs. Figure A-4. GoldSim Files for Calculating BDCFs Using Modified Climate-Dependent Parameters and GoldSim 8.01 SP4 with New Input Parameters Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 A-5 September 2004 Figure A-5 shows the list of GoldSim files for the present-day climate (file names ERMYN_GW_MC7_NI_) generated using GoldSim 7.50.100 and the new input parameter values. Figure A-5. GoldSim Files for Calculating BDCFs for the Present-Day Climate Using GoldSim 7.50.100 with New Input Parameters Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 A-6 September 2004 Figure A-6 shows the list of GoldSim files for the present-day climate (file names ERMYN_GW_CCB__GS801SP4) generated using GoldSim 8.01 SP4 and the old input parameter values. Figure A-6. GoldSim Files for Calculating BDCFs for the Present-Day Climate Using GoldSim 8.01 SP4 with Old Input Parameters Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 September 2004 APPENDIX B DESCRIPTION OF EXCEL FILES GENERATED IN THIS ANALYSIS Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 September 2004 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 B-1 September 2004 B. LIST AND DESCRIPTION OF EXCEL FILES GENERATED IN THIS ANALYSIS This appendix contains descriptions of the Excel files that were used for calculations in this analysis. For the files that contain the stochastic results of the GoldSim runs, the values were copied from the RESULTS container of the appropriate GoldSim files and pasted into the worksheets. B.1 LIST OF EXCEL FILES Figure B-1 shows the list of the Excel files supporting this analysis. The description of the files follows in Section B.2. Figure B-1. List of Excel Files Supporting This Analysis B.2 DESCRIPTION OF EXCEL FILES GW BDCF Realizations_MC and FC_Rev 3.xls–This Excel file contains five worksheets. The worksheets BDCF Calculations GS v 7.50.100 and BDCF Calculations GS v 8.01 SP4 contain the results of 1,000 biosphere model realizations for the groundwater exposure scenario from files shown in Figures A-1 to A-4. These realizations generated BDCFs for the presentday climate and the upper bound of the glacial transition climate using GoldSim 7.50.100 and old inputs (DTN: MO0305SPAINEXI.001 [DIRS 163808]; MO0305SPASRPBM.001 [DIRS 163815]; MO0306SPAAEIBM.001 [DIRS 163812]; MO0306SPACRBSM.001 [DIRS 163813]; MO0306SPAETPBM.001 [DIRS 163814]) and GoldSim 8.01 SP4 with new inputs (DTN: MO0407SPAINEXI.002 [DIRS 170597]; MO0407SPASRPBM.002 [DIRS 170755]; MO0403SPAAEIBM.002 [DIRS 169392]; MO0407SPACRBSM.002 [DIRS 170677]; MO0406SPAETPBM.002 [DIRS 170150]), respectively. The worksheet also contains the calculated values of BDCFs for the monsoon and the glacial transition climates. The BDCFs are arranged by radionuclide in columns B to AG for the present-day climate (average interglacial) and in columns AJ to BO for the average upper bound of the glacial transition climate. The results of individual model realizations are in rows 31 to 1,030. The values from the present-day climate and the upper bound of the glacial transition climate were copied from the GoldSim results summaries and pasted into the worksheet. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 B-2 September 2004 Columns BR to CW and rows 31 to 1,030 contain calculated BDCF values for the monsoon climate. Each BDCF value was calculated as ) 1 , 0 ( ) ( , , , , , , , RAND BDCF BDCF BDCF BDCF j i UBGT j i IC j i UBGT j i MC - + = (Eq. B-1) where BDCFMC, i, j = BDCF for model realization i and radionuclide j for monsoon climate BDCFUBGT, i, j = BDCF for model realization i and radionuclide j for upper bound of glacial transition climate BDCFIC, i, j = BDCF for model realization i and radionuclide j for present-day (interglacial) climate RAND(0, 1) = random number between 0 and 1. Columns CZ to EE and rows 31 to 1,030 contain calculated BDCF values for the glacial transition climate. Each BDCF value was calculated as ) 1 , 0 ( 50 . 0 95 . 0 50 . 0 88 . 0 ) ( , , , , , , , RAND BDCF BDCF BDCF BDCF j i UBGT j i IC j i UBGT j i GTC - - - + = (Eq. B-2) where BDCFGTC, i, j = BDCF for model realization i and radionuclide j for glacial transition climate BDCFUBGT, i, j = BDCF for model realization i and radionuclide j for upper bound of glacial transition climate 50 . 0 95 . 0 50 . 0 88 . 0 - - = scaling factor, which is a fraction of the BDCF interval that is being sampled; scaling factor is calculated using the values of average annual irrigation rate for the present-day interglacial climate, and lower and upper bounds of the glacial transition climate, as explained in Section 6.2.2 RAND(0, 1) = random number between 0 and 1. For all climates, the BDCF values for 232Th and its decay products were calculated by adding the values for 232Th, 228Ra, and 228Th. The BDCF values for 232U and its decay products were calculated by adding the values for 232U and 228Th. Row 5 contains the means of the values in rows 31 to 1,030 of the corresponding columns, calculated using the Excel AVERAGE function for the specified cell range. Row 6 contains standard deviations of the values in rows 31 to 1,030 of the corresponding columns, calculated using the Excel STDEV function for the specified cell range. Row 7 contains the minima of the values in rows 31 to 1,030 of the corresponding columns, calculated using the Excel MIN function for the specified cell range. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 B-3 September 2004 Row 27 contains the maxima of the values in rows 31 to 1,030 of the corresponding columns, calculated using the Excel MAX function for the specified cell range. Rows 8 to 26 contain the percentiles, in increments of 5, of the values in rows 31 to 1,030 of the corresponding columns, calculated using the Excel PERCENTILE function for the specified cell range. The worksheets, BDCF Values GS v 7.50.100 and BDCF values GS v 8.01 SP4, contain BDCF values copied from the worksheets, BDCF Calculations GS v 7.50.100 and BDCF Calculations GS v 8.01 SP4, respectively. This was done to stabilize the results of random sampling executed in the first worksheet. The statistics from rows 5 to 27 of the worksheets BDCF Values GS v 7.50.100 and BDCF values GS v 8.01 SP4 were copied and pasted into the worksheet, Comparison, rows 5 to 27 for GoldSim 7.50.100 with old values, and rows 33 to 55 for GoldSim 8.01 SP4 with new input values. In rows 60 to 82, percent relative difference between the statistics is calculated. The Comparison worksheet also contains, in rows 98 to 125, calculation of the ratio of the mean BDCFs for the present-day climate and the upper bound of the glacial transition climate calculated using GoldSim 8.01 SP4 with new inputs. Correlations for climate dependent parameters_Rev 3.xls—This Excel file contains calculations of rank correlations between the climate-dependent parameters and the BDCFs calculated by replacing the values of climate-dependent parameters with uniform distributions between the values for the extreme climates (i.e., for the present-day climate and the upper bound of the glacial transition climate). The workbook consists of two worksheets: Summary and Raw Data. The Raw Data worksheet contains the results of sampling of individual climate -dependent model input parameters (there are 18 such parameters) and their ranks. The results are in columns B to AK and rows 39 to 1,038. Columns AM to CX and rows 39 to 1,038 contain BDCF values and ranks for individual radionuclides and model realizations. The BDCFs were generated using modified distributions for climate-dependent parameters, as described in Section 6.2.2. In rows 4 to 33, and in every other column from C to AK, the values of rank correlation coefficients for the climate-dependent model input parameters and the BDCFs are shown, calculated using the Excel CORREL function. Worksheet Summary contains the rank correlation coefficients for the primary radionuclides copied from the worksheet Raw Data. They appear in columns C to T and in rows 8 to 35 of the worksheet. Dependence of BDCFs on Irrigation Rate_Rev 3.xls—This Excel file is used to generate graphs showing the linear dependence of BDCFs on annual average irrigation rate. First, the columns containing the sampling results for annual average irrigation rate and the BDCFs for 14C, 99Tc, 129I, and 237Np were copied from file Correlations for Climate Dependent Parameters_Rev 3.xls, worksheet Raw Data. The values are in columns C to G of the worksheet. The values then were sorted by average annual irrigation rate. The irrigation rates and the BDCFs were then averaged in groups of 100 (columns K to O, rows 8 to 17). The average values were used to produce four graphs, one for each of the four radionuclides. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 B-4 September 2004 Correlations for Groundwater BDCFs MC_Rev 3.xls—This Excel file contains calculations of the rank correlation coefficients for groundwater exposure scenario BDCFs for different radionuclides for the present-day climate, calculated using GoldSim 8.01 SP4 with the new inputs. The BDCF values were copied from the GoldSim files shown in Figure A-3. The BDCFs and the ranks are arranged by radionuclide in sets of 2 columns per radionuclide in columns B to BI. The BDCF values were taken from the model output. The rank of each BDCF was calculated using the Excel RANK function for the specified range of cells. The BDCF values and the ranks for individual model realizations are in rows 7 to 1,006. Rows 1,013 to 1,040 and columns C to AD contain the 28 by 28 table of rank correlation coefficients for the BDCFs for 28 primary radionuclides, calculated using the Excel CORREL function for the specified range of cells containing ranks for the BDCFs. The rows beneath row 1,040 contain supplementary calculations of the Student’s t values for the range of correlation coefficient values. GW BDCFs Pathway Analysis MC_Rev 3.xls and GW BDCFs Pathway Analysis FC_Rev 3.xls—These Excel files contain calculations of pathway contributions to BDCFs for the present-day climate and upper bound of the glacial transition climate, respectively. The files contain 33 worksheets, a summary and pathway BDCFs for 30 individual radionuclides (28 primary radionuclides plus 228Ra and 228Th), and individual realizations and 2 additional worksheets for 232Th and 232U combined with their long-lived decay products. The first worksheet (Pathway Summary) contains the summary of the mean pathway BDCFs, the second to the thirty-third worksheets contain the pathway BDCFs from individual realizations for 32 radionuclides, as well as their mean values, in columns B to P for the GoldSim 7.50.100 runs with the old inputs and in columns S to AG for the GoldSim 8.01 SP4 runs with the new inputs. The pathway BDCFs for 1,000 realizations are in rows 10 to 1,009 of each worksheet for an individual radionuclide. The values were copied from GoldSim pathway results summary (files shown in Figures A-1 and A-2 for GoldSim 7.50.100 and Figures A-3 and A-4 for GoldSim 8.01 SP4 ) and pasted into the worksheets for the corresponding radionuclides, following each run of the model. Row 6 contains the mean values of BDCFs from individual model realizations (rows 10 to 1,009) calculated using the Excel AVERAGE function. The Pathway Summary worksheet contains the summary of the mean values of pathway BDCFs for the individual radionuclides copied from the radionuclide worksheets (worksheets 2 to 33). These values are in rows 9 to 40 for individual radionuclides, and in columns C to Q for individual exposure pathways for GoldSim 7.50.100 and in columns T to AH for GoldSim 8.01 SP4. Columns R and AI contain the all-pathway BDCF for each radionuclide, which is a sum of individual pathway BDCFs. Rows 48 to 79 contain the calculated percent values of the individual pathway contributions to the all-pathway BDCF. These values were calculated by dividing the mean pathway BDCFs by the all-pathway BDCF for a given radionuclide. Rows 84 to 111 contain the percent pathway contributions for the primary radionuclides for pasting into the main document. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 B-5 September 2004 Comparison of GoldSim versions_same inputs.xls—This Excel file contains three worksheets: BDCF Calculations GS v 7.50.100, BDCF Calculations GS v 8.01 SP4, and Comparison. The first worksheet contains the results of 1,000 biosphere model realizations for the groundwater exposure scenario from GoldSim 7.50.100 files shown in Figure A-1. These realizations generated BDCFs for the present-day climate using old input parameter values (DTN: MO0305SPAINEXI.001 [DIRS 163808]; MO0305SPASRPBM.001 [DIRS 163815]; MO0306SPAAEIBM.001 [DIRS 163812]; MO0306SPACRBSM.001 [DIRS 163813]; MO0306SPAETPBM.001 [DIRS 163814]). The second worksheet contains BDCFs generated using same inputs and GoldSim version 8.01 SP4 (Figure A-7). The BDCFs are arranged by radionuclide in columns B to AG. The results of individual model realizations are in rows 31 to 1,030. Rows 5 to 27 contain statistics for the BDCFs for individual radionuclides. These statistics were copied and pasted into the third worksheet, Comparison, rows 6 to 28 for GoldSim 7.50.100 and rows 34 to 56 for GoldSim 8.01 SP4. In rows 62 to 84, percent relative difference between the statistics is calculated. GW BDCF Realizations MC_GS750_NI.xls—This Excel file contains three worksheets: BDCF GS 7.50.100 Old Inputs, BDCF GS 7.50.100 New Inputs, and Comparison. The first worksheet contains the results of 1,000 biosphere model realizations for the groundwater exposure scenario, present-day climate from GoldSim 7.50.100 files shown in Figure A-1. These realizations generated BDCFs for the present-day climate using old input parameter values. The second worksheet contains BDCFs generated using the new inputs and the same version of GoldSim (Figure A-6). The BDCFs are arranged by radionuclide in columns B to AG. The results of individual model realizations are in rows 31 to 1,030. Rows 5 to 27 contain statistics for the BDCFs for individual radionuclides. These statistics were copied and pasted into the third worksheet, Comparison, rows 5 to 27 for old inputs and rows 31 to 53 for new inputs. In rows 57 to 79, percent relative difference between the statistics is calculated. Conversion Factors for Groundwater Protection Standard.xls—This Excel file contains calculations of conversion factors for calculating beta-photon annual dose resulting from drinking 2 liters of water per day. The calculation of annual dose from beta-photon emitting radionuclides is conducted for evaluation of compliance with the groundwater protection standard. The calculations are performed for 18 radionuclides of importance during the compliance period. Column B to CO, rows 6 to 29 of the set Organ Conversion Factors contain calculation of the effective dose conversion factors for ingestion of radionuclides. The effective dose conversion factors are summarized in rows 35 to 58. The effective dose conversion factors are calculated by adding the dose conversion factors for beta-photon emitting radionuclides weighted by their branching fractions using equation 6.3-5. Rows 64 to 87 and 93 to 116 contain calculations of the conversion factors in units of Sv/yr per Bq/m3 or in mrem/yr per pCi/L, respectively. The values are calculated using Equation 6.3-3. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 B-6 September 2004 INTENTIONALLY LEFT BLANK Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 September 2004 APPENDIX C ANALYSIS OF IMPACT OF SOFTWARE AND INPUT CHANGE ON MODELING RESULTS Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 September 2004 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-1 September 2004 C. ANALYSIS OF IMPACT OF SOFTWARE AND INPUT CHANGE ON THE MODELING RESULTS This section presents the results of impact analysis regarding the input and software change between the Revision 2 of this analysis (BSC 2003 [DIRS 164403]) and the current revision. The comparison concerns the BDCFs included in DTN: MO0307MWDNPBDC.001 (from Revision 2) and those from DTN: MO0407MWDBDCFG.000 (current revision). As the result of source data change and other improvements, the input data changed for a few model input parameters. Also, an inconsistency was discovered in the Latin Hypercube sampling scheme that was used by GoldSim Version 7.50.100, which was used to execute the biosphere model in revision 2 of this analysis (BSC 2003 [DIRS 164403]). The inconsistency was corrected in GoldSim version 8.01.SP4, which was used to generate the groundwater exposure scenario BDCFs in this analysis. The comparison of the model output using the previous and the current set of the biosphere model input parameters is presented in Section C.1. Section C.2 contains an evaluation of impact from the GoldSim version update. Section C.3 evaluates the combined effect of the input and the software change. The results of the previous analysis were included in the DTN: MO0307MWDNPBDC.001 [DIRS 164615]. C.1 EVALUATION OF INPUT CHANGE IMPACT ON THE MODELING RESULTS The differences between the old and new input data are shown in Section 4.1, Table 4.1-5. The differences in parameter values are generally very small. To evaluate the impact on the BDCFs, the biosphere model was executed using the new set of input parameters (DTN: MO0407SPAINEXI.002 [DIRS 170597]; MO0407SPASRPBM.002 [DIRS 170755]; MO0403SPAAEIBM.002 [DIRS 169392]; MO0407SPACRBSM.002 [DIRS 170677]; MO0406SPAETPBM.002 [DIRS 170150]) and the previously used version of software, i.e. GoldSim 7.50.100. Table C.1-1 shows the statistics for the BDCF generated in such a manner. These statistics were compared to the statistics for the BDCFs generated using the old input parameter values (DTN: MO0305SPAINEXI.001 [DIRS 163808]; MO0305SPASRPBM.001 [DIRS 163815]; MO0306SPAAEIBM.001 [DIRS 163812]; MO0306SPACRBSM.001 [DIRS 163813]; MO0306SPAETPBM.001 [DIRS 163814]). These are shown in Table C.1-2. The results of comparison in terms of percent relative difference between the BDCF statistics are shown in Table C.1-3. The relative differences between the BDCFs resulting from the input change are very small, rarely exceeding 1 percent for the mean value, except for 135Cs, where the difference is up to about 2 percent. The same is true for the other statistics shown in Table C.1-3. Except for 135Cs, the differences are 1 percent or less. For 135Cs the differences are up to about 4 percent. It can be concluded that the BDCF differences due to the input value changes are insignificant. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-2 September 2004 Table C.1-1. Biosphere Dose Conversion Factors Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 and New Inputs, rem/yr per pCi/L. C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Pb-210 Ra-226 Mean 9.06E-06 1.96E-05 6.54E-05 1.64E-04 2.22E-06 6.35E-03 3.38E-04 5.71E-05 4.90E-04 9.05E-03 9.68E-02 STD 6.05E-06 2.87E-05 1.30E-04 2.47E-05 1.49E-06 3.99E-03 1.18E-04 4.11E-05 2.55E-04 3.48E-03 4.70E-02 Minimum 4.16E-06 3.23E-06 9.27E-06 1.21E-04 1.16E-06 1.44E-04 2.20E-04 8.88E-06 1.70E-04 5.71E-03 2.21E-03 5% 4.90E-06 4.87E-06 1.44E-05 1.34E-04 1.31E-06 1.01E-03 2.40E-04 1.97E-05 2.30E-04 6.21E-03 3.97E-02 10% 5.15E-06 5.58E-06 1.69E-05 1.38E-04 1.35E-06 1.86E-03 2.47E-04 2.28E-05 2.58E-04 6.36E-03 4.75E-02 15% 5.39E-06 6.30E-06 1.97E-05 1.42E-04 1.41E-06 2.42E-03 2.55E-04 2.55E-05 2.78E-04 6.57E-03 5.32E-02 20% 5.60E-06 6.83E-06 2.17E-05 1.45E-04 1.45E-06 3.12E-03 2.63E-04 2.82E-05 3.02E-04 6.74E-03 5.81E-02 25% 5.80E-06 7.76E-06 2.36E-05 1.47E-04 1.50E-06 3.60E-03 2.71E-04 3.05E-05 3.20E-04 6.91E-03 6.28E-02 30% 5.99E-06 8.49E-06 2.52E-05 1.50E-04 1.55E-06 4.04E-03 2.77E-04 3.32E-05 3.38E-04 7.07E-03 6.67E-02 35% 6.23E-06 9.48E-06 2.73E-05 1.52E-04 1.60E-06 4.52E-03 2.82E-04 3.58E-05 3.61E-04 7.26E-03 7.16E-02 40% 6.44E-06 1.03E-05 2.99E-05 1.54E-04 1.65E-06 4.85E-03 2.90E-04 3.90E-05 3.79E-04 7.46E-03 7.58E-02 45% 6.74E-06 1.13E-05 3.33E-05 1.57E-04 1.70E-06 5.16E-03 2.98E-04 4.12E-05 4.05E-04 7.68E-03 8.08E-02 50% 7.09E-06 1.22E-05 3.65E-05 1.60E-04 1.77E-06 5.47E-03 3.05E-04 4.47E-05 4.28E-04 7.92E-03 8.60E-02 55% 7.49E-06 1.34E-05 3.98E-05 1.62E-04 1.82E-06 5.88E-03 3.13E-04 4.82E-05 4.56E-04 8.18E-03 9.38E-02 60% 7.84E-06 1.50E-05 4.37E-05 1.65E-04 1.90E-06 6.29E-03 3.25E-04 5.27E-05 4.82E-04 8.62E-03 1.01E-01 65% 8.34E-06 1.70E-05 4.85E-05 1.68E-04 2.01E-06 6.95E-03 3.35E-04 5.67E-05 5.10E-04 8.94E-03 1.07E-01 70% 8.99E-06 1.92E-05 5.39E-05 1.71E-04 2.13E-06 7.68E-03 3.50E-04 6.15E-05 5.41E-04 9.40E-03 1.15E-01 75% 9.82E-06 2.18E-05 6.24E-05 1.75E-04 2.31E-06 8.46E-03 3.67E-04 6.97E-05 5.78E-04 9.96E-03 1.24E-01 80% 1.08E-05 2.53E-05 7.40E-05 1.81E-04 2.53E-06 9.33E-03 3.90E-04 7.84E-05 6.24E-04 1.06E-02 1.34E-01 85% 1.22E-05 3.10E-05 8.98E-05 1.88E-04 2.91E-06 1.04E-02 4.13E-04 8.94E-05 6.87E-04 1.13E-02 1.46E-01 90% 1.48E-05 3.86E-05 1.20E-04 1.96E-04 3.36E-06 1.21E-02 4.59E-04 1.04E-04 7.90E-04 1.28E-02 1.60E-01 95% 2.04E-05 5.41E-05 1.83E-04 2.11E-04 4.64E-06 1.44E-02 5.22E-04 1.37E-04 9.89E-04 1.56E-02 1.85E-01 Maximum 6.09E-05 4.48E-04 2.75E-03 2.89E-04 1.91E-05 2.14E-02 1.40E-03 3.14E-04 2.14E-03 3.43E-02 3.41E-01 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-3 September 2004 Table C.1-1. Biosphere Dose Conversion Factors Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 and New Inputs, rem/yr per pCi/L (Continued) Ac-227 Th-229 Th-230 Th-232 Pa-231 U-232 U-233 U-234 U-236 U-238 Np-237 Mean 3.10E-02 3.40E-02 2.90E-02 4.45E-02 1.00E-01 5.80E-03 1.75E-03 1.22E-03 1.09E-03 1.08E-03 6.94E-03 STD 1.09E-02 1.79E-02 2.44E-02 2.23E-02 6.38E-02 2.37E-03 2.06E-03 1.03E-03 8.66E-04 8.63E-04 2.29E-03 Minimum 1.26E-02 6.37E-03 1.12E-03 7.61E-03 1.46E-02 1.78E-03 2.43E-04 2.29E-04 2.16E-04 2.15E-04 3.70E-03 5% 1.71E-02 1.32E-02 5.35E-03 1.80E-02 2.97E-02 2.72E-03 3.51E-04 3.26E-04 3.08E-04 3.04E-04 4.31E-03 10% 1.86E-02 1.61E-02 7.52E-03 2.14E-02 3.70E-02 3.16E-03 4.20E-04 3.92E-04 3.68E-04 3.62E-04 4.61E-03 15% 2.02E-02 1.78E-02 8.84E-03 2.34E-02 4.38E-02 3.54E-03 4.86E-04 4.47E-04 4.20E-04 4.12E-04 4.84E-03 20% 2.17E-02 1.95E-02 1.02E-02 2.62E-02 4.92E-02 3.87E-03 5.28E-04 4.98E-04 4.68E-04 4.58E-04 5.14E-03 25% 2.29E-02 2.12E-02 1.17E-02 2.84E-02 5.49E-02 4.09E-03 5.87E-04 5.41E-04 5.05E-04 4.97E-04 5.36E-03 30% 2.43E-02 2.26E-02 1.34E-02 3.07E-02 6.12E-02 4.37E-03 6.52E-04 5.87E-04 5.45E-04 5.36E-04 5.56E-03 35% 2.56E-02 2.46E-02 1.52E-02 3.30E-02 6.55E-02 4.64E-03 7.21E-04 6.53E-04 6.05E-04 5.94E-04 5.77E-03 40% 2.69E-02 2.65E-02 1.72E-02 3.52E-02 7.13E-02 4.94E-03 8.10E-04 7.05E-04 6.57E-04 6.40E-04 5.94E-03 45% 2.81E-02 2.86E-02 1.95E-02 3.72E-02 7.62E-02 5.13E-03 8.95E-04 7.71E-04 7.19E-04 7.02E-04 6.15E-03 50% 2.90E-02 3.00E-02 2.11E-02 3.96E-02 8.32E-02 5.37E-03 1.01E-03 8.43E-04 7.82E-04 7.72E-04 6.44E-03 55% 3.05E-02 3.22E-02 2.32E-02 4.18E-02 8.91E-02 5.62E-03 1.19E-03 9.59E-04 8.83E-04 8.78E-04 6.65E-03 60% 3.16E-02 3.40E-02 2.60E-02 4.48E-02 9.83E-02 6.00E-03 1.35E-03 1.07E-03 9.76E-04 9.84E-04 6.95E-03 65% 3.34E-02 3.61E-02 2.89E-02 4.73E-02 1.07E-01 6.28E-03 1.58E-03 1.22E-03 1.10E-03 1.10E-03 7.24E-03 70% 3.53E-02 3.89E-02 3.33E-02 5.09E-02 1.17E-01 6.55E-03 1.86E-03 1.38E-03 1.24E-03 1.25E-03 7.58E-03 75% 3.72E-02 4.18E-02 3.85E-02 5.48E-02 1.28E-01 7.07E-03 2.18E-03 1.51E-03 1.38E-03 1.39E-03 7.97E-03 80% 3.91E-02 4.58E-02 4.41E-02 5.96E-02 1.40E-01 7.50E-03 2.55E-03 1.81E-03 1.58E-03 1.58E-03 8.44E-03 85% 4.16E-02 5.10E-02 5.19E-02 6.66E-02 1.60E-01 8.08E-03 3.13E-03 2.13E-03 1.85E-03 1.84E-03 9.01E-03 90% 4.48E-02 5.79E-02 6.26E-02 7.52E-02 1.83E-01 8.89E-03 3.88E-03 2.47E-03 2.15E-03 2.16E-03 9.85E-03 95% 5.14E-02 6.91E-02 8.03E-02 8.88E-02 2.29E-01 1.02E-02 5.33E-03 3.17E-03 2.78E-03 2.76E-03 1.13E-02 Maximum 8.22E-02 1.23E-01 1.86E-01 1.52E-01 4.43E-01 1.79E-02 2.36E-02 9.08E-03 7.00E-03 6.85E-03 2.24E-02 Nominal Peformance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-4 September 2004 Table C.1-1. Biosphere Dose Conversion Factors Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 and New Inputs, rem/yr per pCi/L (Continued) Pu-238 Pu-239 Pu-240 Pu-242 Am-241 Am-243 Mean 4.69E-03 9.21E-03 8.98E-03 8.88E-03 6.81E-03 9.48E-03 STD 1.13E-03 3.62E-03 3.40E-03 3.55E-03 1.94E-03 3.93E-03 Minimum 2.71E-03 3.74E-03 3.73E-03 3.55E-03 3.00E-03 3.03E-03 5% 3.33E-03 5.00E-03 4.96E-03 4.77E-03 4.32E-03 4.66E-03 10% 3.54E-03 5.49E-03 5.46E-03 5.24E-03 4.63E-03 5.33E-03 15% 3.68E-03 5.91E-03 5.87E-03 5.66E-03 4.94E-03 5.79E-03 20% 3.81E-03 6.33E-03 6.26E-03 6.05E-03 5.17E-03 6.25E-03 25% 3.92E-03 6.65E-03 6.58E-03 6.37E-03 5.44E-03 6.58E-03 30% 4.01E-03 7.07E-03 6.99E-03 6.77E-03 5.65E-03 7.01E-03 35% 4.13E-03 7.36E-03 7.26E-03 7.06E-03 5.88E-03 7.40E-03 40% 4.26E-03 7.74E-03 7.61E-03 7.42E-03 6.03E-03 7.90E-03 45% 4.36E-03 8.09E-03 7.93E-03 7.78E-03 6.23E-03 8.36E-03 50% 4.47E-03 8.47E-03 8.34E-03 8.16E-03 6.48E-03 8.77E-03 55% 4.58E-03 8.84E-03 8.65E-03 8.47E-03 6.69E-03 9.13E-03 60% 4.73E-03 9.26E-03 9.07E-03 8.94E-03 6.96E-03 9.75E-03 65% 4.87E-03 9.70E-03 9.45E-03 9.34E-03 7.22E-03 1.02E-02 70% 5.03E-03 1.01E-02 9.89E-03 9.79E-03 7.53E-03 1.07E-02 75% 5.19E-03 1.07E-02 1.05E-02 1.04E-02 7.86E-03 1.13E-02 80% 5.41E-03 1.14E-02 1.11E-02 1.10E-02 8.19E-03 1.21E-02 85% 5.70E-03 1.24E-02 1.20E-02 1.20E-02 8.64E-03 1.34E-02 90% 6.03E-03 1.38E-02 1.34E-02 1.33E-02 9.37E-03 1.48E-02 95% 6.66E-03 1.66E-02 1.59E-02 1.62E-02 1.06E-02 1.74E-02 Maximum 1.53E-02 2.92E-02 2.66E-02 2.90E-02 1.67E-02 2.98E-02 Source: MO0407SPAINEXI.002 [DIRS 170597]; MO0407SPASRPBM.002 [DIRS 170755]; MO0403SPAAEIBM.002 [DIRS 169392]; MO0407SPACRBSM.002 [DIRS 170677]; MO0406SPAETPBM.002 [DIRS170150]; and MO0306MWDBGSMF.001 [DIRS 163816]. NOTE: STD = standard deviation. See Excel file GW BDCF Realizations MC_GS750_NI.xls in Appendix B for details of the calculations. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-5 September 2004 Table C.1-2. Biosphere Dose Conversion Factors Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 and Old Inputs, rem/yr per pCi/L C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Pb-210 Ra-226 Mean 9.06E-06 1.95E-05 6.49E-05 1.64E-04 2.21E-06 6.29E-03 3.37E-04 5.59E-05 4.87E-04 9.04E-03 9.58E-02 STD 6.05E-06 2.84E-05 1.29E-04 2.46E-05 1.48E-06 3.95E-03 1.17E-04 3.99E-05 2.54E-04 3.48E-03 4.65E-02 Minimum 4.15E-06 3.22E-06 9.26E-06 1.21E-04 1.16E-06 1.44E-04 2.20E-04 9.17E-06 1.70E-04 5.71E-03 2.20E-03 5% 4.90E-06 4.86E-06 1.44E-05 1.34E-04 1.30E-06 1.00E-03 2.39E-04 1.98E-05 2.28E-04 6.21E-03 3.93E-02 10% 5.15E-06 5.57E-06 1.69E-05 1.38E-04 1.35E-06 1.85E-03 2.47E-04 2.24E-05 2.57E-04 6.36E-03 4.70E-02 15% 5.38E-06 6.27E-06 1.97E-05 1.41E-04 1.41E-06 2.40E-03 2.55E-04 2.55E-05 2.77E-04 6.57E-03 5.27E-02 20% 5.61E-06 6.83E-06 2.16E-05 1.45E-04 1.45E-06 3.10E-03 2.62E-04 2.78E-05 3.00E-04 6.74E-03 5.75E-02 25% 5.80E-06 7.75E-06 2.35E-05 1.47E-04 1.50E-06 3.56E-03 2.70E-04 3.02E-05 3.19E-04 6.91E-03 6.22E-02 30% 6.00E-06 8.48E-06 2.50E-05 1.50E-04 1.55E-06 4.00E-03 2.77E-04 3.32E-05 3.35E-04 7.06E-03 6.60E-02 35% 6.24E-06 9.46E-06 2.71E-05 1.52E-04 1.60E-06 4.49E-03 2.82E-04 3.55E-05 3.58E-04 7.26E-03 7.09E-02 40% 6.44E-06 1.02E-05 2.97E-05 1.54E-04 1.65E-06 4.81E-03 2.90E-04 3.83E-05 3.77E-04 7.45E-03 7.50E-02 45% 6.74E-06 1.13E-05 3.30E-05 1.57E-04 1.70E-06 5.11E-03 2.97E-04 4.07E-05 4.02E-04 7.68E-03 8.00E-02 50% 7.10E-06 1.22E-05 3.63E-05 1.59E-04 1.76E-06 5.41E-03 3.05E-04 4.40E-05 4.23E-04 7.91E-03 8.51E-02 55% 7.48E-06 1.33E-05 3.94E-05 1.62E-04 1.82E-06 5.82E-03 3.13E-04 4.68E-05 4.53E-04 8.18E-03 9.28E-02 60% 7.84E-06 1.49E-05 4.33E-05 1.64E-04 1.90E-06 6.22E-03 3.25E-04 5.10E-05 4.77E-04 8.61E-03 9.98E-02 65% 8.34E-06 1.69E-05 4.80E-05 1.68E-04 2.00E-06 6.89E-03 3.35E-04 5.57E-05 5.07E-04 8.93E-03 1.06E-01 70% 8.99E-06 1.91E-05 5.35E-05 1.70E-04 2.12E-06 7.60E-03 3.49E-04 6.03E-05 5.36E-04 9.40E-03 1.14E-01 75% 9.83E-06 2.18E-05 6.21E-05 1.75E-04 2.30E-06 8.38E-03 3.67E-04 6.83E-05 5.75E-04 9.96E-03 1.23E-01 80% 1.07E-05 2.52E-05 7.36E-05 1.81E-04 2.52E-06 9.24E-03 3.89E-04 7.67E-05 6.19E-04 1.06E-02 1.33E-01 85% 1.22E-05 3.08E-05 8.93E-05 1.88E-04 2.90E-06 1.04E-02 4.12E-04 8.56E-05 6.85E-04 1.13E-02 1.44E-01 90% 1.48E-05 3.82E-05 1.19E-04 1.95E-04 3.36E-06 1.20E-02 4.58E-04 1.01E-04 7.86E-04 1.28E-02 1.59E-01 95% 2.04E-05 5.36E-05 1.81E-04 2.11E-04 4.60E-06 1.42E-02 5.22E-04 1.33E-04 9.83E-04 1.56E-02 1.83E-01 Maximum 6.09E-05 4.43E-04 2.72E-03 2.88E-04 1.89E-05 2.12E-02 1.39E-03 3.11E-04 2.14E-03 3.43E-02 3.37E-01 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-6 September 2004 Table C.1-2. Biosphere Dose Conversion Factors Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 and Old Inputs, rem/yr per pCi/L (Continued) Ac-227 Th-229 Th-230 Th-232 Pa-231 U-232 U-233 U-234 U-236 U-238 Np-237 Mean 3.09E-02 3.37E-02 2.87E-02 4.41E-02 9.91E-02 5.78E-03 1.74E-03 1.21E-03 1.08E-03 1.08E-03 6.92E-03 STD 1.08E-02 1.77E-02 2.42E-02 2.21E-02 6.31E-02 2.36E-03 2.04E-03 1.02E-03 8.58E-04 8.55E-04 2.27E-03 Minimum 1.26E-02 6.36E-03 1.12E-03 7.59E-03 1.46E-02 1.78E-03 2.43E-04 2.29E-04 2.16E-04 2.15E-04 3.70E-03 5% 1.70E-02 1.31E-02 5.32E-03 1.79E-02 2.95E-02 2.72E-03 3.50E-04 3.26E-04 3.08E-04 3.04E-04 4.31E-03 10% 1.86E-02 1.60E-02 7.44E-03 2.13E-02 3.68E-02 3.15E-03 4.20E-04 3.91E-04 3.67E-04 3.61E-04 4.60E-03 15% 2.02E-02 1.76E-02 8.77E-03 2.33E-02 4.36E-02 3.53E-03 4.85E-04 4.46E-04 4.19E-04 4.12E-04 4.84E-03 20% 2.17E-02 1.93E-02 1.01E-02 2.60E-02 4.88E-02 3.86E-03 5.27E-04 4.97E-04 4.68E-04 4.57E-04 5.14E-03 25% 2.28E-02 2.11E-02 1.16E-02 2.82E-02 5.45E-02 4.08E-03 5.87E-04 5.40E-04 5.05E-04 4.97E-04 5.36E-03 30% 2.43E-02 2.25E-02 1.33E-02 3.05E-02 6.08E-02 4.35E-03 6.52E-04 5.87E-04 5.45E-04 5.36E-04 5.56E-03 35% 2.56E-02 2.44E-02 1.51E-02 3.28E-02 6.49E-02 4.62E-03 7.20E-04 6.52E-04 6.04E-04 5.93E-04 5.76E-03 40% 2.69E-02 2.63E-02 1.70E-02 3.49E-02 7.07E-02 4.93E-03 8.08E-04 7.05E-04 6.56E-04 6.39E-04 5.93E-03 45% 2.80E-02 2.84E-02 1.93E-02 3.70E-02 7.57E-02 5.12E-03 8.91E-04 7.69E-04 7.18E-04 7.02E-04 6.14E-03 50% 2.90E-02 2.97E-02 2.09E-02 3.93E-02 8.23E-02 5.35E-03 1.01E-03 8.42E-04 7.81E-04 7.69E-04 6.42E-03 55% 3.05E-02 3.20E-02 2.29E-02 4.14E-02 8.83E-02 5.61E-03 1.19E-03 9.55E-04 8.78E-04 8.76E-04 6.64E-03 60% 3.16E-02 3.38E-02 2.58E-02 4.44E-02 9.72E-02 5.98E-03 1.34E-03 1.06E-03 9.73E-04 9.80E-04 6.93E-03 65% 3.33E-02 3.58E-02 2.86E-02 4.69E-02 1.06E-01 6.26E-03 1.58E-03 1.21E-03 1.10E-03 1.10E-03 7.22E-03 70% 3.52E-02 3.86E-02 3.30E-02 5.05E-02 1.16E-01 6.53E-03 1.85E-03 1.38E-03 1.24E-03 1.24E-03 7.56E-03 75% 3.71E-02 4.15E-02 3.81E-02 5.43E-02 1.27E-01 7.05E-03 2.17E-03 1.50E-03 1.38E-03 1.38E-03 7.94E-03 80% 3.90E-02 4.54E-02 4.37E-02 5.91E-02 1.38E-01 7.48E-03 2.54E-03 1.79E-03 1.57E-03 1.57E-03 8.40E-03 85% 4.15E-02 5.05E-02 5.14E-02 6.60E-02 1.59E-01 8.06E-03 3.10E-03 2.11E-03 1.84E-03 1.83E-03 8.98E-03 90% 4.47E-02 5.74E-02 6.20E-02 7.44E-02 1.81E-01 8.83E-03 3.84E-03 2.45E-03 2.14E-03 2.14E-03 9.81E-03 95% 5.13E-02 6.86E-02 7.94E-02 8.80E-02 2.26E-01 1.01E-02 5.29E-03 3.15E-03 2.77E-03 2.74E-03 1.12E-02 Maximum 8.22E-02 1.22E-01 1.85E-01 1.51E-01 4.38E-01 1.78E-02 2.34E-02 8.99E-03 6.94E-03 6.78E-03 2.23E-02 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-7 September 2004 Table C.1-2. Biosphere Dose Conversion Factors Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 and Old Inputs, rem/yr per pCi/L (Continued) Pu-238 Pu-239 Pu-240 Pu-242 Am-241 Am-243 Mean 4.67E-03 9.16E-03 8.93E-03 8.83E-03 6.78E-03 9.43E-03 STD 1.13E-03 3.59E-03 3.37E-03 3.52E-03 1.93E-03 3.89E-03 Minimum 2.71E-03 3.73E-03 3.73E-03 3.55E-03 3.00E-03 3.03E-03 5% 3.32E-03 4.98E-03 4.95E-03 4.76E-03 4.32E-03 4.66E-03 10% 3.53E-03 5.48E-03 5.43E-03 5.23E-03 4.62E-03 5.31E-03 15% 3.68E-03 5.89E-03 5.85E-03 5.63E-03 4.93E-03 5.77E-03 20% 3.80E-03 6.31E-03 6.24E-03 6.03E-03 5.15E-03 6.24E-03 25% 3.91E-03 6.62E-03 6.55E-03 6.35E-03 5.43E-03 6.55E-03 30% 4.00E-03 7.03E-03 6.96E-03 6.74E-03 5.63E-03 6.98E-03 35% 4.12E-03 7.34E-03 7.23E-03 7.03E-03 5.86E-03 7.37E-03 40% 4.25E-03 7.70E-03 7.57E-03 7.38E-03 6.00E-03 7.86E-03 45% 4.35E-03 8.05E-03 7.89E-03 7.73E-03 6.20E-03 8.32E-03 50% 4.45E-03 8.43E-03 8.30E-03 8.11E-03 6.45E-03 8.72E-03 55% 4.57E-03 8.80E-03 8.61E-03 8.44E-03 6.66E-03 9.08E-03 60% 4.72E-03 9.21E-03 9.03E-03 8.89E-03 6.92E-03 9.69E-03 65% 4.86E-03 9.64E-03 9.40E-03 9.28E-03 7.18E-03 1.01E-02 70% 5.02E-03 1.01E-02 9.83E-03 9.74E-03 7.49E-03 1.06E-02 75% 5.18E-03 1.07E-02 1.04E-02 1.03E-02 7.84E-03 1.12E-02 80% 5.39E-03 1.13E-02 1.10E-02 1.09E-02 8.15E-03 1.20E-02 85% 5.69E-03 1.23E-02 1.20E-02 1.19E-02 8.60E-03 1.33E-02 90% 6.02E-03 1.38E-02 1.33E-02 1.32E-02 9.31E-03 1.47E-02 95% 6.64E-03 1.65E-02 1.58E-02 1.60E-02 1.05E-02 1.72E-02 Maximum 1.52E-02 2.90E-02 2.63E-02 2.87E-02 1.66E-02 2.95E-02 Source: MO0307MWDNPBDC.001. NOTE: STD = standard deviation. See Excel file GW BDCF Realizations MC_GS750_NI.xls in Appendix B for details of the calculations. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-8 September 2004 Table C.1-3. Percent Relative Difference Between Biosphere Dose Conversion Factor Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 and Old and New Inputs. C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Pb-210 Ra-226 Mean -0.01 0.63 0.72 0.19 0.33 0.95 0.17 2.12 0.71 0.04 1.03 STD 0.01 1.00 0.88 0.73 0.82 1.02 0.68 2.84 0.45 0.02 1.03 Minimum 0.30 0.21 0.06 0.02 0.01 0.26 0.02 -3.16 -0.08 0.02 0.39 5% 0.13 0.27 0.38 0.10 0.07 0.80 0.00 -0.66 0.59 0.05 1.06 10% -0.03 0.13 0.43 0.11 0.06 0.54 0.06 1.90 0.68 0.03 1.04 15% 0.17 0.35 0.18 0.12 0.08 0.70 0.09 -0.06 0.67 0.05 1.07 20% -0.15 0.03 0.56 0.14 0.06 0.78 0.08 1.24 0.66 0.02 1.02 25% 0.04 0.10 0.52 0.17 0.17 1.09 0.07 0.79 0.45 0.05 0.97 30% -0.08 0.09 0.46 0.10 0.09 1.05 0.06 0.07 0.84 0.07 1.06 35% -0.08 0.19 0.65 0.15 0.11 0.74 0.07 1.03 0.72 0.06 1.09 40% 0.00 0.50 0.60 0.15 0.17 0.87 0.15 1.96 0.58 0.03 1.11 45% 0.06 0.43 0.69 0.14 0.31 0.88 0.12 1.12 0.77 0.06 1.05 50% -0.12 0.14 0.60 0.22 0.17 1.11 0.20 1.49 1.13 0.09 1.06 55% 0.13 0.66 1.00 0.17 0.21 1.01 0.16 2.85 0.81 0.07 1.10 60% 0.02 0.58 0.95 0.19 0.22 1.07 0.10 3.27 1.15 0.10 1.08 65% -0.04 0.85 1.05 0.22 0.32 0.96 0.08 1.81 0.58 0.10 1.13 70% 0.00 0.56 0.67 0.21 0.25 1.02 0.23 2.13 1.01 0.03 1.01 75% -0.03 0.28 0.44 0.19 0.15 0.89 0.15 2.09 0.37 0.04 1.06 80% 0.14 0.61 0.63 0.22 0.39 0.96 0.28 2.23 0.80 0.06 0.83 85% 0.04 0.80 0.50 0.30 0.56 0.77 0.27 4.40 0.26 0.05 0.95 90% -0.05 0.89 0.56 0.36 0.11 1.06 0.36 3.91 0.52 0.03 0.95 95% -0.02 1.02 0.96 0.16 0.78 1.22 0.12 3.16 0.62 0.03 1.13 Maximum 0.01 1.11 0.97 0.14 1.00 0.97 0.66 0.84 0.09 0.01 1.00 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-9 September 2004 Table C.1-3. Percent Relative Difference Between Biosphere Dose Conversion Factor Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 and Old and New Inputs (Continued) Ac-227 Th-229 Th-230 Th-232 Pa-231 U-232 U-233 U-234 U-236 U-238 Np-237 Mean 0.19 0.78 0.96 0.82 0.89 0.34 0.66 0.56 0.54 0.55 0.27 STD 0.13 1.00 1.02 1.02 1.02 0.58 0.98 0.95 0.95 0.95 0.83 Minimum 0.10 0.20 0.21 0.23 0.04 0.06 0.00 0.04 0.03 0.03 0.00 5% 0.27 0.58 0.60 0.70 0.76 0.12 0.34 0.01 0.02 0.05 0.00 10% 0.22 0.79 1.08 0.58 0.66 0.16 0.05 0.06 0.08 0.14 0.17 15% 0.23 0.74 0.86 0.23 0.60 0.16 0.13 0.18 0.04 0.14 0.06 20% 0.25 0.80 1.03 0.96 0.77 0.23 0.16 0.28 0.11 0.13 0.10 25% 0.19 0.56 0.85 0.68 0.84 0.23 0.03 0.11 0.11 0.12 0.03 30% 0.16 0.66 0.91 0.78 0.69 0.36 0.00 0.02 0.03 0.15 0.05 35% 0.19 0.82 0.97 0.69 0.80 0.40 0.10 0.15 0.14 0.24 0.19 40% 0.23 0.73 0.90 0.90 0.78 0.25 0.17 0.02 0.15 0.18 0.17 45% 0.15 0.79 1.00 0.68 0.75 0.18 0.38 0.26 0.17 0.08 0.25 50% 0.17 0.81 0.89 0.90 0.99 0.33 0.31 0.07 0.15 0.35 0.31 55% 0.21 0.62 1.05 0.87 0.89 0.15 0.58 0.45 0.49 0.26 0.25 60% 0.13 0.72 0.93 0.81 1.07 0.36 0.63 0.58 0.30 0.43 0.33 65% 0.20 0.78 1.02 0.91 1.03 0.38 0.42 0.56 0.47 0.61 0.34 70% 0.16 0.77 0.89 0.88 0.87 0.35 0.68 0.57 0.52 0.60 0.26 75% 0.09 0.81 0.97 0.84 0.87 0.34 0.53 0.67 0.35 0.65 0.35 80% 0.28 0.76 0.94 0.88 0.80 0.16 0.60 0.87 0.40 0.67 0.47 85% 0.23 0.96 0.88 0.95 0.96 0.29 0.77 0.65 0.64 0.69 0.30 90% 0.21 0.81 0.98 1.07 1.03 0.71 0.88 0.65 0.72 0.73 0.42 95% 0.10 0.83 1.19 1.00 0.95 0.38 0.76 0.88 0.46 0.52 0.67 Maximum 0.05 1.06 0.99 1.07 1.08 0.74 1.00 0.96 0.95 0.95 0.79 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-10 September 2004 Table C.1-3. Percent Relative Difference Between Biosphere Dose Conversion Factor Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 and Old and New Inputs (Continued) Pu-238 Pu-239 Pu-240 Pu-242 Am-241 Am-243 Mean 0.24 0.57 0.56 0.57 0.43 0.59 STD 0.36 0.93 0.92 0.93 0.90 1.01 Minimum 0.09 0.06 0.06 0.06 0.06 0.07 5% 0.22 0.35 0.22 0.36 0.15 0.04 10% 0.21 0.25 0.41 0.25 0.30 0.42 15% 0.17 0.33 0.31 0.41 0.24 0.35 20% 0.19 0.31 0.31 0.33 0.26 0.27 25% 0.23 0.51 0.40 0.33 0.33 0.37 30% 0.27 0.53 0.44 0.41 0.37 0.35 35% 0.21 0.40 0.40 0.45 0.28 0.42 40% 0.21 0.49 0.52 0.51 0.38 0.50 45% 0.16 0.52 0.45 0.66 0.45 0.57 50% 0.30 0.54 0.47 0.62 0.43 0.60 55% 0.19 0.41 0.44 0.40 0.47 0.52 60% 0.18 0.54 0.44 0.61 0.48 0.59 65% 0.29 0.58 0.48 0.60 0.45 0.55 70% 0.27 0.70 0.67 0.55 0.41 0.64 75% 0.23 0.71 0.56 0.53 0.30 0.69 80% 0.36 0.56 0.50 0.69 0.52 0.57 85% 0.23 0.71 0.61 0.81 0.45 0.79 90% 0.23 0.54 0.69 0.57 0.68 0.74 95% 0.32 0.83 0.88 0.82 0.67 0.76 Maximum 0.30 0.99 0.98 0.99 0.67 0.97 Source: Calculated using values from Tables C.1-1 and C.1-2. See Excel file GW BDCF Realizations MC _GS750_NI.xls in Appendix B for details of the calculations. STD = standard deviation Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-11 September 2004 C.2 EVALUATION OF SOFTWARE VERSION CHANGE IMPACT ON THE MODELING RESULTS This section describes the assessment of the differences in the BDCF values resulting from the software change. The software used to calculate BDCFs in the previous revision of this analysis (BSC 2003 [DIRS 164403]) was GoldSim version 7.50.100. This version was subsequently replaced with the GoldSim version 8.01 SP4, which uses revised sampling algorithm for the Latin Hypercube sampling. Evaluation of the sampling algorithm effects on the biosphere model results was performed and is documented in this section. This evaluation corresponds to Action 001 in CR-2222. The following steps were delineated in the action description: 1. Using GoldSim Version 8.01 SP4 or higher, rerun all biosphere analyses that rely on Latin Hypercube sampling for selecting parameter-input values. 2. Compare the outputs from these runs with outputs from earlier versions of GoldSim used in the analysis and model reports. 3. Determine the amount of variation between the two outputs for the mean, 95th percentile, and 5th percentile values. 4. If the variation is less than 10 percent document the results of the comparison and submit the documentation to the records package for the analysis and model report. 5. If the variation is greater than 10 percent then submit the revised outputs to TSPA to evaluate the impact of the variation on the TSPA results. 6. Perform TSPA calculations with GoldSim Version 8.01 SP4 or higher using the revised inputs. To evaluate the impact on the BDCFs, the biosphere model was executed using GoldSim 8.01 SP4 and the old set of input parameters (DTN: MO0305SPAINEXI.001 [DIRS 163808]; MO0305SPASRPBM.001 [DIRS 163815]; MO0306SPAAEIBM.001 [DIRS 163812]; MO0306SPACRBSM.001 [DIRS 163813]; MO0306SPAETPBM.001 [DIRS 163814]). Table C.2-1 shows the statistics for the BDCF generated in such a manner. These statistics were compared to the statistics for the BDCFs generated using GoldSim 7.50.100 and the old input parameter values (Table C.1-2). The results of comparison in terms of percent relative difference between the BDCF calculated using the two different version of GoldSim are presented in Table C.2-2. The relative differences between the BDCFs resulting from the software change are usually small. The mean value changes are less than 6 percent. For 3 isotopes of uranium, the variation between the results obtained using different GoldSim versions exceeded the 10 percent threshold for the statistics listed in step 3 of Action 001 in CR-2222 and was up to about 21 percent (for the 95th percentile). Therefore, step 5 was performed and a new biosphere results were generated, as described in this report. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-12 September 2004 Table C.2-1. Biosphere Dose Conversion Factors Statistics for the Present-Day Climate Calculated Using GoldSim 8.01 SP4 and Old Inputs, rem/yr per pCi/L. C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Pb-210 Ra-226 Mean 9.10E-06 2.06E-05 6.15E-05 1.64E-04 2.25E-06 6.26E-03 3.36E-04 5.45E-05 4.78E-04 9.03E-03 9.59E-02 STD 6.67E-06 4.19E-05 1.05E-04 2.55E-05 2.36E-06 3.90E-03 1.13E-04 3.77E-05 2.27E-04 3.54E-03 4.72E-02 Minimum 4.14E-06 3.42E-06 9.70E-06 1.23E-04 1.18E-06 2.02E-04 2.21E-04 1.17E-05 1.51E-04 5.80E-03 2.47E-03 5% 4.93E-06 5.20E-06 1.49E-05 1.35E-04 1.31E-06 1.11E-03 2.43E-04 1.90E-05 2.30E-04 6.26E-03 3.85E-02 10% 5.20E-06 5.77E-06 1.76E-05 1.39E-04 1.36E-06 1.84E-03 2.50E-04 2.19E-05 2.57E-04 6.45E-03 4.64E-02 15% 5.47E-06 6.50E-06 1.97E-05 1.43E-04 1.42E-06 2.55E-03 2.58E-04 2.49E-05 2.80E-04 6.60E-03 5.21E-02 20% 5.66E-06 7.06E-06 2.17E-05 1.45E-04 1.46E-06 3.13E-03 2.64E-04 2.84E-05 2.98E-04 6.76E-03 5.74E-02 25% 5.91E-06 7.72E-06 2.37E-05 1.48E-04 1.50E-06 3.57E-03 2.70E-04 3.08E-05 3.24E-04 6.93E-03 6.19E-02 30% 6.09E-06 8.62E-06 2.64E-05 1.50E-04 1.55E-06 3.94E-03 2.77E-04 3.34E-05 3.44E-04 7.10E-03 6.68E-02 35% 6.34E-06 9.47E-06 2.81E-05 1.52E-04 1.61E-06 4.22E-03 2.83E-04 3.59E-05 3.62E-04 7.24E-03 7.13E-02 40% 6.55E-06 1.05E-05 3.02E-05 1.54E-04 1.67E-06 4.51E-03 2.91E-04 3.87E-05 3.82E-04 7.45E-03 7.66E-02 45% 6.83E-06 1.15E-05 3.26E-05 1.56E-04 1.72E-06 5.03E-03 2.98E-04 4.13E-05 4.00E-04 7.69E-03 8.11E-02 50% 7.04E-06 1.27E-05 3.54E-05 1.59E-04 1.78E-06 5.50E-03 3.08E-04 4.46E-05 4.23E-04 7.93E-03 8.71E-02 55% 7.37E-06 1.42E-05 3.81E-05 1.61E-04 1.85E-06 5.94E-03 3.16E-04 4.76E-05 4.46E-04 8.19E-03 9.23E-02 60% 7.76E-06 1.56E-05 4.22E-05 1.64E-04 1.93E-06 6.40E-03 3.28E-04 5.05E-05 4.71E-04 8.47E-03 9.83E-02 65% 8.36E-06 1.75E-05 4.73E-05 1.66E-04 2.03E-06 6.89E-03 3.39E-04 5.47E-05 5.04E-04 8.82E-03 1.05E-01 70% 8.85E-06 1.92E-05 5.30E-05 1.70E-04 2.14E-06 7.68E-03 3.50E-04 5.93E-05 5.35E-04 9.19E-03 1.13E-01 75% 9.55E-06 2.21E-05 6.12E-05 1.75E-04 2.29E-06 8.44E-03 3.63E-04 6.51E-05 5.67E-04 9.65E-03 1.20E-01 80% 1.06E-05 2.51E-05 7.16E-05 1.79E-04 2.48E-06 9.25E-03 3.81E-04 7.16E-05 6.16E-04 1.04E-02 1.30E-01 85% 1.19E-05 2.90E-05 8.97E-05 1.85E-04 2.83E-06 1.02E-02 4.06E-04 8.21E-05 6.73E-04 1.12E-02 1.43E-01 90% 1.40E-05 3.68E-05 1.19E-04 1.94E-04 3.44E-06 1.15E-02 4.49E-04 9.98E-05 7.48E-04 1.26E-02 1.61E-01 95% 2.05E-05 5.29E-05 1.65E-04 2.13E-04 4.38E-06 1.40E-02 5.16E-04 1.25E-04 9.23E-04 1.60E-02 1.82E-01 Maximum 9.35E-05 8.75E-04 1.87E-03 3.76E-04 6.13E-05 2.01E-02 1.96E-03 3.43E-04 1.69E-03 3.66E-02 4.23E-01 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-13 September 2004 Table C.2-1. Biosphere Dose Conversion Factors Statistics for the Present-Day Climate Calculated Using GoldSim 8.01 SP4 and Old Inputs, rem/yr per pCi/L (Continued) Ac-227 Th-229 Th-230 Th-232 Pa-231 U-232 U-233 U-234 U-236 U-238 Np-237 Mean 3.10E-02 3.39E-02 2.91E-02 4.41E-02 1.00E-01 5.80E-03 1.84E-03 1.27E-03 1.13E-03 1.12E-03 6.96E-03 STD 1.08E-02 1.84E-02 2.55E-02 2.26E-02 6.60E-02 2.31E-03 2.18E-03 1.12E-03 9.55E-04 9.47E-04 2.48E-03 Minimum 1.36E-02 4.78E-03 1.03E-03 6.59E-03 1.00E-02 1.83E-03 2.36E-04 2.29E-04 2.17E-04 2.17E-04 3.85E-03 5% 1.75E-02 1.27E-02 5.77E-03 1.80E-02 3.11E-02 2.72E-03 3.46E-04 3.29E-04 3.10E-04 3.06E-04 4.45E-03 10% 1.94E-02 1.53E-02 7.19E-03 2.08E-02 3.69E-02 3.22E-03 4.18E-04 3.97E-04 3.73E-04 3.68E-04 4.76E-03 15% 2.05E-02 1.73E-02 8.80E-03 2.38E-02 4.39E-02 3.54E-03 4.98E-04 4.57E-04 4.24E-04 4.19E-04 4.98E-03 20% 2.19E-02 1.95E-02 1.00E-02 2.63E-02 4.93E-02 3.90E-03 5.61E-04 5.09E-04 4.76E-04 4.69E-04 5.18E-03 25% 2.32E-02 2.10E-02 1.12E-02 2.85E-02 5.44E-02 4.15E-03 6.06E-04 5.62E-04 5.25E-04 5.17E-04 5.37E-03 30% 2.41E-02 2.28E-02 1.28E-02 3.05E-02 6.09E-02 4.45E-03 6.66E-04 6.06E-04 5.63E-04 5.56E-04 5.55E-03 35% 2.53E-02 2.44E-02 1.43E-02 3.18E-02 6.52E-02 4.71E-03 7.44E-04 6.56E-04 6.11E-04 5.94E-04 5.74E-03 40% 2.66E-02 2.63E-02 1.60E-02 3.47E-02 7.06E-02 4.90E-03 8.20E-04 7.25E-04 6.71E-04 6.57E-04 5.90E-03 45% 2.79E-02 2.83E-02 1.81E-02 3.68E-02 7.54E-02 5.17E-03 9.10E-04 7.89E-04 7.29E-04 7.23E-04 6.08E-03 50% 2.92E-02 2.98E-02 2.06E-02 3.97E-02 8.21E-02 5.44E-03 1.04E-03 8.55E-04 7.85E-04 7.81E-04 6.35E-03 55% 3.08E-02 3.16E-02 2.29E-02 4.20E-02 8.77E-02 5.67E-03 1.15E-03 9.82E-04 9.01E-04 8.96E-04 6.56E-03 60% 3.22E-02 3.34E-02 2.59E-02 4.41E-02 9.66E-02 5.97E-03 1.34E-03 1.08E-03 9.92E-04 9.86E-04 6.81E-03 65% 3.36E-02 3.60E-02 2.85E-02 4.67E-02 1.05E-01 6.32E-03 1.56E-03 1.21E-03 1.10E-03 1.10E-03 7.05E-03 70% 3.50E-02 3.85E-02 3.37E-02 4.97E-02 1.14E-01 6.66E-03 1.82E-03 1.35E-03 1.23E-03 1.23E-03 7.43E-03 75% 3.69E-02 4.16E-02 3.81E-02 5.40E-02 1.24E-01 7.10E-03 2.13E-03 1.54E-03 1.37E-03 1.39E-03 7.86E-03 80% 3.89E-02 4.52E-02 4.42E-02 5.91E-02 1.42E-01 7.48E-03 2.59E-03 1.81E-03 1.59E-03 1.61E-03 8.26E-03 85% 4.11E-02 5.01E-02 5.17E-02 6.58E-02 1.60E-01 7.92E-03 3.17E-03 2.11E-03 1.87E-03 1.88E-03 8.79E-03 90% 4.48E-02 5.77E-02 6.24E-02 7.42E-02 1.93E-01 8.74E-03 4.34E-03 2.71E-03 2.38E-03 2.33E-03 9.84E-03 95% 5.02E-02 7.04E-02 8.58E-02 8.73E-02 2.31E-01 9.96E-03 6.43E-03 3.60E-03 3.03E-03 3.04E-03 1.18E-02 Maximum 1.09E-01 1.19E-01 1.61E-01 1.45E-01 5.62E-01 1.67E-02 1.54E-02 7.69E-03 6.81E-03 6.62E-03 2.47E-02 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-14 September 2004 Table C.2-1. Biosphere Dose Conversion Factors Statistics for the Present-Day Climate Calculated Using GoldSim 8.01 SP4 and Old Inputs, rem/yr per pCi/L (Continued) Pu-238 Pu-239 Pu-240 Pu-242 Am-241 Am-243 Mean 4.68E-03 9.20E-03 8.96E-03 8.86E-03 6.80E-03 9.51E-03 STD 1.13E-03 3.71E-03 3.49E-03 3.64E-03 2.04E-03 4.18E-03 Minimum 2.89E-03 3.72E-03 3.71E-03 3.55E-03 2.97E-03 2.96E-03 5% 3.36E-03 5.07E-03 5.02E-03 4.84E-03 4.28E-03 4.73E-03 10% 3.56E-03 5.53E-03 5.46E-03 5.29E-03 4.70E-03 5.34E-03 15% 3.67E-03 5.93E-03 5.84E-03 5.67E-03 5.00E-03 5.79E-03 20% 3.80E-03 6.26E-03 6.18E-03 5.99E-03 5.20E-03 6.23E-03 25% 3.90E-03 6.58E-03 6.49E-03 6.29E-03 5.38E-03 6.67E-03 30% 4.03E-03 6.82E-03 6.75E-03 6.52E-03 5.57E-03 6.99E-03 35% 4.12E-03 7.15E-03 7.05E-03 6.84E-03 5.84E-03 7.31E-03 40% 4.24E-03 7.56E-03 7.47E-03 7.25E-03 6.03E-03 7.67E-03 45% 4.34E-03 7.91E-03 7.76E-03 7.60E-03 6.23E-03 8.13E-03 50% 4.44E-03 8.31E-03 8.16E-03 7.98E-03 6.43E-03 8.57E-03 55% 4.55E-03 8.69E-03 8.52E-03 8.37E-03 6.60E-03 9.05E-03 60% 4.69E-03 9.09E-03 8.88E-03 8.72E-03 6.84E-03 9.42E-03 65% 4.81E-03 9.58E-03 9.32E-03 9.23E-03 7.05E-03 1.00E-02 70% 4.97E-03 1.02E-02 9.93E-03 9.80E-03 7.39E-03 1.06E-02 75% 5.17E-03 1.08E-02 1.06E-02 1.04E-02 7.71E-03 1.14E-02 80% 5.40E-03 1.16E-02 1.12E-02 1.12E-02 8.10E-03 1.23E-02 85% 5.65E-03 1.27E-02 1.22E-02 1.22E-02 8.64E-03 1.35E-02 90% 6.10E-03 1.41E-02 1.37E-02 1.38E-02 9.33E-03 1.48E-02 95% 6.81E-03 1.66E-02 1.61E-02 1.61E-02 1.07E-02 1.76E-02 Maximum 1.41E-02 2.74E-02 2.64E-02 2.66E-02 1.70E-02 3.65E-02 Source: MO0305SPAINEXI.001 [DIRS 163808]; MO0305SPASRPBM.001 [DIRS 163815]; MO0306SPAAEIBM.001 [DIRS 163812]; MO0306SPACRBSM.001 [DIRS 163813]; MO0306SPAETPBM.001 [DIRS 163814]; and MO0306MWDBGSMF.001 [DIRS 163816]. NOTE: See Excel file Comparison of GoldSim versions_same inputs.xls in Appendix B for details of the calculations. STD = standard deviation. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-15 September 2004 Table C.2-2. Percent Relative Difference Between Biosphere Dose Conversion Factor Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 and GoldSim 8.01 SP4 and Old Inputs C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Pb-210 Ra-226 Mean 0.40 5.47 -5.30 -0.12 2.11 -0.38 -0.47 -2.55 -1.77 -0.10 0.12 STD 10.29 47.64 -18.93 3.65 59.62 -1.31 -3.77 -5.59 -10.61 1.50 1.52 Minimum -0.19 6.12 4.74 1.43 1.05 40.35 0.46 28.00 -11.29 1.58 11.94 5% 0.62 7.01 4.06 0.63 0.22 11.40 1.27 -3.97 0.56 0.84 -2.00 10% 0.80 3.54 4.49 0.53 0.81 -0.40 1.37 -2.05 0.06 1.46 -1.40 15% 1.72 3.65 0.35 0.81 0.68 6.34 1.44 -2.29 1.44 0.53 -1.10 20% 0.92 3.38 0.30 0.00 0.53 0.97 0.56 1.93 -0.56 0.23 -0.28 25% 1.88 -0.37 0.97 0.42 0.49 0.41 -0.15 1.97 1.63 0.38 -0.61 30% 1.51 1.63 5.42 0.05 0.34 -1.37 0.29 0.59 2.75 0.57 1.27 35% 1.75 0.12 3.38 0.04 0.69 -6.07 0.48 1.08 1.02 -0.18 0.67 40% 1.58 2.54 1.91 -0.29 1.01 -6.08 0.36 1.21 1.51 0.00 2.14 45% 1.34 2.32 -1.25 -0.25 1.17 -1.65 0.27 1.52 -0.37 0.16 1.40 50% -0.74 4.05 -2.34 -0.18 0.71 1.71 1.21 1.17 -0.06 0.28 2.37 55% -1.54 6.56 -3.25 -0.51 1.55 2.00 0.91 1.71 -1.48 0.24 -0.56 60% -0.97 4.06 -2.57 -0.56 1.79 2.86 1.03 -1.01 -1.15 -1.68 -1.45 65% 0.16 3.39 -1.47 -1.05 1.39 0.06 1.23 -1.70 -0.51 -1.19 -1.06 70% -1.62 0.42 -0.97 -0.17 0.80 0.97 0.26 -1.61 -0.14 -2.22 -0.88 75% -2.86 1.35 -1.55 -0.10 -0.36 0.62 -0.91 -4.66 -1.53 -3.08 -2.36 80% -1.13 -0.40 -2.65 -1.20 -1.68 0.07 -1.86 -6.63 -0.57 -2.31 -1.91 85% -1.89 -5.78 0.42 -1.41 -2.20 -1.31 -1.57 -4.18 -1.81 -1.05 -1.00 90% -5.15 -3.74 -0.69 -0.78 2.50 -3.59 -1.95 -0.79 -4.78 -1.41 1.21 95% 0.72 -1.40 -8.74 0.77 -4.80 -1.08 -1.07 -5.51 -6.11 2.76 -0.36 Maximum 53.59 97.70 -31.20 30.46 224.54 -5.52 41.15 10.16 -21.09 6.77 25.26 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-16 September 2004 Table C.2-2. Percent Relative Difference Between Biosphere Dose Conversion Factor Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 and GoldSim 8.01 SP4 and Old Inputs (Continued) Ac-227 Th-229 Th-230 Th-232 Pa-231 U-232 U-233 U-234 U-236 U-238 Np-237 Mean 0.15 0.42 1.22 0.02 1.04 0.39 5.81 4.65 4.52 4.37 0.58 STD -0.66 4.25 5.57 2.36 4.51 -1.84 6.80 9.96 11.28 10.74 9.37 Minimum 8.11 -24.87 -7.59 -13.16 -31.22 2.96 -2.71 -0.10 0.67 0.67 4.12 5% 2.91 -2.99 8.50 0.90 5.45 0.15 -1.17 0.86 0.49 0.75 3.19 10% 4.19 -3.86 -3.37 -2.09 0.20 2.04 -0.34 1.54 1.52 1.99 3.47 15% 1.51 -1.68 0.33 1.82 0.63 0.35 2.79 2.56 1.04 1.82 2.95 20% 0.79 1.21 -0.54 1.31 1.08 1.03 6.41 2.42 1.81 2.57 0.91 25% 1.62 -0.70 -3.76 1.35 -0.14 1.62 3.30 3.94 4.02 4.09 0.13 30% -0.66 1.42 -3.90 -0.02 0.19 2.17 2.06 3.22 3.31 3.73 -0.13 35% -1.03 0.10 -4.92 -2.90 0.34 1.78 3.22 0.64 1.21 0.28 -0.45 40% -1.03 0.22 -6.33 -0.55 -0.20 -0.57 1.39 2.78 2.40 2.79 -0.53 45% -0.46 -0.42 -5.97 -0.48 -0.39 1.00 2.08 2.63 1.63 3.00 -0.93 50% 0.88 0.34 -1.33 1.02 -0.31 1.67 3.24 1.46 0.53 1.58 -1.10 55% 1.19 -1.23 -0.07 1.43 -0.63 1.02 -2.65 2.84 2.60 2.26 -1.17 60% 2.01 -1.14 0.48 -0.61 -0.59 -0.03 0.43 1.32 1.97 0.63 -1.76 65% 1.03 0.34 -0.57 -0.41 -0.89 1.02 -1.34 0.00 0.28 0.46 -2.28 70% -0.65 -0.24 2.14 -1.46 -1.25 2.03 -1.93 -1.60 -0.59 -0.77 -1.70 75% -0.71 0.29 -0.17 -0.55 -2.80 0.78 -1.93 2.19 -0.19 0.87 -1.08 80% -0.26 -0.50 1.30 -0.09 2.56 -0.06 2.33 0.73 0.85 2.30 -1.67 85% -0.90 -0.83 0.59 -0.25 0.69 -1.76 2.27 -0.17 1.67 3.11 -2.11 90% 0.26 0.47 0.61 -0.34 6.69 -1.07 12.84 10.51 11.66 8.88 0.30 95% -2.30 2.69 8.04 -0.70 2.16 -1.90 21.43 14.54 9.35 10.85 4.79 Maximum 32.44 -2.57 -12.59 -3.90 28.33 -6.34 -34.40 -14.49 -1.83 -2.39 10.96 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-17 September 2004 Table C.2-2. Percent Relative Difference Between Biosphere Dose Conversion Factor Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 and GoldSim 8.01 SP4 and Old Inputs (Continued) Pu-238 Pu-239 Pu-240 Pu-242 Am-241 Am-243 Mean 0.14 0.39 0.35 0.41 0.30 0.91 STD 0.29 3.51 3.58 3.49 6.04 7.47 Minimum 6.68 -0.30 -0.48 -0.20 -1.00 -2.36 5% 1.22 1.76 1.48 1.79 -0.81 1.65 10% 0.77 1.01 0.47 1.10 1.83 0.57 15% -0.06 0.70 -0.13 0.70 1.46 0.34 20% -0.23 -0.79 -0.90 -0.76 0.83 -0.10 25% -0.18 -0.64 -0.87 -0.89 -0.78 1.83 30% 0.87 -3.10 -3.10 -3.27 -1.14 0.16 35% 0.10 -2.58 -2.51 -2.76 -0.36 -0.76 40% -0.23 -1.81 -1.32 -1.76 0.41 -2.48 45% -0.18 -1.79 -1.70 -1.70 0.52 -2.23 50% -0.37 -1.44 -1.68 -1.63 -0.44 -1.72 55% -0.47 -1.30 -1.00 -0.81 -0.85 -0.40 60% -0.67 -1.29 -1.69 -1.83 -1.27 -2.76 65% -1.08 -0.66 -0.93 -0.59 -1.79 -1.20 70% -0.93 1.07 1.11 0.62 -1.45 0.21 75% -0.16 1.15 1.66 1.28 -1.63 1.31 80% 0.05 2.19 1.29 2.62 -0.64 2.55 85% -0.58 3.17 2.21 2.69 0.47 1.85 90% 1.36 2.53 3.54 4.14 0.18 1.09 95% 2.51 0.87 2.00 0.47 2.10 1.85 Maximum -7.33 -5.25 0.40 -7.45 2.13 23.60 Source: Calculated using values from Tables C.1-2 and C.2-1. See Excel file Comparison of GoldSim versions_same inputs.xls in Appendix B for details of the calculations. STD = standard deviation. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-18 September 2004 C.3 EVALUATION OF INPUT AND SOFTWARE VERSION CHANGE IMPACT ON THE MODELING RESULTS This section describes the evaluation of the combined differences in the BDCF values resulting from the input and software change. The statistics for the BDCF values calculated using GoldSim version 7.50.100 are shown in Table C.1-2. The statistics for the BDCFs calculated using the new inputs and GoldSim version 8.01 SP4 are shown in Table 6.2-5. Table C.3-1 shows the results of comparison of these two data sets in terms of percent relative difference between the BDCFs. As stated in Section C.1, the relative differences between the BDCFs resulting from the input change are negligibly small, on the order of one percent for all radionuclides except 135Cs. It can be thus concluded that the BDCF differences are primarily due to the software changes. The relative differences between the BDCFs resulting from the input and software change are usually small. Tables C.3-1 shows that the differences between the BDCF values calculated in the previous revision of this analysis and the new BDCF values are small. The mean BDCF values differ by less than 7 percent. The percentiles shown in Table C.3-1, between the 5th and 95th percentile, differ by less than 10 percent except for the uranium isotopes whose 95th percentiles show up to about 23 percent difference and the 5th percentile for 126Sn (12 percent difference). Only the standard deviations and the far tails of the distributions are affected, with the differences up to about a factor of 2 for the maximum BDCF value for 99Tc. The high maximum value for 99Tc is due to one “outlier” data point. Considering the uncertainty in the BDCF distributions (see Tables 6.2-5 to 6.2-7), such differences are insignificant. It can thus be concluded that the BDCFs calculated in the previous revision of this analysis and the new BDCF developed in this analysis are equivalent and can be used interchangeably. Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-19 September 2004 Table C.3-1. Percent Relative Difference Between Biosphere Dose Conversion Factor Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 with Old Inputs and GoldSim 8.01 SP4 with New Inputs C-14 Cl-36 Se-79 Sr-90 Tc-99 Sn-126 I-129 Cs-135 Cs-137 Pb-210 Ra-226 Mean 0.38 6.13 -4.66 0.07 2.48 0.58 -0.30 -0.35 -1.03 -0.05 1.15 STD 10.30 49.12 -18.37 4.43 61.22 -0.28 -3.14 0.36 -10.15 1.52 2.57 Minimum 0.07 6.41 4.86 1.45 1.11 41.20 0.48 25.56 -10.73 1.64 12.54 5% 0.41 7.22 4.37 0.75 0.23 12.09 1.33 -4.02 1.87 0.87 -0.95 10% 0.97 3.76 4.76 0.64 0.84 -0.12 1.45 -1.06 0.87 1.49 -0.34 15% 1.61 3.93 0.74 0.94 0.76 7.02 1.49 -0.68 2.71 0.56 -0.06 20% 0.79 3.43 0.97 0.12 0.64 1.83 0.63 1.16 0.36 0.25 0.75 25% 1.80 -0.21 2.02 0.60 0.67 1.33 -0.09 2.44 2.39 0.42 0.42 30% 1.59 2.07 6.00 0.16 0.39 -0.77 0.39 0.88 3.44 0.64 2.33 35% 1.69 0.58 3.99 0.19 0.92 -5.32 0.54 2.08 1.68 -0.15 1.66 40% 1.57 3.03 2.66 -0.15 1.22 -5.12 0.44 2.17 2.36 0.04 3.11 45% 1.28 2.91 -0.39 -0.11 1.20 -0.65 0.39 2.43 0.31 0.18 2.58 50% -0.73 4.51 -1.67 -0.03 0.90 2.41 1.24 2.91 0.82 0.32 3.51 55% -1.62 7.02 -2.44 -0.34 1.73 2.74 0.98 3.51 -0.46 0.27 0.57 60% -0.71 4.68 -1.89 -0.34 1.93 3.95 1.22 1.37 -0.62 -1.60 -0.46 65% 0.12 4.06 -1.02 -0.80 1.52 1.11 1.33 0.05 0.30 -1.17 0.03 70% -1.63 1.06 -0.45 0.07 0.96 1.96 0.33 0.98 0.38 -2.16 0.10 75% -2.81 1.69 -1.00 0.08 0.01 1.72 -0.74 -3.30 -0.43 -3.06 -1.34 80% -1.20 0.41 -1.90 -1.02 -1.27 1.16 -1.58 -4.22 0.28 -2.30 -0.75 85% -1.97 -5.48 0.87 -1.17 -1.74 -0.33 -1.40 2.11 -1.39 -1.02 0.05 90% -5.23 -2.85 -0.35 -0.39 3.15 -2.57 -1.73 3.21 -4.44 -1.38 2.34 95% 0.71 -0.48 -7.76 1.13 -4.11 -0.21 -0.71 -0.30 -5.56 2.81 0.64 Maximum 53.58 99.81 -30.74 31.04 227.81 -4.60 42.26 53.29 -21.04 6.78 26.68 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-20 September 2004 Table C.3-1. Percent Relative Difference Between Biosphere Dose Conversion Factor Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 with Old Inputs and GoldSim 8.01 SP4 with New Inputs (Continued) Ac-227 Th-229 Th-230 Th-232 Pa-231 U-232 U-233 U-234 U-236 U-238 Np-237 Mean 0.35 1.20 2.20 0.84 1.94 0.73 6.54 5.27 5.11 4.97 0.86 STD -0.53 5.27 6.63 3.38 5.57 -1.24 7.85 11.04 12.38 11.84 10.31 Minimum 8.20 -24.61 -7.44 -13.06 -31.11 3.05 -2.66 -0.06 0.71 0.73 4.17 5% 3.15 -2.39 9.45 1.38 6.17 0.45 -1.13 0.88 0.65 0.91 3.26 10% 4.38 -3.33 -2.48 -1.48 0.87 2.12 -0.27 1.57 1.62 2.02 3.60 15% 1.78 -0.94 1.34 2.27 1.42 0.51 3.02 2.58 1.26 1.82 3.07 20% 0.94 1.55 0.31 2.13 1.70 1.35 6.41 2.70 1.85 2.72 0.95 25% 1.77 0.00 -2.86 2.01 0.74 1.89 3.31 3.97 4.29 4.12 0.21 30% -0.42 2.15 -3.03 0.68 0.68 2.44 2.24 3.30 3.46 3.78 0.11 35% -0.85 0.80 -4.23 -2.16 1.19 2.12 3.45 0.83 1.44 0.65 -0.28 40% -0.88 0.86 -5.45 0.21 0.61 -0.41 1.64 3.15 2.40 2.95 -0.41 45% -0.27 0.42 -5.07 0.41 0.60 1.15 2.48 2.75 1.87 3.28 -0.70 50% 1.24 0.95 -0.32 1.91 0.53 1.85 3.44 1.69 0.83 1.88 -0.82 55% 1.44 -0.37 0.94 2.23 0.25 1.38 -2.32 3.10 2.94 2.62 -1.02 60% 2.23 -0.49 1.43 0.18 0.36 0.33 1.17 1.95 2.29 1.06 -1.53 65% 1.18 1.08 0.36 0.48 -0.01 1.31 -1.03 0.50 0.75 0.68 -2.19 70% -0.46 0.64 3.01 -0.56 -0.18 2.37 -1.19 -1.31 -0.03 -0.44 -1.53 75% -0.59 1.03 0.74 0.26 -1.86 1.05 -1.14 2.68 0.64 1.62 -0.72 80% 0.01 0.29 2.38 0.68 3.48 0.25 2.89 1.36 1.45 2.95 -1.25 85% -0.67 -0.03 1.73 0.61 1.75 -1.25 3.18 0.11 2.39 3.70 -1.79 90% 0.36 1.38 1.53 0.52 7.88 -0.76 13.57 11.53 12.37 9.77 0.80 95% -2.09 3.71 9.21 0.24 3.31 -1.62 22.58 15.43 10.49 11.84 5.58 Maximum 32.49 -1.74 -11.63 -3.06 29.63 -5.47 -33.74 -13.70 -0.93 -1.49 11.74 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-21 September 2004 Table C.3-1. Percent Relative Difference Between Biosphere Dose Conversion Factor Statistics for the Present-Day Climate Calculated Using GoldSim 7.50.100 with Old Inputs and GoldSim 8.01 SP4 with New Inputs (Continued) Pu-238 Pu-239 Pu-240 Pu-242 Am-241 Am-243 Mean 0.38 0.96 0.91 0.98 0.73 1.51 STD 0.66 4.47 4.54 4.45 7.01 8.54 Minimum 6.81 0.01 -0.18 0.11 -0.95 -2.32 5% 1.37 2.14 1.81 2.13 -0.54 1.92 10% 1.05 1.25 0.72 1.37 2.03 0.82 15% 0.19 1.17 0.31 1.21 1.79 0.68 20% 0.03 -0.56 -0.51 -0.47 1.10 0.28 25% 0.01 -0.22 -0.39 -0.47 -0.44 2.34 30% 1.06 -2.67 -2.68 -2.80 -0.93 0.54 35% 0.33 -2.17 -2.13 -2.38 0.02 -0.32 40% 0.08 -1.29 -0.84 -1.34 0.83 -1.93 45% 0.01 -1.18 -1.23 -1.09 0.87 -1.79 50% -0.04 -0.97 -1.16 -1.15 0.01 -1.12 55% -0.21 -0.91 -0.45 -0.30 -0.55 0.24 60% -0.44 -0.75 -1.02 -1.30 -0.75 -2.15 65% -0.67 -0.03 -0.34 0.04 -1.33 -0.57 70% -0.59 1.66 1.65 1.04 -1.02 1.00 75% 0.19 1.77 2.29 1.87 -1.18 1.90 80% 0.41 2.92 1.92 3.36 -0.15 3.30 85% -0.16 3.74 2.93 3.43 0.93 2.64 90% 1.71 3.24 4.34 4.81 0.74 1.87 95% 2.70 1.67 2.72 1.33 2.77 2.71 Maximum -7.21 -4.66 1.03 -6.87 3.06 24.70 Source: Calculated using values from Tables C.1-2 and 6.2-5. See Excel file GW BDCF Realizations_MC and FC_Rev 3.xls in Appendix B for details of the calculations. STD = standard deviation Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 C-22 September 2004 INTENTIONALLY LEFT BLANK Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 September 2004 APPENDIX D DATA QUALIFICATION PLAN Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 September 2004 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 D-1 September 2004 D. DATA QUALIFICATION PLAN Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 D-2 September 2004 INTENTIONALLY LEFT BLANK Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 September 2004 APPENDIX E VERIFICATION OF ERMYN MODEL FILES FOR GOLDSIM VERSION 8.01 SP4 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 September 2004 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 E-1 September 2004 E. VERIFICATION OF ERMYN MODEL FILES FOR GOLDSIM VERSION 8.01 SP4 The ERMYN model for the groundwater exposure scenario (DTN: MO0306MWDBGSMF.001) was constructed and verified for GoldSim version 7.50.100. Verification was conducted for three radionuclides: 14C, 226Ra, and 239Pu because these three radionuclides are representative of all environmental transport and exposure pathways included in the model for the groundwater exposure scenario. To verify the applicability of GoldSim version 8.01 SP4 as software supporting the biosphere model, the original model verification files were opened in GoldSim 8.01 SP4 and the verification calculations were repeated. Figure E-1 shows the list of the original verification files as well as the model files generated in this analysis when the original files were run using GoldSim 8.01 SP4. The files that are labeled with *_GS801SP4.gsm correspond to runs performed using GoldSim Version 8.01 SP4; whereas, those without are runs performed using GoldSim Version 7.50.001. Table E-1 shows the results from the original verification files and their re-runs in GoldSim 8.01 SP4. The results are identical, so the model can be executed using GoldSim 8.01 SP4. Figure E-1. Model Verification Files Obtained Using GoldSim Versions 7.50.100 and 8.01 SP4 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 E-2 September 2004 Table E-1. Results of Verification Runs Using GoldSim Versions 7.50.100 and 8.01 SP4 BDCF (rem/yr per pCi/L) Radionuclide Pathway GoldSim 7.50.100 GoldSim 8.01 SP4 All pathways 7.14602E-06 7.14602E-06 External 3.26180E-13 3.26180E-13 Inhalation 1.63130E-09 1.63130E-09 Evaporative Cooler 3.40450E-11 3.40450E-11 Radon 0.00000E+00 0.00000E+00 Water 1.52440E-06 1.52440E-06 Leafy Vegetables 2.52710E-07 2.52710E-07 Other Vegetables 4.42120E-07 4.42120E-07 Fruit 1.15850E-06 1.15850E-06 Grain 5.87210E-08 5.87210E-08 Meat 6.31780E-07 6.31780E-07 Milk 3.01670E-07 3.01670E-07 Poultry 5.41440E-08 5.41440E-08 Eggs 5.12430E-07 5.12430E-07 Fish 2.20780E-06 2.20780E-06 Soil Ingestion 8.67940E-12 8.67940E-12 C-14 File name ERMYN_GW_C14verf.gsm ERMYN_GW_C14verf_GS801SP4.gsm All pathways 7.63326E-03 7.63326E-03 External 1.38220E-07 1.38220E-07 Inhalation 3.92780E-03 3.92780E-03 Evaporative Cooler 6.20940E-04 6.20940E-04 Radon 0.00000E+00 0.00000E+00 Water 2.58390E-03 2.58390E-03 Leafy Vegetables 7.55490E-05 7.55490E-05 Other Vegetables 1.52470E-05 1.52470E-05 Fruit 4.95180E-05 4.95180E-05 Grain 5.87800E-06 5.87800E-06 Meat 2.57590E-07 2.57590E-07 Milk 9.85630E-09 9.85630E-09 Poultry 6.33900E-08 6.33900E-08 Eggs 1.13320E-06 1.13320E-06 Fish 1.38430E-04 1.38430E-04 Soil Ingestion 2.14330E-04 2.14330E-04 Pu-239 File name ERMYN_GW_Pu239verf.gsm ERMYN_GW_Pu239verf_GS801SP4.gsm All pathways 7.45638E-02 7.45638E-02 External 5.64900E-03 5.64900E-03 Inhalation 2.44180E-04 2.44180E-04 Evaporative Cooler 1.24400E-05 1.24400E-05 Radon 6.66370E-02 6.66370E-02 Water 9.68280E-04 9.68280E-04 Ra-226 Leafy Vegetables 1.10450E-04 1.10450E-04 Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 E-3 September 2004 Table E-1. Results of Verification Runs Using GoldSim Versions 7.50.100 and 8.01 SP4 (Continued) BDCF (rem/yr per pCi/L) Radionuclide Pathway GoldSim 7.50.100 GoldSim 8.01 SP4 Other Vegetables 6.20040E-05 6.20040E-05 Fruit 2.28720E-04 2.28720E-04 Grain 1.54740E-05 1.54740E-05 Meat 2.58540E-05 2.58540E-05 Milk 2.39060E-05 2.39060E-05 Poultry 2.55110E-06 2.55110E-06 Eggs 6.36060E-05 6.36060E-05 Fish 8.47680E-05 8.47680E-05 Soil Ingestion 4.35430E-04 4.35430E-04 Ra-226 (cont.) File name ERMYN_GW_Ra226verf.gsm ERMYN_GW_Ra226verf_GS801SP4.gsm Nominal Performance Biosphere Dose Conversion Factor Analysis ANL-MGR-MD-000009 REV 03 E-4 September 2004 INTENTIONALLY LEFT BLANK