Appendix A

Conversion Factors for Standard Units

This appendix has been prepared in consistent metric units based on the *Le Systéme International d'Unités* (SI). Some important features of the SI are summarized in this appendix along with a summary of factors to enable readers to convert to English units.

Quantity	Unit	Symbol
Energy, work, heat ^(a)	joule	J
Power, radiant flux	watt	W
Electric potential	volt	v
Electric resistance	ohm	R
Conductance	siemans	S
(a) An energy unit accepted for limited us 1 kWh = 1,000 Wh = 3.6 MJ.	se is the kilowatthour (kW	/h).

 Table A.2.
 SI Prefixes

Prefix	Symbol	Multiplication Factor
exa	Е	1018
peta	Р	10 ¹⁵
tera	Т	1012
giga	G	10 ⁹
mega	М	10 ⁶
kilo	k	10 ³

Quantity	Unit	Symbol
Area		
Square meter	1 m ²	m ²
Hectare	10,000 m ²	ha
Million hectares	10 ⁶ ha	Mha
Mass		
Metric ton	10^3 kg	t
Gigagram	10 ⁹ g	Gg
Million metric tons	10 ⁶ t	Mt
Giga ton	10 ⁹ t	Gt

Table A.3. SI Area and Mass Units

To convert from	to	multiply by
Basic units		
Area		
hectares (ha)	acres	2.471
Mass		
kilograms (kg)	pounds (mass)	2.205
metric tons (t)	short ton (2,000 lb)	1.102
gigagrams (Gg)	short ton (2,000 lb)	1.102×10^3
Energy		
kilojoules (kJ)	British thermal units (Btus)	0.9478
exajoules (EJ)	quad (10 ¹⁵ Btus)	0.9478
petajoules (PJ)	quad (10 ¹⁵ Btus)	0.9478x10 ⁻³
Special Units		
Carbon		
kg carbon (kg C)	lb CO ₂	8.084
Crop production		
metric t (corn)	bushel (56 lb)	39.37
metric t (soybeans)	bushel (60 lb)	36.74
metric t (wheat)	bushel (60 lb)	36.74
Crop yield		
kg/ha	lb/acre	0.8922
metric t/ha	short ton/acre	0.4461
metric t/ha (corn)	bushels (56 lb)/acre	15.93
metric t/ha (soybeans)	bushels (60 lb)/acre	14.87
metric t/ha (wheat)	bushels (60 lb)/acre	14.87

Table A.4. Conversion of Metric Units to English Units

Appendix B

Emissions Factors

Fuel Type	Million Short Tons Carbon Dioxide per Quadrillion Btu	Million Metric Tons Carbon Dioxide per Quadrillion Btu ^(a)
Petroleum		
Motor Gasoline	77.7	70.5
LPG	69.1	62.7
Jet Fuel	77.9	70.7
Distillate Fuel	79.9	72.5
Residual Fuel	86.6	78.6
Asphalt and Road Oil ^(b)	84.2	76.4
Lubricants ^(b)	84.9	77.0
Petrochemical Feed	77.8	70.6
Aviation Gas ^(b)	77.7	70.5
Kerosene	77.9	70.7
Petroleum Coke ^(b)	109.2	99.1
Special Naphtha ^(b)	77.7	70.5
Other: Waxes and Miscellaneous ^(b)	84.2	76.4
Coal ^(c)		
Anthracite Coal	112.5	102.1
Bituminous Coal	101.5	92.1
Subbituminous Coal	105.0	95.3
Lignite	106.5	96.6
Natural Gas		
Flare Gas ^(b)	60.8	55.2
Natural Gas	58.2	52.8

Table B.1. Factors: Carbon Coefficients and Assumptions

(a) Assumes conversion of 1 quadrillion Btu = 1.0551 exajoules and fraction combusted = 99 percent.
(b) Emissions coefficients are EIA estimates based on underlying chemical composition of the product.

(c) Coal emissions factor is for 1990: varies by ± 0.2 percent in other years.

NA = not available.

Source: U.S. Department of Energy, Energy Information Administration. 1993. Table 11 in Emissions of Greenhouse Gases in the United States 1985-1990. DOE/EIA-0573. U.S. Government Printing Office, Washington, DC.

Appendix C

Adjusted Electricity Emissions Factors by State

Emissions Factors—Page B.2

Use of the State-Level Electricity Emissions Factors

The default emissions factors contained in this appendix are the simplest to use relative to other methods of calculating emissions. However, you should realize that these default factors will either underestimate or overestimate the actual emissions characteristics of any given power-generating equipment, as they represent the average emissions characteristics over a state. If available, you are encouraged to use emissions factors specific to your reported project, for example, a utility-specific factor that has incorporated actual fuel mix and dispatching modes.

For the purposes of the voluntary reporting program, and to retain flexibility and ease-of-use, Appendix C provides default state-level electrical emissions factors for carbon dioxide (CO_2) , methane (CH_4) , and nitrous oxide (N_2O) . Three factors are given for each state: one for emissions from utility generation, one for emissions from nonutility generation, and one combined utility/nonutility. If you know the source for your electricity (that is, utility or nonutility), you may use the appropriate factor. If you do not know or if you use both utility and nonutility sources, you should use the combined factors for your state.

		UTII	- ITY	N	Ð				ΠΤΙΓΙΤΥ	NUG	ΠΤΙΓΙΤΥ	NUG	COM	BINED
REGION	STATE	CO2 Emissions Factor (short ton/MVh)	CO2 Emissions Factor (Ibs/MWh)	Weighted CO2 Emissions Factor (short ton/MWh)	Weighted CO2 Emissions Factor (Ibs/MWh)	CO2 Emissions Factor (short ton/MWh)	CO2 Emissions Factor (Ibs/MWh)	CO2 Emissions Factor (metric ton/MWh)	Weighted N20 Emissions Factor (Ibs/MWh)	Weighted N20 Emissions Factor (lbs/MWh)	Weighted CH4 Emissions Factor (Ibs/MWh)	Weighted CH4 Emissions Factor (Ibs/MWh)	Weighted N20 Emissions Factor (Ibs/MWh)	Weighted CH4 Emissions Factor (Ibs/MWh)
New England	Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont	0.262 0.126 0.711 0.340 0.917 0.066	523 251 1,422 680 1,835 131	1.005 1.157 0.824 1.283 0.537 0.586	2010 2314 1647 2567 1074 1173	0.358 0.483 0.729 0.426 0.546 0.546	715 966 1459 852 1091 159	0.324 0.438 0.662 0.386 0.495 0.072	0.037 0.000 0.118 0.081 0.020 0.011	0.290 0.351 0.184 0.395 0.066 0.182	0.005 0.000 0.021 0.010 0.019 0.003	0.052 0.054 0.056 0.063 0.049 0.030	0.0683 0.1170 0.1281 0.1077 0.0644 0.0152	0.0104 0.0180 0.0266 0.0145 0.0487 0.0487
Mid Atlantic	New Jersey New York Pennsylvania	0.302 0.493 0.627	605 986 1,254	0.616 0.763 0.917	1232 1527 1835	0.387 0.518 0.643	774 1036 1286	0.351 0.470 0.583	0.065 0.076 0.209	0.097 0.186 0.274	0.015 0.018 0.025	0.051 0.048 0.046	0.0731 0.0859 0.2128	0.0241 0.0208 0.0259
East-North Central	Illinois Indiana Michigan Ohio Wisconsin	0.432 1.086 0.792 0.903 0.664	865 2,171 1,584 1,807 1,329	0.814 0.633 0.756 1.111 1.063	1628 1267 1511 2222 2125	0.433 1.086 0.788 0.904 0.671	866 2171 1576 1807 1343	0.393 0.985 0.715 0.820 0.609	0.136 0.335 0.253 0.302 0.241	0.227 0.126 0.168 0.344 0.336	0.016 0.040 0.031 0.036 0.029	0.046 0.044 0.052 0.053 0.049	0.1360 0.3346 0.2450 0.3020 0.2430	0.0164 0.0398 0.0327 0.0355 0.0355
W est-North Central	Iowa Kansas Minnesota Missouri North Dakota South Dakota	0.842 0.852 0.810 0.891 0.644 1.152 0.456	1,685 1,703 1,619 1,783 1,288 2,303 912	0.943 0.513 1.018 0.907 N/A 0.794 N/A	1885 1027 2035 11815 N/A 1589 N/A	0.843 0.852 0.814 0.891 0.644 1.151 0.456	1686 1703 1627 1783 1288 2303 912	0.765 0.773 0.738 0.809 0.580 1.045 0.410	0.288 0.239 0.226 0.281 0.189 0.319 0.143	0.319 0.055 0.322 0.323 0.293 N/A 0.222 N/A	0.034 0.030 0.027 0.033 0.033 0.023 0.038 0.038	0.040 0.047 0.049 0.041 N/A 0.041 N/A	0.2878 0.2386 0.2278 0.2814 0.189 0.3194 0.143	0.0342 0.0302 0.0276 0.0334 0.0336 0.0376 0.0376
South Attantic	Delaware District of Columbia Florida Georgia Maryland North Carolina South Carolina Wirginia Wrest Virginia	0.933 1.324 0.633 0.609 0.675 0.650 0.332 0.488 0.488	1,865 2,649 1,266 1,218 1,350 1,300 665 977 2,013	0.735 N/A 1.144 1.1333 1.005 1.138 1.138 1.138 1.101 0.645	1470 N/A 22665 2665 2011 2276 2276 2276 2202 1290	0.928 1.324 0.647 0.610 0.678 0.575 0.344 0.554 1.003	1855 2649 1294 11220 1356 688 2005	0.842 0.587 0.553 0.553 0.615 0.612 0.512 0.502 0.909	0.217 0.048 0.159 0.159 0.216 0.205 0.205 0.205 0.222 0.163 0.163 0.337	0.171 N/A 0.340 0.395 0.263 0.371 0.371 0.336 0.208	0.034 0.005 0.025 0.025 0.026 0.026 0.026 0.026 0.013 0.022 0.040	0.029 N/A 0.058 0.066 0.057 0.050 0.050 0.053 0.053	0.2161 0.048 0.1640 0.2160 0.2051 0.2051 0.2259 0.1130 0.1130 0.13356	0.0344 0.005 0.0275 0.0276 0.0276 0.0276 0.0276 0.0276 0.0276 0.0253
East-South Central	Alabama Kentucky Mississippi Tennessee	0.683 0.965 0.533 0.667	1,367 1,930 1,066 1,334	1.258 N/A 1.487 1.066	2515 N/A 2973 2131	0.684 0.965 0.537 0.668	1369 1930 1075 1335	0.621 0.869 0.487 0.606	0.227 0.323 0.137 0.226	0.358 N/A 0.439 0.342	0.027 0.038 0.029 0.027	0.068 N/A 0.079 0.050	0.2277 0.323 0.1382 0.2259	0.0271 0.038 0.0290 0.0266
West-South Central	Arkansas Louisiana Oklahoma Texas	0.642 0.695 0.834 0.798	1,284 1,390 1,667 1,596	1.293 0.674 0.867 0.576	2586 1348 1735 1151	0.643 0.694 0.836 0.776	1286 1388 1672 1552	0.584 0.629 0.758 0.704	0.182 0.125 0.219 0.172	0.364 0.129 0.252 0.087	0.025 0.038 0.047 0.041	0.073 0.050 0.046 0.048	0.1825 0.1248 0.2211 0.1637	0.0250 0.0385 0.0470 0.0413
Mountain	Arizona Colorado Idaho Montana New Mexico Utah WVoming	0.399 1.015 0.000 0.774 1.011 0.703 0.996 1.097	797 2,030 0 1,548 2,021 1,405 2,194 2,194	1.140 0.582 0.874 0.950 0.257 0.587 0.494 0.633	2281 1164 1748 1899 515 515 988 988	0.399 1.000 0.134 0.777 0.937 0.703 0.995	798 2001 1553 1875 1405 2194 2194	0.362 0.908 0.122 0.704 0.850 0.850 0.903 0.995	0.171 0.320 0.000 0.230 0.268 0.311 0.326 0.334 0.334	0.349 0.114 0.261 0.319 0.029 0.087 0.062 0.149	0.023 0.038 0.000 0.027 0.037 0.040 0.040 0.039	0.054 0.044 0.046 0.041 0.024 0.024 0.054 0.043	0.1709 0.3137 0.0382 0.0382 0.2317 0.2457 0.3111 0.3243 0.3343	0.0232 0.0385 0.0067 0.0276 0.0360 0.0404 0.0399 0.0393

Adjusted Electricity Emissions Factors by State-C.2

Table C.1. (cont'd)

ĥ

		UTII	-ITY	N	G	0			ΟΤΙΓΙΤΥ	NUG	υτιμτγ	NUG	COME	BINED
REGION	STATE	CO2 Emissions Factor (short	CO2 Emissions Factor (Ibs/MWh)	Weighted CO2 Emissions Factor (short ton/MWh)	Weighted CO2 Emissions Factor (Ibs/MWh)	CO2 Emissions Factor (short ton/MWh)	CO2 Emissions Factor	CO2 Emissions Factor (metric	Weighted N20 Emissions Factor (lbs/MWh)	Weighted N20 Emissions Factor (lbs/MWh)	Weighted CH4 Emissions Factor (lbs/MWh)	Weighted CH4 Emissions Factor (Ibs/MWh)	Weighted N20 Emissions Factor (Ibs/MWh)	Weighted CH4 Emissions Factor
Pacific Contiguous	California Oregon Washington	0.287 0.097 0.138	573 195 276	0.593 1.309 0.915	1186 2618 1831	0.378 0.118 0.153	756 235 306	0.343 0.107 0.139	0.004 0.039 0.043	0.123 0.400 0.241	0.027 0.009 0.006	0.042 0.066 0.055	0.0392 0.0448 0.0461	0.0315 0.0102 0.0069
Pacific Non-Contiguous	Alaska Hawaii	0.000 0.700	1 1,399	0.834 0.943	1667 1886	0.016 0.757	31 1514	0.014 0.687	0.173 0.042	0.201 0.248	0.091 0.005	0.049 0.036	0.1732 0.0888	0.0907 0.0120
	U.S. Mean	0.648	1,296	0.896	1792	0.646	1291	0.586	0.179	0.245	0.026	0.050	0.1872	0.0291

Adjusted Electricity Emissions Factors by State-C.3

Methodology Used to Develop Electricity Emissions Factors by State

C.1 Utility CO₂ Emissions Factors

To arrive at the carbon dioxide emissions factors in pounds per megawatt hour (lb/MWh), for each state, carbon dioxide emissions for 1992 in thousand short tons were converted to pounds (short tons multiplied by 2,000 pounds), then divided by 1992 net generation in million kilowatt hours (10⁶ kWh). (Since these factors are principally for use by consumers of electricity, gross generation is not used.) The resultant value was then multiplied by 1,000 to convert pounds per kilowatt hour to pounds per megawatt hour. Because transmission and distribution losses have not been included, the emissions factors are considered conservative.

Example: State of Wisconsin

 $\begin{array}{ll} \text{CO}_2 \text{ Emissions} &= 30,867 \times 10^3 \text{ short tons} \\ &= 30,867 \times 10^3 \text{ short tons} \bullet 2,000 \text{ lb} = 61,734 \times 10^6 \text{ lb} \\ \text{Net Generation} &= 46,464 \times 10^6 \text{ kWh} \\ \text{CO}_2 \text{ Emission Factor} = 61,734 \times 10^6 \text{ lb}/46,464 \times 10^6 \text{ kWh} = 1,329 \text{ lbs/MWh} \end{array}$

Source: DOE/EIA 1994, Table 46, third column, Electric Utility CO_2 Emissions in thousand short tons and Table 12, first column, Electric Utility Net Generation in million kilowatthours.

C.2 Utility Methane and Nitrous Oxide Emissions Factors

The utility weighted non- CO_2 emissions factors were calculated by assigning representative technologies to each energy source. These representative technologies for each energy source were compiled from 1992 information collected by the Energy Information Administration. The emissions factors (in pounds per megawatt hour), developed by NREL (1993), DOE (1991), WAPA (1994), and IPCC (1991), for these technologies were multiplied by the 1992 net generation (in millions of kilowatt hours) to give pounds of methane and nitrous oxide emissions. Finally, the pounds of methane and nitrous oxide emissions from each energy source were added and the sum divided by the total net generation. (See the example below, computing the nitrous oxide emissions factor for the state of Wisconsin.)

Technology	Net Generation (10 ³ MWh)	N ₂ 0 Emissions Factor (lbs/MWh)	Estimated N ₂ 0 Emissions (thousand lbs)
Coal - Pulverized	32,741	0.34	11,131.94
Nuclear/Other	11,207	0.00	0.00
Hydroelectric	2,123	0.00	0.00
Wood - Steam Turbine	133	0.55	73.15
Municipal Solid Waste - Steam Turbine	16	0.55	8.80
Gas - Steam Turbine	173	0.00	0.00
Gas - Combustion Turbine	15	0.24	3.6
Oil - Steam Turbine	53	0.00	0.00
Oil - Combustion Turbine	2	0.276	0.55
Total	46,464		11,218.04
Weighted N ₂ 0 Emissions Factor f [(11,218.04x10 ³ lbs of N ₂ 0)/(46,	for State of Wisconsin for 464x10 ⁶ kWh)] • 10 ³ kW	: 1992: /h/MWh = <u>0.241 lbs/MWh</u>	
Sources: DOE/EIA 1994, Tables Report (Form EIA-759); WAPA	5 13, 14, and 15; Energy 1 1994; DOE 1991; NREL	Information Administration . 1993; IPCC 1991.	ı, Monthly Power Plant

Example: Weighted $N_{2}0$ Emissions Factor for the State of Wisconsin for 1992

C.3 Nonutility CO₂ and Non-CO₂ Weighted Emissions Factors Calculation

The weighted emissions factors for nonutility generators were calculated as outlined above for utility noncarbon dioxide emission factors, based on "bottom-up" (technology) methodology. The emissions factors for each technology are listed in the Emissions Factors for Selected Technologies table below.

Deliveries data in millions of kilowatt hours were used to account for sales, interchanges, and exchanges of electric energy with utilities and other nonutilities.

Source: DOE/EIA 1994, Tables 79 and 82.

Technology	CO ₂ Emissions Factor (lbs/MWh)	N ₂ O Emissions Factor (lbs/MWh)	CH ₄ Emissions Factor (lbs/MWh)
Coal - Pulverized	1,970	0.34	0.04
Nuclear/Other	0.00	0.00	0.00
Hydroelectric	0.00	0.00	0.00
Wood Waste Biomass Boiler	3,400	0.55	0.14
Municipal Solid Waste Boiler	3,747	0.55	0.02
Gas - Steam Turbine	968	0.00	0.05
Gas - Combustion Turbine	1,560	0.24	0.16
Gas- Combined Cycle	952	0.063	0.015
Oil - Steam Turbine	1,452	0.00	0.002
Oil - Combustion Turbine	2,150	0.276	0.021
Oil- Combined Cycle	1,330	0.268	0.013
Renewables	0.00	0.00	0.00

Emissions Factors for Selected Technologies

Sources: WAPA 1994; DOE 1991; NREL 1993; IPCC 1991.

C.4 Combined Emissions Factors

To calculate combined CO_2 , N_2O , and CH_4 utility/nonutility factors, the sum of utility and non-utility CO_2 emissions was divided by the sum of utility and nonutility generation.

C.5 References

Intergovernmental Panel on Climate Change (IPCC). 1991. Estimation of Greenhouse Gas Emissions and Sinks, Geneva.

National Renewable Energy Laboratory (NREL). 1993. *Environmental Characterization Data Phase II: Utility and Transportation Data*. NREL, Golden CO.

United States Department of Energy (DOE). 1991. *Limiting Net Greenhouse Gas Emissions in the United States Volume I: Energy Technologies*. USDOE, Washington, DC.

United States Department of Energy (DOE) Energy Information Administration (EIA). 1992. *Electric Power Annual 1992*. DOE/EIA-0348. DOE/EIA, Washington, DC.

United States Environmental Protection Agency (EPA). 1990. *Estimation of Greenhouse Gas Emissions and Sinks for the United States 1990*. EPA Office of Policy Planning and Evaluation, Washington, DC.

Western Area Power Administration (WAPA). 1994. Energy Planning and Management Program Draft Environmental Impact Statement. WAPA, Golden, CO.

Appendix D

Conversion of Carbon to Carbon Dioxide Emissions

Conversion of Carbon to Carbon Dioxide Emissions

Many times project analysis starts with data on the carbon content of fuels or the release of carbon from sinks. This means that the analysis may end with a result expressed in terms of carbon emissions or carbon capture. However, the EPAct 1605(b) voluntary reporting program requires that reports be expressed in terms of greenhouse gases—that is, carbon dioxide.

The conversion of quantities of carbon to quantities of carbon dioxide is simple. The atomic weight of carbon is 12. The atomic weight of oxygen is 16. Hence, the molecular weight of carbon dioxide (carbon dioxide) is 44 (one atom of carbon, 12, plus two atoms of oxygen, 32). This means that 12 grams (or pounds or tons) of carbon released as carbon dioxide is associated with 44 grams (or pounds or tons) of carbon dioxide. Therefore, the conversion from carbon released to carbon dioxide emissions can be expressed as follows:

Weight of $CO_2 = 44/12$ weight of carbon = 3.67 weight of carbon

Appendix E

Reportable Greenhouse Gases for Which Global Warming Potentials Have Been Developed

Reportable Greenhouse Gases for Which Global Warming Potentials Have Been Developed

A Global Warming Potential (GWP) is a measure, or index, of the impact that each gas has on global warming relative to the effect that carbon dioxide has. So, for example, if a kilogram of a certain gas has a GWP of 2, that kilogram of that gas is expected to have twice as much effect on global warming as a kilogram of carbon dioxide. Using GWPs helps decision-makers (for example, in utilities or industry) and policymakers put different greenhouse gases on an equivalent scale to perform a wide variety of analyses:

- performing cost-benefit analyses of various candidate projects to reduce greenhouse gas emissions
- assessing the relative contributions of the many human activities contributing to greenhouse gas emissions
- comparing (and ranking) climate effects from competing technologies and energy uses, including consideration of different energy policies
- developing approaches to minimize the impact of human activities on the climate system
- comparing the global climate change contributions of various countries
- functioning as a signal to policymakers for encouraging some activities and discouraging others
- determining approaches most appropriate for industries and governments to meet commitments to help reduce the radiative forcing on climate from increasing concentrations and emissions of greenhouse gases.

Several factors affect the GWP value for any particular gas. Gases that have large immediate warming effects (instantaneous radiative forcing) will generally have higher GWPs. However, the effects of greenhouse gases are realized over a period of time, so the second important factor in calculating a GWP is the length of time the gas stays in the atmosphere (atmospheric lifetime). Generally, gases with longer atmospheric lifetimes will have higher GWPs than gases with shorter lifetimes. Finally, some gases interact with other gases in the atmosphere (indirect effects) to either increase or decrease the impact of the gases.

The GWPs listed in Table E.1 were developed recently for the Intergovernmental Panel on Climate Change (IPCC 1994). This list will replace GWPs developed previously (IPCC 1990, 1992); as the science continues to evolve, the gases and the values will likely be revised again. Because of the difficulty in modeling the interactions of the various gases, these GWPs do not include indirect effects except where noted. (See, for example, methane.)

Table E.1 actually contains three sets of GWPs, each set calculated over a different time period. The GWP calculated for 20 years provides a comparison of the effects of gases in the relatively near future. In contrast, the 500-year index will give a relatively higher GWP values to long-lived gases than the 20-year GWP values.

Reportable Greenhouse Gases for Which Global Warming Potentials Have Been Developed—Page E.1

As you use these GWPs, remember the limitations of such a measure. First, for most gases the GWPs do not account for indirect effects. So, for example, while CFC-11 appears to be 5,000 times as potent a greenhouse gas as carbon dioxide over the short term, its indirect effects may entirely negate its direct effects. This possibility is not reflected in the GWP index. Second, the modeling of atmospheric chemistry is rapidly changing. These GWPs are significantly different from those used by the IPCC two years ago, and they will probably be revised again. Third, these GWPs rest on an assumption that the background concentration of carbon dioxide is stable and that the atmospheric system is in equilibrium. This assumption is clearly unrealistic, though it helps to provide consistency in making assessments.

	Chamical	Atmospheric Lifetime	Globa	al Warming Po (Time Horizon	rtential ı)
Species	Formula	(years)	20 years	100 years	500 years
CO ₂	CO ₂	(b)	1	1	1
CFCs					
CFC-11	CFCl ₃	50±5	5000	3900	1400
CFC-12	CF ₂ Cl ₂	102	8000	8300	4000
CFC-13	CClF ₃	640	8700	12100	13800
CFC-113	$C_2F_3Cl_3$	85	5100	4900	2200
CFC-114	$C_2F_4Cl_2$	300	7000	9100	7900
CFC-115	C ₂ F ₅ Cl	1700	6300	9100	12400
HCFCS, etc.	·				
HCFC-22	CF ₂ HCl	13.3	4300	1600	500
HCFC-123	C ₂ F ₃ HCl ₂	1.4	310	90	30
HCFC-124	C ₂ F ₄ HCl	5.9	1500	470	140
HCFC-141b	C ₂ FH ₂ Cl ₃	9.4	1800	620	190
HCFC-142b	$C_2F_2H_3Cl$	19.5	4300	2000	600
HCFC-225CA	C ₃ F ₅ HCl ₂	2.5	590	180	50
HCFC-225CB	C ₃ F ₅ HCl ₂	6.6	1800	570	170
Carbon Tetrachloride	CCl ₄	42	2000	1400	480
Methyl Chloroform	CH ₃ CCl ₃	5.4±0.4	360	110	30
Bromocarbons ^(f)					
H-1301	CF ₃ Br	65	6300	5500	2100
Other					
HFC-23	CHF ₃	390	9500	12700	12400
HFC-32	CH ₂ F ₂	6	1900	570	180
HFC-43-10mee		20.8	3400	1600	490
HFC-125	C ₂ HF ₅	36.0	5000	3200	1100
HFC-134	$C_2H_2F_4$	11.9	3200	1160	350
HFC-134a	CH ₂ FCF ₃	17.7	3800	1700	510
HFC-152a	$C_2H_4F_2$	1.5	440	130	40
HFC-143a	$C_2H_3F_3$	55	5300	4300	1600
HFC-227ea	C ₃ HF ₇	43.0	4800	3300	1100

 Table E.1.
 Direct Global Warming Potentials^(a)

Reportable Greenhouse Gases for Which Global Warming Potentials Have Been Developed—Page E.3

	Chemical Formula	Atmospheric Lifetime (years)	Global Warming Potential (Time Horizon)		
Species			20 years	100 years	500 years
HFC-236fa	$C_3H_2F_6$	265	6200	7900	6500
HFC-245ca	$C_3H_3F_5$	1.0	300	90	30
HFC-245ca	C ₃ H ₃ F ₅	9.2	2400	790	240
Chloroform	CHCl ₃	0.55	20	5	1
Methylene chloride	CH ₂ Cl ₂	0.41	30	10	3
Sulfur hexafluoride	SF ₆	3200	9300	13600	19500
Perfluoromethane	CF ₄	50000	2700	4000	6100
Perfluoroethane	C ₂ F ₆	10000	6100	9000	13500
Perfluorocyclo- butane	c-C ₄ F ₈	3200	6100	8900	12800
Perfluorohexane	C ₆ F ₁₄	3200	5600	8900	17800
Methane ^(c)	CH ₄	12-18 ^(d)	56-110	19-43	9-16
Nitrous oxide	N ₂ O	121	290	320	170
Trifluoroiodo- methane	CF ₃ I	<0.005	<6	<<1	<<<1
Carbon monoxide ^(e)	СО	months	+	+	+
Nonmethane hydrocarbons ^(e)	NMHCs	days to months	+	+	+
Nitrous oxides ^(e)	NO _x	days	+	+	+
 (a) Referenced to the AGWP for the Bern carbon cycle model CO₂ decay response and future CO₂ atmospheric concentrations held constant at current levels (based on IPCC 1994 and WMO 1994). (b) Decay of CO₂ is a complex function of the carbon cycle. (c) Includes direct and indirect components. (d) Includes the dependence of the residence time on CH₄ abundance. (e) GWPs for indirect effects involving emissions from short-lived gases are particularly difficult to evaluate, though the sign of these three types is expected to be positive. (f) You may report other halogenated substances, such as H-1211 and H-2402, that are not listed in this 					

Table E.1. (cont'd)

You may report other halogenated substances, such as H-1211 and H-2402, that are not listed in this (f) table and for which the IPCC has not developed an estimate of global warming potential.

References

Clerbaux, C., R. Colin, P.C. Simon, and C. Granier. 1993. "Infrared cross sections and global warming potentials of 10 alternative hydrohalocarbons." *Journal of Geophysical Research* 98:10491-10497.

Grossman, A.S., K.E. Grant, and D.J. Wuebbles. 1993. *Radiative forcing calculations for* SF_6 and CH_4 using a correlated k-distribution transmission model. UCRL-ID-115042, Lawrence Livermore National Laboratory, Livermore, CA.

Houghton, J.T., B.A. Callander, and S.K. Varney, eds. 1992. *Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment.* Cambridge University Press, Cambridge.

Intergovernmental Panel on Climate Change (IPCC). 1994. Radiative Forcing of Climate: 1994. In press.

Intergovernmental Panel on Climate Change (IPCC). 1990. *Climate Change: The IPCC Scientific Assessment*. J.T. Houghton, G.J. Jenkins, and J.J. Ephraums, eds. Cambridge University Press, Cambridge, MA.

Ravishankara, A.R., S. Solomon, A.A. Turnipseed, and R.F. Warren. 1993. "Atmospheric lifetimes of long-lived species." *Science* 259:194-199.

Solomon, S., J. Burkholder, A.R. Ravishankara, and R.R. Garcia. 1994. "On the ozone depletion and global warming potentials for CF3I." Submitted to *Journal of Geophysical Research*.

World Meteorological Organization (WMO). 1992. *Scientific Assessment of Ozone Depletion: 1991*. Report No. 25, World Meteorological Organization Global Ozone Research and Monitoring Project. WMO, Geneva.

World Meteorological Organization (WMO). 1994. *Scientific Assessment of Ozone Depletion: 1994*. In press, World Meteorological Organization Global Ozone Research and Monitoring Project. WMO, Geneva.

Wuebbles, D.J. and A.S. Grossman. 1992. *Global warming potential for CF*₄. UCRL-ID-112295, Lawrence Livermore National Laboratory, Livermore, CA.