


# Cloud Deposition Monitoring Clingmans Dome, TN Great Smoky Mountains National Park

2006

### Prepared for:

U.S. Environmental Protection Agency Clean Air Markets Division Office of Air and Radiation Washington, DC

EPA Contract Number: 68-D-03-052

### Prepared by:

MACTEC Engineering and Consulting, Inc. Gainesville, FL

April 2007

### **Table of Contents**

| 1.0        | Introduction                                                     | 1  |
|------------|------------------------------------------------------------------|----|
| 2.0        | Site Description and Methods                                     | 3  |
| 2.1        | Site Description                                                 |    |
| 2.2        | Field Operations                                                 | 3  |
| 2.3        | Laboratory Operations                                            | 7  |
| 2.4        | Data Management                                                  | 8  |
| 2.5        | Quality Assurance                                                | 9  |
| 2          | 2.5.1. Field Data Audits                                         | 9  |
| 2          | 2.5.2. Laboratory Data Audits                                    | 9  |
| 2          | 2.5.3. Precision and Accuracy                                    | 9  |
| 3.0        | Liquid Water Content and Cloud Water Chemistry                   | 11 |
| 3.1        | Cloud Frequency and Mean Liquid Water Content                    |    |
| 3.2        | 1 7                                                              |    |
| 3          | 3.2.1. Cloud Water pH                                            |    |
| 3          | 3.2.2. Major Ions in Cloud Water                                 |    |
| 3          | 3.2.3. Minor Ions in Cloud Water                                 |    |
| 4.0        | Cloud Deposition                                                 | 14 |
| 4.1        |                                                                  |    |
| 4.2        | 1                                                                |    |
| 4          | 1.2.1 Monthly Means                                              |    |
| 4          | 1.2.2 Seasonal Deposition Estimates                              |    |
| 5.0        | Filter Pack Concentrations, Dry Deposition, and Total Deposition |    |
| 5.0<br>5.1 | Filter Pack Concentrations.                                      |    |
| 5.1        |                                                                  |    |
| 5.2        | , · · · · · · · · · · · · · · · · · · ·                          |    |
|            | •                                                                |    |
| 6.0        | Conclusions and Recommendations                                  | 21 |
| 7.0        | References                                                       | 22 |

i

### **Tables**

### **Figures**

Appendix A: Cloud Water Deposition to Clingmans Dome in 2006

**Appendix B:** Cloud Water Data and QC Summary

**Appendix C:** Filter Pack Data and QC Summary

### **List of Tables**

- Table 3-1.
   Clingmans Dome Monthly Mean Cloud Frequency Summary
- **Table 3-2.** Summary Statistics for Cloud Water Samples (Clingmans Dome, TN) 2006
- **Table 3-3.** Number of Cloud Water Samples Accepted for Analyses for CLD303, TN
- **Table 3-4.** Summary Statistics of Major Ion and Calcium Concentrations (μeq/L) of Cloud Water Samples for Clingmans Dome 1994-2006
- **Table 4-1.** Cloud Water Monthly Deposition Estimates Produced by the CLOUD Model (kg/ha) at Clingmans Dome, TN
- **Table 4-2.** Cloud Water Mean Monthly (May September) Deposition Rates for Several Ions (kg/ha/month) and Water at Clingmans Dome, TN
- **Table 4-3.** Cloud Water Seasonal Deposition Estimates Produced by the CLOUD Model (kg/ha) at Clingmans Dome, TN
- **Table 5-1.** Great Smoky Mountains National Park (GRS420) Ambient Concentrations  $(\mu g/m^3)$  June through October 2006
- **Table 5-2.** Great Smoky Mountains National Park (GRS420) Dry Deposition Fluxes (kg/ha) Report for the 2006 Deposition Season (June through September)
- **Table 5-3.** Cloud Water and Dry Sulfur and Nitrogen Deposition for Clingmans Dome (June through September 2000 2006)

### **List of Figures**

- **Figure 3-1.** Monthly Cloud Frequency (1994 2006) Clingmans Dome, TN
- **Figure 3-2.** Monthly Mean Liquid Water Content (g/m³) of Clouds (1994 2006) Clingmans Dome, TN
- **Figure 3-3.** Monthly Mean Liquid Water Content (g/m³) 2006 versus Historical Mean Values (1994-2005)
- **Figure 3-4.** Frequency Distribution for Cloud Water pH (Laboratory) at Clingmans Dome, TN (2006)
- **Figure 3-5.** Frequency Distribution for Cloud Water pH (Field) at Clingmans Dome, TN (2006)
- **Figure 3-6.** Mean Major Ion Concentrations of Cloud Water Samples, Clingmans Dome, TN (1995 2006)
- **Figure 3-7.** Monthly Mean Major Ion Concentrations, Clingmans Dome, TN 2006
- **Figure 3-8.** Mean Minor Ion Concentrations of Cloud Water Samples (Cations and Chloride) Clingmans Dome, TN (1995 2006)
- **Figure 3-9.** Monthly Mean Minor Ion Concentrations, Clingmans Dome, TN 2006
- **Figure 4-1.** Monthly Deposition Estimates CLOUD Model (SO<sub>4</sub><sup>2</sup>, NO<sub>3</sub>, NH<sub>4</sub><sup>+</sup>)
- **Figure 4-2.** Monthly Deposition Estimates CLOUD Model (H<sup>+</sup>, Ca<sup>2+</sup>)
- **Figure 5-1.** Total Sulfur and Nitrogen Cloud Water and Dry Deposition Estimates for Clingmans Dome (June September) 2000 through 2006
- **Figure 6-1.** Total Sulfur and Nitrogen Deposition Estimates (Dry and Cloud Components) for 2000 through 2006

### **List of Acronyms and Abbreviations**

°C degrees Celsius Ca<sup>2+</sup> calcium ion

CAAA Clean Air Act Amendments

CASTNET Clean Air Status and Trends Network
CLOUD cloud water deposition computer model

Cl chloride ion

CLASS<sup>™</sup> Chemical Laboratory Analysis and Scheduling System

CLD303 Clingmans Dome, TN sampling site

cm centimeter

cm/s centimeters per second

CVS continuing verification sample

DAS data acquisition system

EPA U.S. Environmental Protection Agency g/cm²/min grams per square centimeter per minute

g/m<sup>3</sup> grams per cubic meter

GRS420 Great Smoky Mountains National Park, TN dry deposition sampling site

H<sup>+</sup> hydrogen ion

Harding ESE Harding ESE, Inc., now known as MACTEC Engineering and Consulting, Inc.

HNO<sub>3</sub> nitric acid

IC ion chromatography

ICP-AES inductively coupled argon plasma - atomic emission spectrometer

K<sup>+</sup> potassium ion

K<sub>2</sub>CO<sub>3</sub> potassium carbonate kg/ha kilograms per hectare

Lpm liters per minute
LWC liquid water content

m meter

m/sec meters per second

### List of Acronyms and Abbreviations (continued)

MACTEC Engineering and Consulting, Inc.

MADPro Mountain Acid Deposition Program MCCP Mountain Cloud Chemistry Program

Mg<sup>2+</sup> magnesium ion

mL milliliter

MLM Multi-Layer Model

mm millimeter
N nitrogen
Na<sup>+</sup> sodium ion

NADP/NTN National Atmospheric Deposition Program/ National Trends Network

NAPAP National Acid Precipitation Assessment Program

NH<sub>4</sub> ammonium ion

NIST National Institute for Standards and Technology

NO<sub>3</sub> nitrate ion

NO<sub>x</sub> oxides of nitrogen NPS National Park Service pH p(otential of) H(ydrogen)

PVC polyvinylchloride

PVM particle volume monitor

QA quality assurance

QAPP Quality Assurance Project Plan

QC quality control

RPD relative percent difference

 $\begin{array}{ll} S & sulfur \\ SO_4^2 & sulfate ion \\ SO_2 & sulfur dioxide \end{array}$ 

SOP standard operating procedure SSRF Site Status Report Form

TN11 Elkmont, TN wet deposition sampling site

TVA Tennessee Valley Authority

µeq/L microequivalents per liter

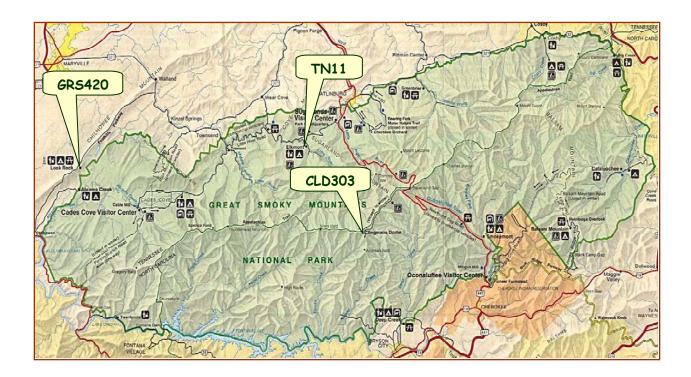
µg/filter micrograms per filter

μg/m<sup>3</sup> micrograms per cubic meter

### Acknowledgements

The U.S. Environmental Protection Agency (EPA) and Tennessee Valley Authority (TVA) provided funding for the 2006 cloud deposition monitoring season at Clingmans Dome. The success and survival of this project are due to the support of these agencies and key individuals. We would like to thank Artra Cooper, Vincent DiGiovanni, and Gary Lear of EPA and Suzanne Fisher and Tom Burnett of TVA. The National Park Service (NPS) provided invaluable infrastructure support, and integral to this effort was the constant support of Jim Renfro.




### 1.0 Introduction

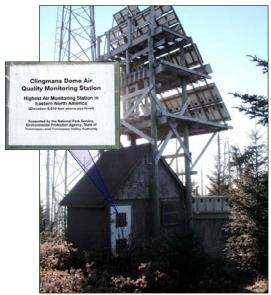
The 1990 Clean Air Act Amendments (CAAA) established the Acid Deposition Control Program, which mandated significant reductions in sulfur dioxide (SO<sub>2</sub>) and nitrogen oxides (NO<sub>x</sub>) emissions from electric generating plants. The SO<sub>2</sub> emission reductions were implemented in two phases. The first phase began in 1995 when large electric generating facilities reduced emissions. The second phase began in 2000 and targeted other power plants. Emission reductions of NO<sub>x</sub> began in 1999. The Acid Deposition Control Program has resulted in substantive emission reductions since 1995.

Titles IV and IX of the CAAA require that the environmental effectiveness of the Acid Deposition Control Program be assessed through environmental monitoring. This monitoring is required to gauge the impact of emission reductions on air pollution, atmospheric deposition, and the health of affected human populations and ecosystems. The Clean Air Status and Trends Network (CASTNET) was established by the U.S. Environmental Protection Agency (EPA) in 1991 to provide an effective monitoring and assessment network for determining the status and trends in air quality and pollutant deposition as well as relationships among emissions, air quality, deposition, and ecological effects. CASTNET measurements collected over the period 1990 through 2005 (MACTEC, 2006a) have shown significant declines in atmospheric sulfur pollutants [SO<sub>2</sub> and particulate sulfate (SO<sub>4</sub><sup>2</sup>)] and more recently suggest declines in nitrogen pollutants [nitric acid (HNO<sub>3</sub>) and particulate nitrate (NO<sub>3</sub>)]. The Mountain Acid Deposition Program (MADPro) was initiated in 1993 as part of the research necessary to support CASTNET's objectives. MACTEC Engineering and Consulting, Inc. (MACTEC) operates both CASTNET and MADPro on behalf of EPA and other agencies.

MADPro's two main objectives were to develop cloud water measurement systems to be used in a network-monitoring environment and to update the cloud water concentration and deposition data collected in the Appalachian Mountains during the National Acid Precipitation Assessment Program (NAPAP) in the 1980s. MADPro measurements were conducted from 1994 through 1999 during the warm season (May through October) at three mountaintop sampling stations. These sampling stations were located at Whiteface Mountain, NY; Clingmans Dome, TN; and Whitetop Mountain, VA. A mobile manual sampling station also was operated at two locations in the Catskill Mountains in New York during 1995, 1997, and 1998. Measurements during the 2000 and 2001 sampling seasons were collected from two sites: Whiteface Mountain, NY and Clingmans Dome, TN. During the 2002 through 2006 sampling seasons, measurements were only collected from the one site at Clingmans Dome, TN (CLD303). Currently, CLD303 is being operated under the direction and funding of EPA and the Tennessee Valley Authority (TVA) with infrastructure support provided by the National Park Service (NPS). This report is specifically for the activities and results from the CLD303 site during the 2006 field sampling season.

This report consists of five additional sections and three appendices. Section 2.0, Site Description and Methods, presents an overview of field, laboratory, and data operations and the quality assurance (QA) program. Section 3.0, Liquid Water Content and Cloud Water Chemistry, presents analyses of cloud frequency, liquid water content (LWC), cloud chemistry, and summary statistics for the 2006 data with comparisons to the 1994 through 2005 data sets. Cloud deposition estimates are presented in Section 4.0. The deposition estimates were calculated by applying the cloud water deposition computer model (CLOUD) (Lovett, 1984), parameterized with site-specific cloud water chemistry and meteorological data. Section 5.0 presents filter pack concentrations, modeled dry deposition fluxes, and estimates of total (cloud and dry) deposition. Finally, Section 6.0 discusses the conclusions and recommendations for MADPro.




For 2006, cloud water and meteorological data were measured at the CLD303 site. Dry deposition data for estimating dry deposition were obtained from the nearest CASTNET site (GRS420, TN). Wet deposition data for estimating wet deposition were obtained from Elkmont, TN (TN11), which is operated by NPS for the National Atmospheric Deposition Program / National Trends Network (NADP/NTN).

### 2.0 Site Description and Methods

### 2.1 Site Description

Clingmans Dome (35'33'47"N, 83'29'55"W) is the highest mountain [summit 2,025 meters (m)] in the Great Smoky Mountains National Park. The solar-powered MADPro site is situated at an elevation of 2,014 m approximately 100 m southeast of the summit tourist observation tower. Electronic instrumentation is housed in a small NPS building and the cloud water collector, particle volume monitor (PVM), and meteorological sensors are positioned on top of a 50-foot scaffold tower.

Collection at the site is initiated each spring as soon as local weather conditions allow. In 2006, the site was installed during the first week of May, but because of equipment problems and power limitations, the site was not fully operational until May 31. Sampling then continued through October 31, 2006.



### 2.2 Field Operations

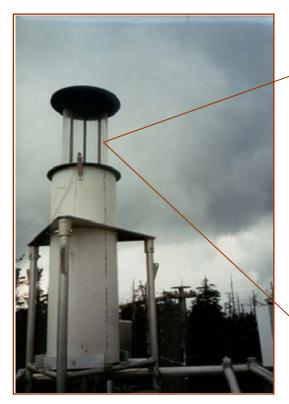
The site collects cloud water samples and measures those meteorological parameters necessary for operation of the automated cloud collection system and PVM. The cloud collection system consists of an automated cloud water collector for bulk cloud water sampling, a PVM for continuous determination of cloud LWC, and a data acquisition system (DAS) for collection and storage of electronic information from the various monitors and sensors. In 2004, a microprocessor was added to the suite of instrumentation, specifically for monitoring cloud collector status and to control all sampler functions. A set of meteorological instruments for continuous measurements of wind speed, wind direction, temperature, solar radiation, relative humidity, wetness, and precipitation were deployed through 2004. Beginning in 2005, only those sensors essential for the operation of the cloud collector (namely, temperature and precipitation sensors and a rain gauge) were deployed. Other meteorological data required for calculation of cloud deposition estimates (scalar wind speed) were obtained from the NPS instruments situated on a tower located next to the cloud collection tower. Up until 2005, the site deployed the same three-stage filter pack system for dry deposition estimation that is used at all CASTNET sites. Starting in 2005, these data were obtained from CASTNET site Great Smoky Mountains

National Park, TN (GRS420). The 2006 wet deposition data used in estimating wet deposition were collected at Elkmont, TN (TN11), which is operated by NPS for NADP/NTN.

The core of the automated cloud collection system is a passive string collector previously used in the Mountain Cloud Chemistry Program (MCCP) study. Collection occurs when ambient winds transport cloud water droplets onto 0.4-millimeter (mm) Teflon<sup>®</sup> fibers strung between two circular disks (Falconer and Falconer, 1980; Mohnen and Kadlecek, 1989). Once impacted, the droplets slide down the strings, are collected in a funnel, and flow through Teflon<sup>®</sup> tubing into sample bottles in a refrigerated carousel. The development and design of this system is described in detail in Baumgardner *et al.* (1997).

The PVM-100 by Gerber Scientific (Gerber, 1984) measures LWC and effective droplet radius of ambient clouds by directing a diode-emitted 780-nanometer wavelength laser beam along a 40-centimeter (cm) path. The forward scatter of the cloud droplets in the open air along the path is measured, translated, and expressed as water in grams per cubic meter (g/m³) of air. The microprocessor is programmed so that the collector will be activated and projected out of the protective housing when threshold levels for LWC (0.05 g/m³) and ambient air temperature




Particle Volume Monitor

 $\geq$  2 degrees Celsius (°C) are reached. In addition, the system is activated only when no precipitation is measured. Within the context of this work assignment, a cloud is defined by a LWC of 0.05 g/m<sup>3</sup> or higher, as measured by the PVM. This threshold was established to maintain comparability with the MCCP measurements, which were made for the most part with Mallant Optical Cloud Detectors set at a threshold of approximately 0.04 g/m<sup>3</sup> (Mohnen et al., 1990). In previous years, a wind speed threshold of 2.5 meters per second (m/sec) was also used because hourly cloud water collection is erratic and inefficient at lower wind speeds. Higher wind speeds were necessary to yield the minimum 30 milliliters (mL) of cloud water required for sample analysis. Since the commencement of 24-hour bulk sampling, however, the collection of at least 30 mL of sample has not been an issue. Therefore, the wind speed threshold criterion was eliminated starting in 2004. The temperature limit serves to protect against

damage from rime ice formation. The absence of rainfall is required because within the objectives of this study, as well as MCCP, only samples from non-precipitating clouds are collected. If a rain detector is activated, the string collector will retract into the protective case

and collection will be suspended. Beginning with the 1999 field season, a modified automated cloud collector has been used. The collector was modified by switching from a battery-powered to a pneumatically-powered system to send the collector up and down. This system measures and accumulates the cloud sample using a funnel positioned under a tipping bucket that is hooked up to the cloud collector with Teflon<sup>®</sup> tubing. The tipping bucket is calibrated so that the weight of 5.44 mL of collected liquid causes the apparatus to tip into the funnel. In 2004, the tipping bucket was removed from the cloud collection system as it was no longer necessary to track hourly collection volumes.

If the threshold criteria described above are not met for a 5-minute period, the collector comes down. A new 10-liter collection bottle is rotated into position after every 24-hour period allowing for the collection of daily bulked samples.





**Cloud Collector in Up Position** 

The PVM is operated continuously. Consequently, collection of cloud samples only when the threshold criteria are met does not result in loss of cloud frequency and cloud duration information. All LWC values of 0.05 g/m³ or greater, independent of the type of cloud (i.e., precipitating or non-precipitating), are used to calculate cloud frequency and cloud duration information. It is possible that the cloud deposition estimates presented later in Section 4.0 may be biased by not sampling for cloud deposition that occurs during precipitating clouds. However, the bias due to this lack of sampling during a precipitation event is offset by the fact that cloud deposition totals are estimated by multiplying the duration-weighted mean chemical fluxes by the cloud-hours for the month. The cloud-hours are calculated as the cloud frequency times the total hours in the month.

The site operator gathers cloud water samples from the collector on Tuesday and Friday, whether or not collection has occurred. The time, date, and volume of each bulk sample are recorded on the Cloud Water Sample Report Form. Each sample is then carefully decanted into one pre-cleaned 250-mL sample bottle. Excess sample volume is discarded. The sample date and time are recorded on the 250-mL sample bottle label. The site operator analyzes each sample for pH and conductivity and records the results on the Cloud Water Sample Report Form. The samples are then packed into coolers with the corresponding form and shipped to the CASTNET laboratory in Gainesville, FL. Periodically, selected rinse samples are included in shipments. Starting in 2005, some of the 24-hour samples shipped from the field were bulked together in the MACTEC laboratory in order to keep the number of samples analyzed by the laboratory within the number of samples allotted for analysis in the budget. It was not necessary to utilize this procedure in 2006.

Filter packs for collection of dry deposition samples are prepared and shipped to the field on a weekly basis and exchanged at the site every Tuesday. For a description of the filter pack set-up, types of filters used, and the fraction collected on each filter, refer to the CASTNET Quality Assurance Project Plan (QAPP) (MACTEC, 2005a) and/or the CASTNET Deposition Summary Report (EPA, 1998). A discussion of filter pack sampling artifacts can be found in Anlaulf *et al.* (1986). Filter pack flow is maintained at 3.0 liters per minute (Lpm) with a mass flow controller.



3-Stage Filter Pack

All field equipment received start-up and end-of-season calibrations. Calibration checks were scheduled to be performed bi-weekly (weather permitting) on the PVM throughout the field

season and the results used to adjust the instrument immediately after the calibration check. However, in 2006, because of the inexperience of the site operator, these checks were performed only sporadically, and none at all in September and October due to breakage of the calibration disk. Calibrations on the remaining instruments were conducted using standards traceable to the National Institute for Standards and Technology (NIST). The calibrations at the beginning and end of the 2006 field season were within the control limits stated in the CASTNET QAPP (MACTEC, 2005a)

### 2.3 Laboratory Operations

Cloud water samples for the 2006 sampling season were analyzed for sodium (Na<sup>+</sup>), potassium (K<sup>+</sup>), ammonium (NH<sub>4</sub><sup>+</sup>), calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), chloride (Cl<sup>-</sup>), NO<sub>3</sub>, and SO<sub>4</sub><sup>2-</sup> ions in the CASTNET laboratory. pH and conductivity were analyzed in the field, and most samples were also analyzed for pH and conductivity in the laboratory for comparison with the field values.

Samples were stored at 4 °C until analysis. All analyses were performed within 30 days of sample receipt at the laboratory. The effects of storage on wet deposition samples have been addressed in NAPAP Report #6 (Sisterson *et al.*, 1991). This discussion applies, for the most part, to cloud water samples as well.

Concentrations of the three anions (SO<sub>4</sub><sup>2</sup>, NO<sub>3</sub>, Cl<sup>2</sup>) were determined by micromembrane-suppressed ion chromatography (IC). Analysis of Na<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, and K<sup>+</sup> was performed with a Perkin-Elmer Optima 3000 DV inductively coupled argon plasma-atomic emission spectrometer (ICP-AES). The automated indophenol method using a Bran+Luebbe Autoanalyzer<sup>™</sup> 3 was used to determine NH<sub>4</sub><sup>+</sup> concentrations. Hydrogen (H<sup>+</sup>) ion concentrations for 2006 were determined for each sample based on laboratory pH measurements.

Filter pack samples were loaded, shipped, received, extracted, and analyzed at the CASTNET laboratory. For specific extraction procedures refer to Anlauf *et al.* (1986) and the CASTNET QAPP (MACTEC, 2005a). Filter packs contain three filter types in sequence: a Teflon<sup>®</sup> filter for collection of aerosols, a nylon filter for collection of HNO<sub>3</sub>, and dual potassium carbonate (K<sub>2</sub> CO<sub>3</sub>)-impregnated cellulose Whatman filters for collection of SO<sub>2</sub>. Following receipt from the field, exposed filters and unexposed blanks were extracted and analyzed for Cl<sup>-</sup> and the cations, NH<sub>4</sub>, Na<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, and K<sup>+</sup> as described previously for cloud water samples. Refer to the CASTNET QAPP (MACTEC, 2005a) for detailed descriptions of laboratory receipt, breakdown, storage, extraction, and analytical procedures.

Results of all valid cloud water analyses are stored in the laboratory data management system, Chemical Laboratory Analysis and Scheduling System (CLASS $^{TM}$ ). Results of all valid filter pack analyses are stored in the laboratory data management system, Element DataSystem $^{TM}$ .

Atmospheric concentrations are calculated based on the volume of air sampled following validation of the hourly flow data. Atmospheric concentrations of particulate  $SO_4^2$ ,  $NO_3^-$ ,  $NH_4^+$ ,  $Na^+$ ,  $K^+$ ,  $Ca^{2+}$ ,  $Mg^{2+}$  and  $Cl^-$  are calculated based on analysis of Teflon<sup>®</sup> filter extracts;  $HNO_3$  is calculated based on the  $NO_3^-$  found in the nylon filter extracts; and  $SO_2$  is calculated based on the sum of  $SO_4^2$  found in nylon and cellulose filter extracts.

### 2.4 Data Management

Continuous data (temperature, precipitation, LWC, and cloud collector status information) are collected in hourly and 5-minute averages. Hourly data are collected by daily polling via telephone modem. The polling software also recovers status files and power failure logs from the previous seven days. The 5-minute data are downloaded from the DAS cartridge at least once weekly and e-mailed to MACTEC. The hourly data and associated status flags are ingested into Microsoft<sup>®</sup> Excel<sup>™</sup> spreadsheets. The continuous data are validated based on the end-of-season calibration results, periodic calibration check results (PVM, only), and information provided by status flags and logbook entries.

Discrete data for cloud water sample results are managed by  $CLASS^{TM}$ . Discrete data for filter pack sample results are managed by Element DataSystem In  $CLASS^{TM}$  and Element DataSystem, the analytical batches are processed through an automated quality control (QC) check routine. For each analytical batch, an alarm flag is generated if any of the following occur:

Insufficient QC data were run for the batch;

Sample response exceeded the maximum standard response in the standard curve (i.e., sample required dilution);

Continuing verification samples (CVS) exceeded recovery limits; or Reference samples exceeded accuracy acceptance limits.

A batch with one or more flags is accepted only if written justification is provided by the Laboratory Operations Manager.

Atmospheric concentrations for filter pack samples are calculated by merging validated continuous flow data with the laboratory data [micrograms per filter ( $\mu$ g/filter)]. For cloud water samples, a second check involves three interparameter consistency checks:

Percent difference of cations versus anions (ion balance),
 Percent difference of predicted versus measured conductivity, and
 pH versus conductivity relationship of the sample compared to the expected relationship when rainfall is assumed to be controlled by strong inorganic acid.

Evaluation of these interparameter consistency checks provides a method for determining whether the analysis should be repeated or verified.

### 2.5 Quality Assurance

The QA program consists of the same routine audits performed for CASTNET, if applicable, and testing/comparison of instruments unique to cloud water sampling.

### 2.5.1. Field Data Audits

The following audits are conducted for field data:

- 1. Review of all reported problems with sensors and equipment at the site and of the actions taken to solve such problems.
- 2. Review of calibration files for completeness and adherence to standard operating procedures (SOP). Certification results for transfer standards are also reviewed, and transfer sensor serial numbers are cross-referenced with the transfer sensor serial numbers on the calibration forms.
- 3. Comparison of final validated data tables to the raw data tables for identification and verification of all changes made to the data. Summary statistics and results of diagnostic tests for assessment of data accuracy are also reviewed.

### 2.5.2. Laboratory Data Audits

Laboratory data audits consist of:

- 1. Review of all media acceptance test results,
- 2. Review of chain-of-custody documentation, and
- 3. Review of all QC sample results associated with analytical batches.

### 2.5.3. Precision and Accuracy

With the exception of the automated cloud sampler and PVM, accuracy of field measurements (i. e., meteorological instruments used in conjunction with the cloud collection system and PVM) is determined by challenging instruments with standards that are traceable to NIST. Continuing accuracy is verified by end-of-season calibrations by MACTEC personnel. No certified standards are currently available for determination of cloud sampler and the PVM accuracy on a routine basis. Overall precision of field measurements is best determined by collocating instruments and assessing the difference between simultaneous measurements. Even though collocated dry deposition and meteorological sampling is not conducted at the CLD303 site, it is conducted at two other CASTNET sites. Since the meteorological instrumentation on the CLD303 tower is identical to that used at CASTNET sites, precision of these instruments can be inferred from the precision and accuracy results presented in the CASTNET Deposition Summary Report (EPA, 1998) and the CASTNET annual reports for 1998 through 2005 (www.epa.gov/CASTNET/library.html).

Accuracy of laboratory measurements is determined by analyzing an independently prepared reference sample in each batch and calculating the percent recovery relative to the target value. The percent recovery is expected to meet or exceed the acceptance criteria listed in the

CASTNET QAPP (MACTEC, 2005a). When possible, the references are traceable to NIST or obtained directly from NIST. On occasion, references are ordered from other laboratories.

Analytical precision within sample batches is assessed by calculating the relative percent difference (RPD) and percent recovery of CVS run within that batch. CVS are independently produced standards that approximate the midpoint of the analytical range for an analyte and are run after every tenth environmental sample. Precision within a batch is also assessed by replicating 5 percent of the samples within a run. Replicated samples are selected randomly.



The Automated Cloud Collector (in the down position) on top of the CASTNET tower at Clingmans Dome, TN

### 3.0 Liquid Water Content and Cloud Water Chemistry

### 3.1 Cloud Frequency and Mean Liquid Water Content

Monthly mean cloud frequencies by year from 1994 through 2006 are summarized in Table 3-1. Cloud frequencies by month and year are also depicted as a bar chart in Figure 3-1. Monthly cloud frequencies were determined by calculating the relative percent of all hourly LWC values equal to or greater than  $0.05 \text{ g/m}^3$ , or:

$$CF = \frac{100*(\# of \ valid \ hourly \ LWC \ values \ge 0.05 \ g \ / \ m^3)}{n}$$
where:  $n$  is the number of valid hourly LWC values per month and  $CF$  is cloud frequency

Any month with less than 70 percent valid LWC data is usually not considered representative of the monthly weather conditions for that month. Cloud frequencies vary from month to month, year to year, and from location to location (Harding ESE, 2001-2003 and MACTEC, 2004; 2005b; and 2006b). As can be seen from Table 3-1, the monthly cloud frequencies for June and July 2006 were the lowest monthly means for these months thus far in the project. The August 29, 2006 mean (although below the completeness criterion) was higher with respect to the historical mean.

In 2006, the LWC data from August 29<sup>th</sup> through the end of the season were invalidated due to the suspiciously high values obtained during this time period. Although the instrument optical offset values were out of acceptance range during these months, it was observed that the PVM was accurately detecting the presence of clouds at the threshold level of 0.05 g/m³. Since all that is required for determination of cloud frequency and cloud hours is the count of values equal to and greater than 0.05 g/m³, and not the accuracy of values above this threshold, the September and October LWC data could still be utilized for calculating these statistics. LWC data after August 30th, however, could not be used for calculation of monthly mean LWC values.

Monthly mean LWC values for 1994 through 2006 are shown in Figure 3-2. Mean LWC was calculated by taking the average of all hourly LWC values equal to or greater than 0.05 g/m³ during the month. Monthly mean LWC values for 2006 versus the historical monthly means are shown in Figure 3-3. Normally, only valid values passing the 70 percent completeness criterion are plotted. However, because of the invalidation of the September and October LWC data, it was decided to include the August 2006 data in Figures 3-2 and 3-3 despite the completeness rate for this month of 65 percent. Since these 65 percent of August data are valid, these values are presented for informational purposes only in these figures.

### 3.2 Cloud Water Chemistry

During the 2006 sampling season, the CASTNET laboratory received 45 samples from CLD303. All of the samples received had sufficient volume for complete analysis. Samples sent to the CASTNET laboratory for analysis were packed in Styrofoam® coolers with frozen ice packs to keep the samples cool during shipping. Upon receipt of the samples, the sample receiving technician verified the condition of the samples and the contents of the shipment against the enclosed Cloud Water Sample Report Form. All samples were received in good condition. Cloud water analytical and QC data for the 2006 sampling season are presented as Appendix B.

Annual summary statistics for cloud water chemistry and LWC are presented in Table 3-2. Table 3-3 lists the total number of samples or "records" that were collected each season of operation at CLD303. Samples were accepted and used for estimation of cloud water deposition if they met acceptance criteria based on the cation-to-anion ratio. Samples were usually eliminated if:

- 1. Both the anion sum and cation sum were  $\leq 100$  microequivalents per liter ( $\mu$ eq/L) and the absolute value of the RPD was > 100 percent; or
- 2. Either the anion sum or the cation sum was  $> 100 \,\mu\text{eq/L}$  and the absolute value of the RPD was  $> 25 \,\text{percent}$ .

The RPD was calculated from the following formula:

RPD = 
$$200*$$
 (cations – anions)/(cations + anions)

On occasion, samples exceeding these criteria will be accepted and used for analyses if there is valid justification to do so. In most of these cases, a low field pH value (high hydrogen concentration) causes the cation sum to be larger, which in turn causes exceedance of the acceptance criteria.

### 3.2.1. Cloud Water pH

The pH values for CLD303 are shown in Figures 3-4 and 3-5. The frequency distribution in both figures shows that a majority of the 2006 samples (approximately 69 percent for laboratory pH and 84 percent for field pH) had values of pH 3.9 or lower. Historically, the majority of the pH values measured at CLD303 fall within the range of pH 3.2 to 3.8. This range is identified in the 1992 NAPAP report to Congress (1993) as "acidic cloud water." Therefore, these measured pH values, when in combination with other stresses, might affect the high elevation spruce forests of Clingmans Dome.

As can be seen from these figures and the summary statistics for pH and hydrogen ion concentrations in Table 3-2, the 2006 field pH values are lower than the laboratory pH values. The mean field hydrogen ion concentration (Table 3-2) is approximately 48 percent higher than

the mean laboratory hydrogen ion concentration. Field pH values are known to be generally lower than pH values measured in the laboratory due to microbial activity, degradation of organic acids, dissolution of particulate matter, and ion exchange processes involving the walls and/or lid of the shipping container (Bigelow *et al.*, 1984). The difference between the field and laboratory pH values in 2006, however, was greater even than in previous years. The cation/anion ratios also yielded greater percent differences than usual when using field pH. Because of these results and the lack of any QC data associated with the field pH meter, the laboratory data were used this year (rather than field data) for calculation of the cloud hydrogen deposition values.

### 3.2.2. Major lons in Cloud Water

The major ions are identified as  $SO_4^{2-}$ ,  $H^+$ ,  $NH_4^+$ , and  $NO_3^-$ . Figure 3-6 presents the mean seasonal major ion concentrations in cloud water samples for 1995 through 2006. All 2006 mean major ion concentrations show a decrease with respect to 2005 mean concentrations. The 2006 mean nitrate concentration (120.42  $\mu$ eq/L) shows a 6.3 percent decrease from the 2005 mean, and the 2006 mean sulfate concentration (347.45  $\mu$ eq/L) is 9.6 percent lower with respect to the 2005 mean. The month of August exhibited the highest monthly major ion concentrations in 2006 for sulfate, nitrate, and laboratory hydrogen (Figure 3-7), and September had the highest mean for field hydrogen ion concentrations. Summary statistics of all major ion concentrations, as well as calcium concentrations, averaged across all years (1994-2006) are presented in Table 3-4.

### 3.2.3. Minor lons in Cloud Water

Mean seasonal concentrations of the minor ions (Ca²+, Mg²+, Na+, K+, and Cl⁻) for 1995 through 2006 are presented in Figure 3-8. Concentrations of sodium and potassium increased with respect to 2005 mean concentrations, whereas concentrations of calcium, magnesium, and chloride showed decreases. Concentrations for the minor ions peaked in various months with no discernible pattern.



The road to Clingmans Dome, TN

### 4.0 Cloud Deposition

This section presents the modeled cloud water deposition estimates for Clingmans Dome from 1994 through 2006. Deposition was estimated by applying the CLOUD model (Lovett, 1984), parameterized with site-specific cloud water chemistry and meteorological data from CLD303 as screened and provided by MACTEC. The complete report discussing 2006 cloud deposition modeling results by Gary M. Lovett, Ph.D. is presented in Appendix A. The following subsections present a summary of Dr. Lovett's results.

### 4.1 Cloud Water Deposition Model

Briefly, the CLOUD model uses an electrical resistance network analogy to model the deposition of cloud water to forest canopies. The model is one-dimensional, assuming vertical mixing of droplet-laden air into the canopy from the top. Turbulence mixes the droplets into the canopy space where they cross the boundary layers of canopy tissues by impaction and sedimentation. Sedimentation rates are strictly a function of droplet size. Impaction efficiencies are a function of the Stokes number, which integrates droplet size, obstacle size, and wind speed (Lovett, 1984). The impaction efficiency as a function of the Stokes number is based on wind tunnel measurements by Thorne *et al.* (1982).

The forest canopy is modeled as stacked 1-m layers containing specified amounts of various canopy tissues such as leaves, twigs, and trunks. Wind speed at any height within the canopy space is determined based on the above-canopy wind speed and an exponential decline of wind speed as a function of downward-cumulated canopy surface area. The wind speed determines the efficiency of mixing of air and droplets into the canopy and also the efficiency with which droplets impact onto canopy surfaces. The model is deterministic and assumes a steady-state, so that for one set of above-canopy conditions it calculates one deposition rate. The model requires as input data:

- 1. The surface area index of canopy tissues in each height layer in the canopy,
- 2. The zero-plane displacement height and roughness length of the canopy,
- 3. The wind speed at the canopy top,
- 4. The LWC of the cloud above the canopy, and
- 5. The mode of the droplet diameter distribution in the cloud.

From these input parameters, the model calculates the deposition of cloud water, expressed both as a water flux rate in grams per square centimeter per minute (g/cm²/min), and as a deposition velocity [flux rate/LWC, in units of centimeters per second (cm/s)]. Deposition rates of ions are calculated by multiplying the water deposition velocity by the ion concentration in cloud water above the canopy. In the original version of the model, a calculation of the evaporation rate from the canopy was also included in order to estimate net deposition of cloud water. Starting with the

2002 sampling season, the calculation of the evaporation rate from the canopy was not invoked, resulting in estimation of only the gross deposition rate.

The structure of the CLOUD model and its application to these data followed exactly the procedures used to calculate fluxes for the MADPro cloud sites reported by Lovett (2000). After the model was run for all time periods, seasonal and monthly means and totals were calculated in a SAS® program. Approaches in data analysis that were different between this effort and the analysis reported by Lovett (2000) are:

- 1. The data provided to Lovett for this report were pre-screened by MACTEC.
- 2. Because there were no missing months, summed deposition fluxes were calculated for the season by simply summing all the monthly deposition amounts.

The 2006 data set contained 45 samples (or time periods), and the model was run for 43 samples/time periods. Although the site was set up in early May, equipment problems and power issues delayed the official start until May 31, 2006. Collection continued through October, however, to offset the late start. Therefore, the season was identified as May 31 through October 31, 2006. Deposition rates and duration-weighted means could not be calculated for two samples in early August due to lack of sample LWC, wind speed, and duration data. Both the September and October LWC data were invalidated. However, these data were included in the calculations of the 2006 monthly depositions as the September and October LWC data were invalidated after the deposition calculations were completed. In addition, the LWC value for one sample from the end of August was also invalidated after calculation of the deposition estimates. Consequently, this invalid LWC value was used in calculation of the August monthly deposition estimate. The results for these months are presented for informational purposes only in Appendix A. Except for seasonal depositions, all calculations presented in this section for 2006 followed the same procedures as calculations for 2000-2002 and 2004-2005. Seasonal depositions for 2006, presented in Tables 4-3 and 5-3 and Figures 5-1 and 6-1, were calculated by averaging the monthly depositions for June through August and then multiplying this average by four. Similar procedures were employed for the 2003 season because of a shorter sampling season and lack of data completeness for some of the months due to equipment malfunction. Please refer to the 2003 MADPro Report (MACTEC, 2004) for details of the 2003 procedures. The seasonal depositions presented in Appendix A were calculated using the same procedures used for calculation of the 2000-2002 and 2004-2005 seasonal depositions.

### 4.2 Results

### 4.2.1 Monthly Means

The June mean monthly wind speed was higher with respect to the July and August means and this in turn contributed to the higher deposition velocity for this month. The monthly cloud frequency was highest in August (50.87 percent). Duration-weighted mean monthly concentrations for all ions, except hydrogen and sulfate, were the highest in July. Hydrogen and sulfate concentrations were highest in August.

Monthly deposition estimates [kilograms per hectare (kg/ha)] for major ions, Ca<sup>2+</sup>, and water for 1994, 1995, and 1997 through 2006 are presented in Table 4-1. Despite the fact that most concentrations peaked in July 2006 (Table I-2, Appendix A), total cloud deposition of all ions was highest in August (Table I-3, Appendix A). Deposition estimates for most ions were lowest in the month of June.

The monthly deposition estimates for the major ions and calcium as determined from the CLOUD model for years 1999 through 2006 are also presented in Figures 4-1 and 4-2. The monthly mean deposition estimates for June and July 2006 are the lowest since 1999 for sulfate, nitrate, ammonium, hydrogen, and calcium. The monthly mean deposition estimates for August 2006 are the highest since 1999 for sulfate and ammonium. However, it should be taken into account that this estimate may be biased high due to the inclusion of one sample with an invalid (biased high) LWC value.

Table 4-2 presents the monthly mean deposition rates estimated for 1995 through 2006. These estimates are based on available data shown in Table 4-1. It is difficult to compare the 2006 estimates to previous years since these rates were for June through August, whereas the estimates for all other years are for either May through September or June through October.

### 4.2.2 Seasonal Deposition Estimates

The seasonal deposition values for major ions are presented in Table 4-3. Only the data sets from 1997 and 1999 through 2006 were sufficiently complete to estimate a seasonal value. A season is defined as June through September and three of the four months were required to calculate the seasonal deposition. The 2006 data show that the deposition estimate for ammonium was the highest since 2002 and the deposition estimate for sulfate was the highest since 2001. The nitrate deposition estimate was slightly higher compared to the 2005 estimate after a steady drop in this deposition estimate since 2001.

# 5.0 Filter Pack Concentrations, Dry Deposition, and Total Deposition

Atmospheric sampling for sulfur and nitrogen species was integrated over weekly collection periods (Tuesday) using a three-stage filter pack. In this approach, particles and selected gases were collected by passing air at a controlled flow rate through a sequence of Teflon®, nylon, and dual cellulose filters. Weekly air pollutant concentrations measured during the 2006 field season, together with the weekly dry deposition values estimated from the concentrations and modeled deposition velocities, are presented in this section. The data presented here are from the CASTNET site at Great Smoky Mountains National Park, TN (GRS420) since filter pack sampling at CLD303 was discontinued for 2005 and 2006.

### 5.1 Filter Pack Concentrations

Over the course of the 2006 sampling season, the CASTNET laboratory analyzed 22 filter pack samples. The filter packs were installed on the sampling tower each Tuesday and then removed the following Tuesday. The site operator sealed each exposed filter pack with end caps and placed it in a resealable plastic bag for return shipment to MACTEC. Each filter pack was securely packed into a polyvinyl chloride (PVC) shipping tube with its corresponding Site Status Report Form (SSRF) and returned to MACTEC weekly. Any discrepancies or problems with the shipment were recorded on the SSRF by the receiving laboratory technician. All of the filter pack samples were received in good condition.

Upon receipt, all of the samples were logged in and unpacked. Each filter type was extracted and analyzed by the CASTNET laboratory for  $SO_4^2$  and/or  $NO_3^2$ . The Teflon® filter received additional analysis for Cl $^2$ ,  $NH_4^+$ ,  $Ca^{2+}$ ,  $Mg^{2+}$ ,  $Na^+$ , and  $K^+$ . Sample handling and analyses followed the procedures described in the CASTNET Laboratory SOP (MACTEC, 2005a). The filter pack analytical and QC data for the sampling season are presented in Appendix C.

Table 5-1 presents the atmospheric concentrations in micrograms per cubic meter (µg/m³) resulting from analysis of each weekly filter pack exposed for sampling during the 2006 sampling season. Upon receipt of each weekly filter pack, the receiving technician assigned a sample number composed of various identifiers for sample type, year, week, and site. The on/off dates and times presented in Table 5-1 correspond with the entries recorded on the SSRF. Starting in 1996 and continuing through the 2003 sampling season, the flow to the filter pack at the CLD303 site was programmed to shut off during a cloud or rain event to allow for determination of dry deposition only. In 2004, the filter pack sampled during rain events as well, and the flow was shut off only during a cloud event. The filter pack at GRS420, as well as at all other CASTNET sites, samples continuously throughout the week. This difference in sampling protocol should be taken into consideration when comparing filter pack concentrations after 2004

and previous years. In addition, there is a substantial difference in elevation of 1,221 meters between the CLD303 site (elevation 2,014 m) and the GRS420 site (elevation 793 m).

The average flow is presented in units of Lpm and represents the average filter pack flow during dry deposition sampling events. The volume for each sample was determined by using the hours sampled and average flow in the following equation:

Volume in meters<sup>3</sup> = 
$$\frac{hours\ sampled\ (hr)\ x\ average\ flow\ x\ 60}{1,000}$$

The atmospheric concentrations for the filter pack samples were calculated by using the laboratory data ( $\mu$ g/filter) in the following equation.

Atmospheric

Concentrations = 
$$\mu g$$
 of analyte/filter  $x$  analyte dependent constant

 $(\mu g/m^3)$  Volume

The following constants were used for converting the chemistry data:

| Tefl                | on <sup>®</sup>    | Nyl                           | lon      | Cellulose       |          |  |
|---------------------|--------------------|-------------------------------|----------|-----------------|----------|--|
| Parameter           | Parameter Constant |                               | Constant | Parameter       | Constant |  |
| $SO_4^{2-}$         | 1.0                | SO <sub>4</sub> <sup>2-</sup> | 1.0      | $\mathrm{SO}_2$ | 0.667    |  |
| $NO_3$              | 4.429              | HNO <sub>3</sub>              | 4.5      | $NO_3$          | 4.429    |  |
| $NH_4^+$            | 1.286              | NA                            | NA       | NA              | NA       |  |
| $Ca^{2+}$           | 1.0                | NA                            | NA       | NA              | NA       |  |
| $Mg^{2+}$           | 1.0                | NA                            | NA       | NA              | NA       |  |
| Na <sup>+</sup>     | 1.0                | NA                            | NA       | NA              | NA       |  |
| $\mathbf{K}^{^{+}}$ | 1.0                | NA                            | NA       | NA              | NA       |  |
| Cl <sup>-</sup>     | 1.0                | NA                            | NA       | NA              | NA       |  |

Note:

NA = not applicable

Table 5-1 presents the ambient concentrations for each sample and filter type for the captured particles and gases. Total ambient SO<sub>2</sub> was determined by this equation:

Total 
$$SO_2 = cellulose SO_2 + (Nylon SO_4^2 * 0.667)$$

### 5.2 Dry Deposition

The Multi-Layer Model (MLM) was used to calculate dry deposition velocities (Meyers *et al.*, 1998; Finkelstein *et al.*, 2000), which were combined with the measured concentrations to estimate dry deposition for Clingmans Dome. The MLM calculations were considered reasonable and representative for Clingmans Dome, at least through 2004, because on-site

meteorological measurements were used directly in the model as well as filter pack measurements obtained from a filter pack system collocated with the automated cloud sampler. Starting in 2005, both the filter pack and meteorological measurements used for estimating dry deposition were obtained from the GRS420 site. The representativeness of these measurements to Clingmans Dome is questionable due to the difference in elevation, distance, and sampling protocol with respect to the CLD303 site. However, the data are presented here since the results may still be useful in a very general way.

Even though the MLM was developed and evaluated using measurements from flat terrain settings, the model evaluation results are considered roughly applicable to this site. The data from Meyers *et al.* (1998) show little overall bias and up to 100 percent differences for individual 1/2-hour simulations. More recent data (Finkelstein *et al.*, 2000) suggest that the MLM underestimates deposition velocities for SO<sub>2</sub> for complex, forested sites. The differences are expected to be lower for longer averaging times (i.e., monthly and seasonal periods). Consequently, the uncertainty in the dry deposition estimates is approximately 100 percent or lower, and the MLM calculations probably underestimate the dry fluxes.

The weekly dry deposition estimates, the seasonal fluxes, and the seasonal mean deposition velocities for 2006 are presented in Table 5-2. The seasonal (June through September) fluxes were calculated by summing the weekly fluxes and then multiplying this sum by the number of weeks in the season and dividing by the number of weeks with valid flux estimates. The formula used for the 2006 field season is:

total seasonal flux = 18/17 (Sum of all valid weekly deposition estimates)

Only 18 of the 22 filter packs analyzed were used to calculate deposition estimates as the last four filter packs were run completely during the month of October. The deposition season is defined as June through September.

### 5.3 Total Deposition

Total sulfur and nitrogen deposition estimates for the 1999 through 2006 sampling seasons are presented in Table 5-3. The deposition season is defined as the period from June through September. For cloud water, the total sulfur deposition was determined by converting the  $SO_4^{2-}$  deposition estimated from the CLOUD model to sulfur (S). Total sulfur for the dry component was determined by using the  $SO_2$  and  $SO_4^{2-}$  total seasonal fluxes presented in Table 5-2. These values were converted to S and then summed to determine the total dry sulfur deposition.

Total cloud water nitrogen deposition was determined by converting the NO<sub>3</sub> and NH<sub>4</sub> deposition estimated from the CLOUD model to nitrogen (N). Total dry nitrogen deposition was determined

by converting the HNO<sub>3</sub>, NO<sub>3</sub>, and NH<sub>4</sub> total seasonal fluxes presented in Table 5-2 to N. All of the nitrogen species were summed to provide the total nitrogen deposition.

Figure 5-1 presents total sulfur and nitrogen deposition estimates for both the cloud water and dry components during the 1999 through 2006 sampling seasons. This figure shows that cloud water sulfur deposition for 2006 increased approximately 52 percent from 2005 measurements and dry sulfur deposition decreased by about 11 percent (0.829 kg/ha for 2005 versus 0.738 kg/ha for 2006). Total nitrogen deposition increased 10 percent for cloud water and decreased four percent for dry deposition. The increases in cloud sulfur and nitrogen deposition are influenced by the high monthly deposition rate for August which includes one sample with a LWC value that was biased high. Despite the fact that the filter pack data for 2006 are from a different site with a substantially lower elevation, it is still evident that dry deposition was and continues to be a minor contributor to the deposition of pollutants to high elevations, while cloud deposition was and still is a significant source. This figure does not present the contribution from deposition produced by precipitation.



At an elevation of 2,014 meters, ice, rime ice, and frost crystals regularly form on exposed equipment during the cold season (November through April). Cloud sampling occurs only during the warm season (May through October).

### 6.0 Conclusions and Recommendations

The Clingmans Dome cloud water measurements show an overall decline in sulfur and nitrogen deposition over the last several years with the exceptions of 2004 and 2006 when increases were observed for both species. The estimate of 2006 cloud sulfate deposition is the highest since 2002. Estimates of total deposition, i.e., deposition produced by clouds and dry deposition, also show a general overall decline over the last several years with the exceptions of 2004 and 2006 results (Figure 6-1). It should be noted that the 2006 cloud deposition results were extrapolated to account for the absence of a valid deposition estimate for the month of September. The LWC values after August 29, 2006 were biased high due to operational problems with the LWC instrument. Regardless of these concerns, the 2006 seasonal estimates show that dry deposition is still a minor contributor to the deposition of pollutants at high elevations. Cloud deposition is the significant pathway for deposition at these elevations.

The principal recommendation is to continue cloud sampling at Clingmans Dome and to reinstitute collocated filter pack sampling during the 2007 season. The GRS420 measurements cannot be considered representative of CLD303 due to the differences in elevation, distance, and other site-specific factors. The Clingmans Dome data constitute a major source of information on deposition to high elevation, sensitive ecosystems and will continue to help gauge the effectiveness of the Acid Deposition Control Program in reducing atmospheric pollutant deposition.

In addition to continuing laboratory pH and conductivity measurements in order to verify proper operation of the field pH meter and probe and to provide back up measurements for this important parameter, an audit of the field laboratory is recommended. This recommendation results from problems encountered with the field pH and conductivity measurement and documentation protocols during the 2006 field season. The audit should also include the LWC calibration procedures and documentation as well as cloud water sample collection, handling, and documentation procedures.

Additionally, the microcontroller program needs evaluation and will possibly require updates in order to improve operation of the cloud collection system. The operational problems experienced with the PVM during the last portion of 2006 season have already been addressed. It is recommended that more frequent and careful monitoring of the PVM should be implemented in upcoming seasons in order to circumvent similar problems. New site operators should also be provided with continuous on-the-job training during the first year of performance.

### 7.0 References

- Anlauf, K.G., Wiebe, H.A., and Fellin, P. 1986. Characterization of Several Integrative Sampling Methods for Nitric Acid, Sulfur Dioxide, and Atmospheric Particles. *JAPCA*, 36:715-723.
- Baumgardner, R.E., Kronmiller, K.G., Anderson, J.B., Bowser, J.J., and Edgerton, E.S. 1997. Development of an Automated Cloud Water Collection System for Use in Atmospheric Monitoring Networks. *Atmospheric Environment*, 31(13):2003-2010.
- Bigelow, D.S., M.E. Still, and V.C. Bowersox. 1984. Quality Assurance Considerations for Multiple-Network Data Comparison. In proceedings APCA/ASQC Specialty Conference on Quality Assurance in Air Pollution Measurements, Boulder, Colorado, October 14-18.
- Falconer, R.E. and Falconer, P.D. 1980. Determination of Cloud Water Acidity at a Mountain Observatory in the Adirondack Mountains of New York State. *JGR*, 85(C):7465-7470.
- Finkelstein, P.L., Ellestad, T.G., Clarke, J.F., Meyers, T.P., Schwede, D.B., Hebert, E.O., and Neal, J.A. 2000. Ozone and Sulfur Dioxide Dry Deposition to Forests: Observations and Model Evaluation. *Atmos. Environ.*, 105:D12:15,365-15,377.
- Gerber, H. 1984. Liquid Water Content of Fogs and Hazes from Visible Light Scattering. *Journal of Climatology and Applied Meteorology*, 23:1247-1252.
- Harding ESE, Inc. (Harding ESE)\*. 2003. Cloud and Dry Deposition Monitoring at Great Smoky Mountains National Park Clingmans Dome 2002 Final Annual Report. Prepared for the U.S. Environmental Protection Agency (EPA). Contract No. 68-D-98-112. Gainesville, FL.
- Harding ESE, Inc. (Harding ESE)\*. 2002. Cloud and Dry Deposition Monitoring at Great Smoky Mountains National Park Clingmans Dome 2001 Annual Report. Prepared for the U.S. Environmental Protection Agency (EPA). Contract No. 68-D-98-112. Gainesville, FL.
- Harding ESE, Inc. (Harding ESE)\*. 2001 Cloud and Dry Deposition Monitoring at Great Smoky Mountains National Park Clingmans Dome 2000 Annual Report. Prepared for the U.S. Environmental Protection Agency (EPA). Contract No. 68-D-98-112. Gainesville, FL.
- Lovett, G.M. 2000. *Modeling Cloud Water Deposition to the Sites of the CASTNET Cloud Network*. Prepared for Environmental Science & Engineering, Inc. now known as MACTEC Engineering and Consulting, Inc. Gainesville, FL.
- Lovett, G.M. 1984. Rates and Mechanisms of Cloud Water Deposition to a Subalpine Balsam Fir Forest. *Atmospheric Environment*. 18:361-371.

\_

<sup>\*</sup> now known as MACTEC Engineering and Consulting, Inc. (MACTEC)

### **References (continued)**

- MACTEC Engineering and Consulting, Inc. (MACTEC). 2006a. *Clean Air Status and Trends Network (CASTNET) 2005 Annual Report*. Prepared for the U.S. Environmental Protection Agency (EPA). Contract No. 68-D-03-052. Gainesville, FL.
- MACTEC Engineering and Consulting, Inc. (MACTEC). 2006b. *Cloud Deposition Monitoring, Clingmans Dome, TN, Great Smoky Mountains National Park* –2005. Prepared for the U.S. Environmental Protection Agency (EPA). Contract No. 68-D-03-052. Gainesville, FL.
- MACTEC Engineering and Consulting, Inc. (MACTEC). 2005a. *Clean Air Status and Trends Network (CASTNET) Quality Assurance Project Plan Revision 3.0.* Prepared for the U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC. Contract No. 68-D-98-112. Gainesville, FL.
- MACTEC Engineering and Consulting, Inc. (MACTEC). 2005b. *Cloud and Dry Deposition Monitoring at Great Smoky Mountains National Park Clingmans Dome 2004 Final Annual Report*. Prepared for the U.S. Environmental Protection Agency (EPA). Contract No. 68-D-03-052. Gainesville, FL.
- MACTEC Engineering and Consulting, Inc. (MACTEC). 2004. *Cloud and Dry Deposition Monitoring at Great Smoky Mountains National Park Clingmans Dome 2003 Final Annual Report*. Prepared for the U.S. Environmental Protection Agency (EPA). Contract No. 68-D-03-052. Gainesville, FL.
- Meyers, T.P., Finkelstein, P., Clarke, J., Ellestad, T.G., and Sims, P.F. 1998. A Multilayer Model for Inferring Dry Deposition Using Standard Meteorological Measurements. *J. Geophys. Res.*, 103:22,645-22,661.
- Mohnen, V.A., Aneja, V., Bailey, B., Cowling, E., Goltz, S.M., Healey, J., Kadlecek, J.A., Meagher, J., Mueller, S.M., and Sigmon, J.T. 1990. *An Assessment of Atmospheric Exposure and Deposition to High-Elevation Forests in the Eastern United States.* Report EPA/600/3-90/058 Edition. U.S. Environmental Protection Agency (EPA), Office of Research and Development, Washington, DC.
- Mohnen, V.A. and Kadlecek, J.A. 1989. Cloud Chemistry Research at Whiteface Mountain. *Tellus*, 41B:79-91.
- National Acid Precipitation Assessment Program (NAPAP). 1993. 1992 Report to Congress.
- Sisterson, D.L., Bowersox, V.C., Meyers, T. P., Simpson, J.C., Mohnen, V. 1991. *Deposition Monitoring Methods and Results*. State of Science and Technology Report Number 6. National Acid Precipitation Assessment Program, Washington, DC.

### **References (continued)**

- Thorne, P.G., Lovett, G.M., and Reiners, W.A. 1982. Experimental Determination of Droplet Deposition on Canopy Components of Balsam Fir. *J. Appl. Meteorol.*, 21:1413-1416.
- U.S. Environmental Protection Agency (EPA). 1998. *Clean Air Status and Trends Network* (*CASTNET*) *Deposition Summary Report* (1987-1995). EPA/600/R-98/027. OAQPS, Research Triangle Park, NC 27711.

## **Tables**

**Table 3-1.** Clingmans Dome Monthly Mean Cloud Frequency Summary

| Clingmans D | Clingmans Dome (CLD303) |        |        |        |        |        |        |        |                  |        |        |        |        |        |                   |
|-------------|-------------------------|--------|--------|--------|--------|--------|--------|--------|------------------|--------|--------|--------|--------|--------|-------------------|
|             |                         | 1994   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   | 2001             | 2002   | 2003   | 2004   | 2005   | 2006   | Mean <sup>1</sup> |
| May         | Cloud Frequency*        |        |        |        | 81.78% |        |        | 31.07% | 47.17%           | 34.50% | 91.67% |        |        |        | 37.58%            |
|             | Cloud-Hours**           |        |        |        | 82     |        |        | 560    | 742              | 742    | 360    |        |        |        |                   |
|             | Completeness            |        |        |        | 11%    |        |        | 75%    | 100%             | 100%   | 48%    |        |        |        |                   |
| June        | Cloud Frequency*        |        |        |        | 61.63% | 48.58% | 41.38% | 49.72% | 43.33%           | 43.47% | 54.61% | 67.89% | 54.93% | 23.62% | 47.37%            |
|             | Cloud-Hours**           |        |        |        | 172    | 422    | 667    | 543    | 720              | 720    | 661    | 387    | 390    | 163    |                   |
|             | Completeness            |        |        |        | 24%    | 59%    | 93%    | 75%    | 100%             | 100%   | 92%    | 79%    | 99%    | 96%    |                   |
| July        | Cloud Frequency*        |        | 29.47% | 46.64% | 34.34% | 55.42% | 44.75% | 41.67% | 57.08%           | 49.06% | 42.78% | 56.66% | 40.50% | 15.50% | 44.01%            |
|             | Cloud-Hours**           |        | 285    | 298    | 661    | 720    | 733    | 336    | 685              | 693    | 734    | 370    | 290    | 97     |                   |
|             | Completeness            |        | 38%    | 40%    | 89%    | 97%    | 99%    | 45%    | 92%              | 93%    | 99%    | 88%    | 96%    | 84%    |                   |
| August      | Cloud Frequency*        |        | 49.44% |        | 41.49% | 71.43% | 24.93% | 43.45% | 67.84%           | 28.02% | 42.58% | 46.64% | 30.63% | 50.87% | 41.56%            |
|             | Cloud-Hours**           |        | 710    |        | 617    | 7      | 742    | 702    | 541              | 721    | 357    | 347    | 223    | 264    |                   |
|             | Completeness*           |        | 95%    |        | 83%    | 1%     | 100%   | 94%    | 73%              | 97%    | 48%    | 100%   | 98%    | 65%    |                   |
| September   | Cloud Frequency*        | 32.41% | 30.37% |        | 33.18% | 43.93% | 27.65% | 50.65% | 37.78%           | 51.60% | 39.74% | 47.18% | 12.92% | 50.42% | 39.17%            |
|             | Cloud-Hours**           | 395    | 349    |        | 639    | 387    | 622    | 689    | 360              | 624    | 609    | 334    | 89     | 363    |                   |
|             | Completeness            | 55%    | 48%    |        | 93%    | 54%    | 86%    | 96%    | 50%              | 87%    | 85%    | 98%    | 96%    | 100%   |                   |
| October     | Cloud Frequency*        | 40.27% |        | 23.64% | 35.52% | 30.32% |        | 5.98%  | 41.72%           |        |        | 48.56% | 46.91% | 32.65% | 34.59%            |
|             | Cloud-Hours**           | 663    |        | 330    | 563    | 696    |        | 562    | 338              |        |        | 287    | 296    | 159    |                   |
|             | Completeness            | 89%    |        | 44%    | 76%    | 94%    |        | 76%    | 46% <sup>¥</sup> |        |        | 79%    | 85%    | 66%    |                   |
| November    | Cloud Frequency*        |        |        |        | 59.7%  |        |        |        |                  |        |        |        |        |        |                   |
|             | Cloud-Hours**           |        |        |        | 67     |        |        |        |                  |        |        |        |        |        |                   |
|             | Completeness            |        |        |        | 9%     |        |        |        |                  |        |        |        |        |        |                   |

<sup>\*</sup> Cloud frequency is not used in subsequent analyses if the completeness criterion of 70 percent is not met. Monthly deposition estimates for 2003 and August 2006 were exceptions.

\*\* Number of records where LWC > 0.05 g/m³

Site was shutdown on 10/16. Completeness based at time of shutdown is 91.85 percent.

The average cloud frequency values are calculated only from those annual values that meet the completeness criterion.

Table 3-2. Summary Statistics for Cloud Water Samples (Clingmans Dome, TN) 2006

| 2006                                 |                             |        |         |       |         |  |  |  |  |  |  |
|--------------------------------------|-----------------------------|--------|---------|-------|---------|--|--|--|--|--|--|
|                                      | Total Records Accepted = 45 |        |         |       |         |  |  |  |  |  |  |
|                                      | n                           | mean   | std dev | min   | max     |  |  |  |  |  |  |
| LWC                                  | 19                          | 0.25   | 0.09    | 0.11  | 0.43    |  |  |  |  |  |  |
| pH - Field                           | 45                          | 3.40   | 3.54    | 2.92  | 4.89    |  |  |  |  |  |  |
| pH - Lab                             | 45                          | 3.68   | 3.82    | 3.26  | 4.78    |  |  |  |  |  |  |
| Cond - Field                         | 44                          | 104.06 | 68.98   | 5.90  | 262.00  |  |  |  |  |  |  |
| Cond - Lab                           | 45                          | 126.96 | 82.97   | 9.30  | 319.00  |  |  |  |  |  |  |
| H⁺- Field                            | 45                          | 395.84 | 287.49  | 12.88 | 1202.26 |  |  |  |  |  |  |
| H⁺- Lab                              | 45                          | 211.37 | 150.82  | 16.60 | 549.54  |  |  |  |  |  |  |
| NH <sub>4</sub>                      | 45                          | 200.92 | 172.60  | 2.66  | 786.60  |  |  |  |  |  |  |
| $SO_4^2$                             | 45                          | 347.45 | 246.32  | 20.80 | 1022.24 |  |  |  |  |  |  |
| $\mathbf{NO}_{3}^{\cdot}$            | 45                          | 120.42 | 82.36   | 8.14  | 331.27  |  |  |  |  |  |  |
| Ca <sup>2+</sup>                     | 45                          | 47.93  | 56.62   | 0.78  | 253.81  |  |  |  |  |  |  |
| $\mathbf{Mg}^{^{2+}}$                | 45                          | 12.44  | 14.23   | 0.27  | 57.57   |  |  |  |  |  |  |
| $\mathbf{Na}^{\scriptscriptstyle +}$ | 45                          | 15.86  | 26.51   | 0.22  | 127.07  |  |  |  |  |  |  |
| $\mathbf{K}^{+}$                     | 45                          | 5.14   | 4.14    | 0.60  | 26.05   |  |  |  |  |  |  |
| Cl <sup>-</sup>                      | 45                          | 17.83  | 22.11   | 0.68  | 132.01  |  |  |  |  |  |  |
| Cations - Field                      | 45                          | 678.12 | 339.43  | 30.36 | 1590.18 |  |  |  |  |  |  |
| Cations - Lab                        | 45                          | 493.66 | 342.53  | 31.70 | 1477.17 |  |  |  |  |  |  |
| Anions                               | 45                          | 485.70 | 330.03  | 31.43 | 1378.27 |  |  |  |  |  |  |

All units are  $\mu$ eq/L except for LWC (g/m³), pH (standard units), and conductivity (micro ohms/cm)

The following acceptance criteria were used based on the cation and anion concentrations:

- (1) If both cation and anion sums were less than or equal to 100 μeq/L, then the RPD criterion (defined below) was ≤ 100 percent for a
- If either or both of the cation or anion sums were greater than 100  $\mu$ eq/L, then the RPD criterion was  $\leq$  25 percent for a record to be accepted.
- (3) max maximum
  - min minimum
  - sample size used in calculations
  - RPD The absolute value of difference in cation and anion concentrations divided by the average of the cation and
    - anion concentrations multiplied by 200
  - std dev sample standard deviation

Table 3-3. Number of Cloud Water Samples Accepted for Analyses for CLD303, TN

| Year    | Total Number of Samples | Number of<br>Samples Accepted | Percent<br>Accepted |
|---------|-------------------------|-------------------------------|---------------------|
| 1994*   | 14                      | 9                             | 64                  |
| 1995*   | 142                     | 136                           | 96                  |
| 1996*   | 122                     | 105                           | 86                  |
| 1997*   | 334                     | 324                           | 97                  |
| 1998*   | 341                     | 269                           | 79                  |
| 1999*   | 174                     | 174                           | 100                 |
| 2000**  | 104                     | 102                           | 98                  |
| 2001*** | 73                      | 70                            | 96                  |
| 2002*** | 75                      | 65                            | 87                  |
| 2003*** | 78                      | 78                            | 100                 |
| 2004*** | 73                      | 73                            | 100                 |
| 2005*** | 64                      | 63                            | 98                  |
| 2006*** | 45                      | 45                            | 100                 |
| Total   | 1639                    | 1513                          | 92%                 |

Note:

**Table 3-4.** Summary Statistics of Major Ion and Calcium Concentrations ( $\mu eq/L$ ) of Cloud Water Samples for Clingmans Dome 1994-2006

|         | $\mathbf{H}^{^{+}}^{*}$ | $\mathbf{NH}_{4}^{^{+}}$ | $SO_4^{2-}$ | NO <sub>3</sub> | <b>Ca</b> <sup>2+</sup> |
|---------|-------------------------|--------------------------|-------------|-----------------|-------------------------|
| Mean    | 332.15                  | 223.64                   | 416.35      | 171.84          | 47.92                   |
| Minimum | 0.54                    | 0.71                     | 3.54        | 0.29            | 0.15                    |
| Maximum | 2137.96                 | 1650.01                  | 3686.91     | 1342.88         | 1051.89                 |
| Median  | 251.19                  | 175.71                   | 318.70      | 135.09          | 24.90                   |

Note:

<sup>\*</sup> Hourly samples — sample collection bottle changed every hour.

<sup>\*\*</sup> Hourly + bulk samples (62 hourly and 42 bulk samples in year 2000)

<sup>\*\*\*</sup> Bulk samples — sample collection bottle changed every 24 hours.

<sup>\*</sup> Laboratory pH data instead of field pH data were used for calculating the 2001, 2002, and 2006 hydrogen values.

Table 4-1. Cloud Water Monthly Deposition Estimates Produced by the CLOUD Model (kg/ha)<sup>a</sup> at Clingmans Dome

| Year | Month               | $\mathbf{H}^{^{+}}$ | SO <sub>4</sub> <sup>2</sup> | NO <sub>3</sub> | NH <sub>4</sub> | Ca <sup>2+</sup> | H <sub>2</sub> O (cm) |
|------|---------------------|---------------------|------------------------------|-----------------|-----------------|------------------|-----------------------|
| 1994 | October             | 0.04                | 3.90                         | 2.30            | 1.05            | 0.24             | 6.42                  |
| 1995 | August              | 0.13                | 9.33                         | 4.96            | 1.67            | 0.35             | 9.83                  |
|      | July                | 0.23                | 14.13                        | 6.87            | 3.03            | 0.54             | 5.54                  |
| 1997 | August              | 0.24                | 14.16                        | 8.37            | 3.04            | 0.69             | 8.74                  |
| 1997 | September           | 0.18                | 11.10                        | 4.52            | 2.03            | 0.28             | 10.43                 |
|      | October             | 0.31                | 19.71                        | 12.22           | 4.71            | 0.67             | 7.02                  |
| 1998 | July                | 0.45                | 23.58                        | 13.33           | 7.61            | 0.75             | 10.76                 |
| 1990 | October             | 0.22                | 11.79                        | 9.83            | 3.02            | 0.78             | 9.10                  |
|      | June                | 0.61                | 30.31                        | 15.90           | 6.36            | 0.76             | 20.27                 |
| 1999 | July                | 0.88                | 39.79                        | 18.75           | 4.67            | 1.57             | 7.80                  |
| 1999 | August              | 0.23                | 13.25                        | 6.94            | 2.29            | 0.92             | 7.37                  |
|      | September           | 0.16                | 7.58                         | 4.25            | 1.23            | 0.47             | 8.56                  |
|      | May                 | 0.05                | 6.88                         | 4.46            | 2.00            | 0.56             | 4.74                  |
|      | June                | 0.18                | 13.00                        | 9.40            | 2.89            | 0.93             | 9.68                  |
| 2000 | August              | 0.41                | 25.54                        | 12.52           | 3.78            | 1.31             | 10.22                 |
|      | September           | 0.30                | 14.36                        | 5.85            | 1.84            | 0.11             | 12.82                 |
|      | October             | 0.09                | 4.63                         | 2.86            | 1.14            | 0.15             | 1.11                  |
|      | May                 | 0.09                | 8.19                         | 6.72            | 2.83            | 0.64             | 5.01                  |
| 2001 | June                | 0.28                | 18.84                        | 18.92           | 3.87            | 3.53             | 9.34                  |
| 2001 | July                | 0.30                | 16.85                        | 9.22            | 2.63            | 0.64             | 9.16                  |
|      | August              | 0.44                | 26.77                        | 18.88           | 4.35            | 1.20             | 10.50                 |
|      | May                 | 0.14                | 9.51                         | 4.08            | 1.97            | 0.50             | 9.50                  |
|      | June                | 0.15                | 8.84                         | 5.34            | 1.95            | 0.53             | 5.98                  |
| 2002 | July                | 0.17                | 9.33                         | 5.40            | 1.64            | 0.36             | 10.80                 |
|      | August              | 0.17                | 10.18                        | 5.12            | 1.84            | 0.33             | 4.90                  |
|      | September           | 0.29                | 21.41                        | 10.61           | 3.92            | 1.10             | 14.86                 |
|      | May <sup>b</sup>    | 0.09                | 7.32                         | 4.23            | 1.60            | 0.60             | 14.52                 |
|      | June                | 0.11                | 7.35                         | 3.18            | 1.32            | 0.42             | 8.53                  |
| 2003 | July                | 0.11                | 6.72                         | 3.69            | 1.25            | 0.37             | 7.63                  |
|      | August <sup>c</sup> | 0.19                | 10.93                        | 5.01            | 1.83            | 0.42             | 5.89                  |
|      | September           | 0.17                | 10.68                        | 5.43            | 2.20            | 0.50             | 7.20                  |
|      | June                | 0.17                | 9.43                         | 3.77            | 1.67            | 0.34             | 9.69                  |
|      | July                | 0.27                | 11.12                        | 4.82            | 1.83            | 0.46             | 11.81                 |
| 2004 | August              | 0.25                | 11.88                        | 4.57            | 2.08            | 0.30             | 6.44                  |
|      | September           | 0.28                | 13.12                        | 3.97            | 2.05            | 0.25             | 16.96                 |
|      | October             | 0.35                | 12.10                        | 6.71            | 2.69            | 0.46             | 8.06                  |
|      | June                | 0.17                | 12.77                        | 4.89            | 2.66            | 0.63             | 14.85                 |
|      | July                | 0.13                | 7.65                         | 2.93            | 1.18            | 0.41             | 9.85                  |
| 2005 | August              | 0.12                | 7.59                         | 3.16            | 1.42            | 0.24             | 6.83                  |
|      | September           | 0.06                | 5.25                         | 2.49            | 1.24            | 0.39             | 1.75                  |
|      | October             | 0.15                | 5.68                         | 3.97            | 0.92            | 0.20             | 10.35                 |
|      | June                | 0.04                | 2.92                         | 1.37            | 0.71            | 0.17             | 3.72                  |
| 2006 | July                | 0.04                | 4.05                         | 1.47            | 1.07            | 0.16             | 1.57                  |
|      | August <sup>d</sup> | 0.47                | 30.62                        | 8.16            | 4.81            | 0.65             | 10.32                 |

### Note:

- Deposition estimates for 1996 were not calculated.
- May 2003 data represent May 17-31, 2003 only. August 2003 had only 48 percent completeness.
- August 2006 deposition estimate includes one invalid sample LWC value.

**Table 4-2.** Cloud Water Mean Monthly (May – September) Deposition Rates for Several Ions (kg/ha/month) and Water at Clingmans Dome, TN

|         | Water      |                                     |                              |                              | NO:             | C 2+             |
|---------|------------|-------------------------------------|------------------------------|------------------------------|-----------------|------------------|
| Year    | (cm/month) | $\mathbf{H}^{\scriptscriptstyle +}$ | NH <sub>4</sub> <sup>+</sup> | SO <sub>4</sub> <sup>2</sup> | NO <sub>3</sub> | Ca <sup>2+</sup> |
| 1995-98 | 8.1        | 0.23                                | 3.0                          | 14.3                         | 7.7             | 0.54             |
| 1999*   | 11.0       | 0.47                                | 3.6                          | 22.7                         | 11.5            | 0.93             |
| 2000    | 9.7        | 0.29                                | 3.0                          | 16.9                         | 8.8             | 0.68             |
| 2001    | 8.6        | 0.31                                | 3.3                          | 18.4                         | 12.5            | 1.28             |
| 2002    | 9.2        | 0.18                                | 2.3                          | 11.9                         | 6.1             | 0.56             |
| 2003    | 10.5       | 0.14                                | 1.8                          | 9.3                          | 4.7             | 0.53             |
| 2004**  | 10.6       | 0.27                                | 2.1                          | 11.5                         | 4.8             | 0.36             |
| 2005**  | 8.7        | 0.12                                | 1.5                          | 7.8                          | 3.5             | 0.37             |
| 2006*** | 5.2        | 0.18                                | 2.2                          | 12.6                         | 3.7             | 0.33             |

Note:

**Table 4-3.** Cloud Water Seasonal\* Deposition Estimates Produced by the CLOUD Model (kg/ha) at Clingmans Dome, TN

| Year | $\mathbf{H}^{\scriptscriptstyle{+}}$ | $\mathbf{NH}_{4}^{^{+}}$ | $\mathbf{SO}_{4}^{2}$ | NO <sub>3</sub> | Ca <sup>2+</sup> |
|------|--------------------------------------|--------------------------|-----------------------|-----------------|------------------|
| 1997 | 0.86                                 | 10.20                    | 52.53                 | 26.35           | 2.01             |
| 1999 | 1.88                                 | 14.55                    | 90.93                 | 45.84           | 3.72             |
| 2000 | 1.40                                 | 12.76                    | 77.87                 | 39.80           | 2.84             |
| 2001 | 1.47                                 | 13.76                    | 83.69                 | 55.79           | 5.78             |
| 2002 | 0.78                                 | 9.35                     | 49.76                 | 26.47           | 2.32             |
| 2003 | 0.58                                 | 6.60                     | 35.68                 | 17.31           | 1.71             |
| 2004 | 0.97                                 | 7.63                     | 45.55                 | 17.13           | 1.35             |
| 2005 | 0.48                                 | 6.50                     | 33.26                 | 13.47           | 1.67             |
| 2006 | 0.73                                 | 8.80                     | 50.40                 | 14.80           | 1.32             |

Note

<sup>\*</sup> June through September

<sup>\*\*</sup> June through October

<sup>\*\*\*</sup> June through August

<sup>\*</sup> Season is defined from June through September

Three of the four months were required to calculate seasonal deposition. The 3-month deposition was multiplied by 4/3.

Table 5-1. Great Smoky Mountains National Park (GRS420) Ambient Concentrations (μg/m³) – June through October 2006

|                  | -               |                    |                              |                 |                              | Teflo            | n®                    |       |                                      |                 | Nyl                          | on               | Cellulose       |                          |                          |                   |                |                  |
|------------------|-----------------|--------------------|------------------------------|-----------------|------------------------------|------------------|-----------------------|-------|--------------------------------------|-----------------|------------------------------|------------------|-----------------|--------------------------|--------------------------|-------------------|----------------|------------------|
| Sample<br>Number | On<br>Date/Time | Off<br>Date/Time   | SO <sub>4</sub> <sup>2</sup> | NO <sub>3</sub> | NH <sup>+</sup> <sub>4</sub> | Ca <sup>2+</sup> | $\mathbf{Mg}^{^{2+}}$ | Na⁺   | $\mathbf{K}^{\scriptscriptstyle{+}}$ | Cl <sup>-</sup> | SO <sub>4</sub> <sup>2</sup> | HNO <sub>3</sub> | SO <sub>2</sub> | Total<br>SO <sub>2</sub> | Total<br>NO <sub>3</sub> | Comment<br>Codes* | Valid<br>Hours | Actual<br>Volume |
| 0622001**        | 05/30/06 11:10  | 0 06/6/06 11:46    | 6.860                        | 0.029U          | 1.933                        | 0.149            | 0.030                 | 0.041 | 0.069                                | 0.017U          | 0.795                        | 1.762            | 1.906           | 2.436                    | 1.763                    |                   | 168            | 30.190           |
| 0623001          | 06/6/06 12:00   | 06/13/06 12:05     | 6.972                        | 0.474           | 2.096                        | 0.522            | 0.080                 | 0.028 | 0.106                                | 0.016U          | 0.932                        | 2.569            | 3.656           | 4.277                    | 3.002                    |                   | 169            | 30.395           |
| 0624001          | 06/13/06 12:1   | 5 06/20/06 10:53   | 8.743                        | 0.122           | 2.723                        | 0.265            | 0.060                 | 0.125 | 0.069                                | 0.017U          | 0.603                        | 1.764            | 2.919           | 3.321                    | 1.859                    |                   | 166            | 29.842           |
| 0625001          | 06/20/06 12:4   | 5 06/27/06 11:53   | 5.545                        | 0.037           | 1.629                        | 0.183            | 0.035                 | 0.050 | 0.068                                | 0.017U          | 0.962                        | 1.630            | 2.068           | 2.710                    | 1.642                    |                   | 167            | 30.029           |
| 0626001          | 06/27/06 11:58  | 8 07/4/06 9:06     | 8.565                        | 0.115           | 2.770                        | 0.479            | 0.057                 | 0.026 | 0.104                                | 0.017U          | 0.803                        | 2.277            | 4.744           | 5.279                    | 2.356                    |                   | 166            | 29.876           |
| 0627001          | 07/4/06 9:09    | 07/11/06 13:00     | 7.704                        | 0.029U          | 2.044                        | 0.136            | 0.030                 | 0.041 | 0.110                                | 0.016U          | 0.920                        | 1.645            | 2.860           | 3.474                    | 1.647                    |                   | 172            | 30.921           |
| 0628001          | 07/11/06 13:0   | 5 07/18/06 11:52   | 6.636                        | 0.030U          | 1.860                        | 0.138            | 0.040                 | 0.123 | 0.084                                | 0.017U          | 0.845                        | 1.534            | 2.260           | 2.824                    | 1.539                    |                   | 166            | 29.867           |
| 0629001          | 07/18/06 12:00  | 0 07/25/06 11:40   | 7.668                        | 0.029U          | 1.998                        | 0.150            | 0.028                 | 0.031 | 0.071                                | 0.017U          | 0.768                        | 1.664            | 1.424           | 1.937                    | 1.667                    |                   | 168            | 30.229           |
| 0630001          | 07/25/06 12:00  | 0 08/1/06 12:00    | 5.694                        | 0.029U          | 1.200                        | 0.345            | 0.084                 | 0.208 | 0.085                                | 0.016U          | 0.595                        | 1.750            | 1.356           | 1.753                    | 1.751                    |                   | 169            | 30.398           |
| 0631001          | 08/1/06 12:00   | 08/8/06 11:53      | 8.944                        | 0.152           | 2.066                        | 0.447            | 0.112                 | 0.269 | 0.101                                | 0.017U          | 0.812                        | 2.122            | 3.191           | 3.733                    | 2.241                    |                   | 168            | 30.221           |
| 0632001          | 08/8/06 11:53   | 08/15/06 11:55     | 6.465                        | 0.029U          | 1.505                        | 0.145            | 0.041                 | 0.126 | 0.059                                | 0.017U          | 0.831                        | 1.601            | 2.716           | 3.270                    | 1.605                    |                   | 166            | 30.211           |
| 0633001          | 08/15/06 12:00  | 0 08/22/06 11:50   | 11.180                       | 0.029U          | 2.578                        | 0.165            | 0.035                 | 0.062 | 0.079                                | 0.017U          | 1.026                        | 2.142            | 2.795           | 3.479                    | 2.137                    |                   | 168            | 30.214           |
| 0634001          | 08/22/06 12:1   | 5 08/29/06 11:12   | 10.168                       | 0.030U          | 2.342                        | 0.171            | 0.038                 | 0.074 | 0.076                                | 0.017U          | 0.672                        | 1.742            | 2.134           | 2.583                    | 1.744                    |                   | 167            | 30.014           |
| 0635001          | 08/29/06 11:2   | 7 09/5/06 11:52    | 4.847                        | 0.048           | 1.074                        | 0.077            | 0.019                 | 0.040 | 0.061                                | 0.017U          | 0.503                        | 1.367            | 1.052           | 1.388                    | 1.394                    |                   | 168            | 30.203           |
| 0636001          | 09/5/06 12:06   | 09/12/06 11:55     | 9.579                        | 0.107           | 2.513                        | 0.142            | 0.026                 | 0.054 | 0.088                                | 0.017U          | 0.580                        | 1.743            | 1.758           | 2.145                    | 1.822                    |                   | 167            | 30.003           |
| 0637001          | 09/12/06 12:18  | 8 09/19/06 12:00   | 6.611                        | 0.029U          | 1.572                        | 0.103            | 0.019                 | 0.037 | 0.058                                | 0.017U          | 0.549                        | 1.523            | 1.735           | 2.101                    | 1.528                    |                   | 168            | 30.194           |
| 0638001          | 09/19/06 12:13  | 3 09/26/06 12:01   | 3.979                        | 0.029U          | 1.045                        | 0.201            | 0.033                 | 0.063 | 0.068                                | 0.017U          | 0.444                        | 1.434            | 2.413           | 2.709                    | 1.440                    |                   | 168            | 30.208           |
| 0639001          | 09/26/06 12:09  | 9 10/3/06 11:57    | 3.826                        | 0.121           | 1.162                        | 0.269            | 0.030                 | 0.022 | 0.066                                | 0.017U          | 0.619                        | 1.708            | 4.122           | 4.535                    | 1.802                    |                   | 167            | 30.032           |
| 0640001          | 10/3/06 12:05   | 10/10/06 9:51      | 4.498                        | 0.060           | 1.250                        | 0.146            | 0.028                 | 0.083 | 0.054                                | 0.017U          | 0.528                        | 1.797            | 2.535           | 2.887                    | 1.828                    |                   | 165            | 29.680           |
| 0641001          | 10/10/06 9:55   | 10/17/06 17:23     | 1.611                        | 0.155           | 0.428                        | 0.231            | 0.029                 | 0.036 | 0.047                                | 0.016U          | 0.326                        | 1.436            | 2.423           | 2.641                    | 1.568                    |                   | 172            | 31.656           |
| 0642001          | 10/17/06 17:3   | 1 10/24/06 13:08   | 2.624                        | 0.092           | 0.834                        | 0.082            | 0.015                 | 0.014 | 0.036                                | 0.017U          | 0.417                        | 1.347            | 3.177           | 3.456                    | 1.418                    |                   | 160            | 29.473           |
| 0643001          | 10/24/06 13:30  | 0 10/31/06 13:40   | 1.852                        | 0.098           | 0.530                        | 0.209            | 0.035                 | 0.026 | 0.044                                | 0.017U          | 0.330                        | 2.205            | 4.275           | 4.495                    | 2.268                    |                   | 168            | 30.240           |
|                  |                 | Mean               | 6.390                        | 0.085           | 1.689                        | 0.216            | 0.041                 | 0.072 | 0.073                                | 0.017           | 0.676                        | 1.762            | 2.615           | 3.065                    | 1.819                    |                   |                |                  |
|                  |                 | Standard Deviation | 2.631                        | 0.098           | 0.689                        | 0.126            | 0.024                 | 0.064 | 0.020                                | 0.000           | 0.206                        | 0.317            | 0.968           | 0.985                    | 0.379                    |                   |                |                  |

Data Status Flags:

U = Value is less than detection limit

<sup>\*</sup> No comments are associated with the comment code column

<sup>\*\*</sup> Original sample numbers within the MACTEC laboratory information management system contain the suffix "-39" to indicate that the sample was collected from the GRS420, TN site.

**Table 5-2.** Great Smoky Mountains National Park (GRS420) Dry Deposition Fluxes (kg/ha) Report for the 2006 Deposition Season

(June through September)

|                  | (UUIII UIII U | agn septem    |                 | F                | luxes (kg/ha                 | )               |                          | Deposit         | tion Velocities  | (cm/sec) |
|------------------|---------------|---------------|-----------------|------------------|------------------------------|-----------------|--------------------------|-----------------|------------------|----------|
| Sample<br>Number | On Date       | Off Date      | SO <sub>2</sub> | HNO <sub>3</sub> | SO <sub>4</sub> <sup>2</sup> | NO <sub>3</sub> | $\mathbf{NH}_{4}^{^{+}}$ | SO <sub>2</sub> | HNO <sub>3</sub> | Particle |
| 0622001*         | 5/30/06       | 6/6/06        | 0.053           | 0.196            | 0.056                        | 0.000           | 0.016                    | 0.388           | 1.974            | 0.146    |
| 0623001          | 6/6/06        | 6/13/06       | 0.089           | 0.270            | 0.060                        | 0.004           | 0.018                    | 0.377           | 1.909            | 0.156    |
| 0624001          | 6/13/06       | 6/20/06       | 0.054           | 0.187            | 0.066                        | 0.001           | 0.020                    | 0.291           | 1.890            | 0.135    |
| 0625001          | 6/20/06       | 6/27/06       | 0.033           | 0.118            | 0.030                        | 0.000           | 0.009                    | 0.222           | 1.311            | 0.098    |
| 0626001          | 6/27/06       | 7/4/06        | 0.084           | 0.167            | 0.050                        | 0.001           | 0.016                    | 0.288           | 1.332            | 0.106    |
| 0627001          | 7/4/06        | 7/11/06       | 0.065           | 0.168            | 0.058                        | 0.000           | 0.015                    | 0.337           | 1.826            | 0.135    |
| 0628001          | 7/11/06       | 7/18/06       | 0.054           | 0.154            | 0.048                        | 0.000           | 0.014                    | 0.346           | 1.816            | 0.131    |
| 0629001          | 7/18/06       | 7/25/06       | 0.032           | 0.140            | 0.046                        | 0.000           | 0.012                    | 0.303           | 1.533            | 0.110    |
| 0630001          | 7/25/06       | 8/1/06        | 0.028           | 0.118            | 0.028                        | 0.000           | 0.006                    | 0.295           | 1.223            | 0.090    |
| 0631001          | 8/1/06        | 8/8/06        | 0.050           | 0.136            | 0.043                        | 0.001           | 0.010                    | 0.245           | 1.166            | 0.088    |
| 0632001          | 8/8/06        | 8/15/06       | 0.046           | 0.105            | 0.031                        | 0.000           | 0.007                    | 0.255           | 1.177            | 0.087    |
| 0633001          | 8/15/06       | 8/22/06       | I               | ı                | ı                            | I               | I                        | I               | ı                | I        |
| 0634001          | 8/22/06       | 8/29/06       | 0.041           | 0.147            | 0.059                        | 0.000           | 0.013                    | 0.288           | 1.528            | 0.104    |
| 0635001          | 8/29/06       | 9/5/06        | 0.028           | 0.106            | 0.024                        | 0.000           | 0.005                    | 0.362           | 1.391            | 0.088    |
| 0636001          | 9/5/06        | 9/12/06       | 0.043           | 0.128            | 0.048                        | 0.001           | 0.013                    | 0.360           | 1.310            | 0.090    |
| 0637001          | 9/12/06       | 9/19/06       | 0.047           | 0.165            | 0.045                        | 0.000           | 0.011                    | 0.397           | 1.917            | 0.119    |
| 0638001          | 9/19/06       | 9/26/06       | 0.059           | 0.181            | 0.029                        | 0.000           | 0.008                    | 0.384           | 2.209            | 0.127    |
| 0639001          | 9/26/06       | 10/3/06       | 0.088           | 0.151            | 0.022                        | 0.001           | 0.007                    | 0.345           | 1.553            | 0.103    |
|                  | Total S       | easonal Flux  | 0.949           | 2.792            | 0.788                        | 0.011           | 0.212                    |                 |                  |          |
|                  | Mean Seasona  | al Deposition |                 |                  |                              |                 |                          | 0.322           | 1.592            | 0.113    |

**Data Status Flags:** I = Invalid filter pack data

Note: MLM simulations were performed for each 24-hour period from 0800 on the On Date to 0800 on the Off Date.

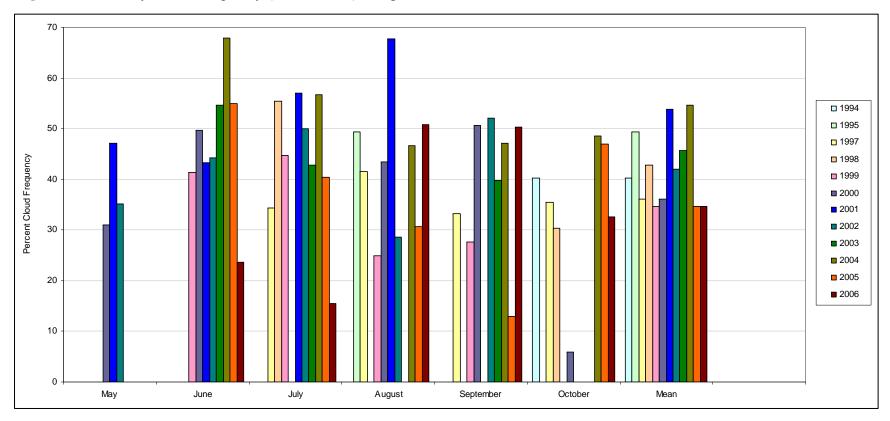
<sup>\*</sup> Original sample numbers within the MACTEC laboratory information management system contain the suffix "-39" to indicate that the sample was collected from the GRS420, TN site.

**Table 5-3.** Cloud Water and Dry Sulfur and Nitrogen Deposition for Clingmans Dome (June through September 2000 – 2006)

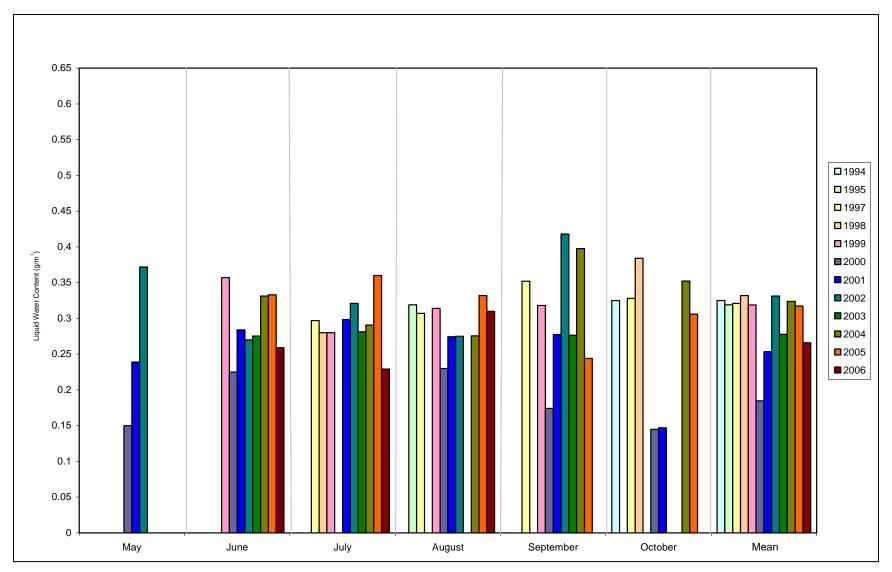
|             |       | Total Sulfur <sup>1</sup> | Total NO <sub>3</sub> -N | Total NH <sub>4</sub> -N | Total Nitrogen <sup>2</sup> |
|-------------|-------|---------------------------|--------------------------|--------------------------|-----------------------------|
|             | Year  | (kg/ha)                   | (kg/ha)                  | (kg/ha)                  | (kg/ha)                     |
|             | 2000  | 28.288                    | 10.003                   | 11.460                   | 21.463                      |
|             | 2001  | 30.670                    | 14.127                   | 12.882                   | 27.009                      |
|             | 2002  | 16.610                    | 5.982                    | 7.260                    | 13.242                      |
| Cloud Water | 2003  | 11.917                    | 3.912                    | 5.129                    | 9.041                       |
|             | 2004  | 15.210                    | 3.871                    | 5.925                    | 9.796                       |
|             | 2005  | 11.100                    | 3.043                    | 5.047                    | 8.090                       |
|             | 2006  | 16.828                    | 3.345                    | 6.833                    | 10.178                      |
|             | 2000  | 0.572                     | 1.453                    | 0.124                    | 1.577                       |
|             | 2001  | 0.843                     | 2.043                    | 0.214                    | 2.257                       |
|             | 2002  | 0.675                     | 1.904                    | 0.183                    | 2.087                       |
| Dry         | 2003  | 0.439                     | 1.027                    | 0.107                    | 1.134                       |
|             | 2004  | 0.434                     | 1.212                    | 0.107                    | 1.319                       |
|             | 2005* | 0.829                     | 0.657                    | 0.165                    | 0.822                       |
|             | 2006* | 0.738                     | 0.624                    | 0.165                    | 0.789                       |

Note:

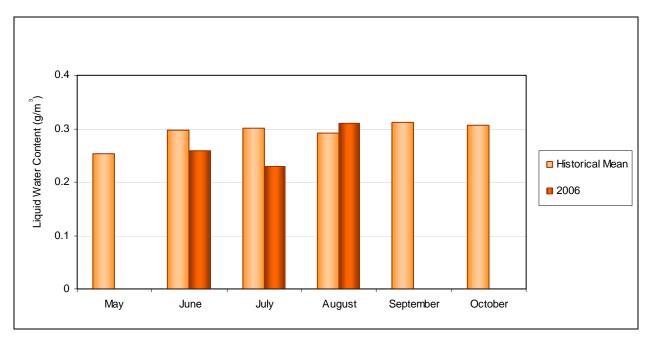
Season is defined from June through September


<sup>&</sup>lt;sup>1</sup> Total sulfur deposition includes SO<sub>4</sub><sup>2</sup> in cloud water plus ambient SO<sub>2</sub> and SO<sub>4</sub><sup>2</sup>

<sup>&</sup>lt;sup>2</sup> Total nitrogen deposition includes NO<sub>3</sub> and NH<sub>4</sub> in cloud water plus ambient NO<sub>3</sub>, NH<sub>4</sub>, and HNO<sub>3</sub>


<sup>\*</sup> Values for 2005 and 2006 were obtained from the Great Smoky Mountains National Park (GSR420) site at Look Rock, TN

# **Figures**


**Figure 3-1.** Monthly Cloud Frequency (1994 – 2006) Clingmans Dome, TN



**Figure 3-2.** Monthly Mean Liquid Water Content (g/m<sup>3</sup>) of Clouds (1994 – 2006) Clingmans Dome, TN



**Figure 3-3.** Monthly Mean Liquid Water Content (g/m³) 2006 versus Historical Mean Values (1994-2005)



**Figure 3-4.** Frequency Distribution for Cloud Water pH (Laboratory) at Clingmans Dome, TN (2006)

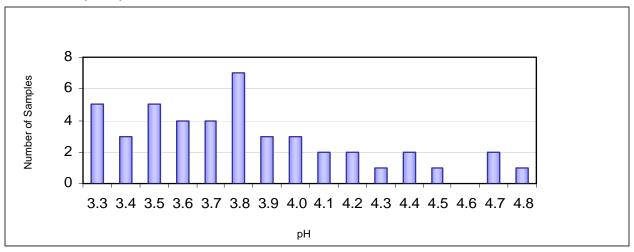
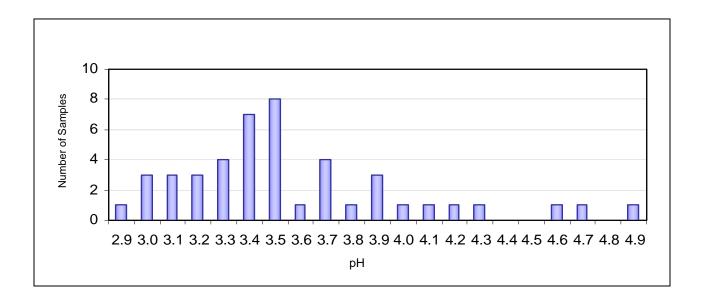
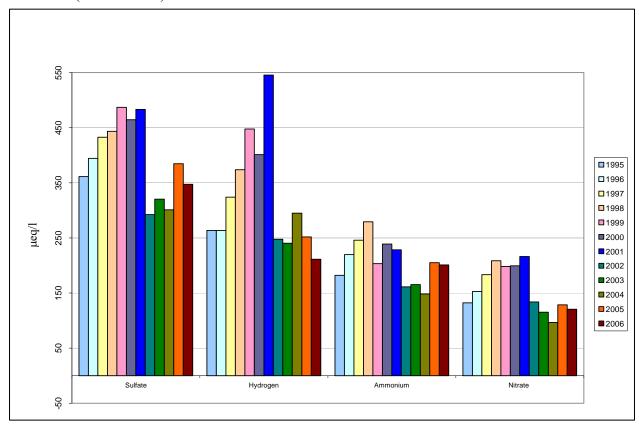
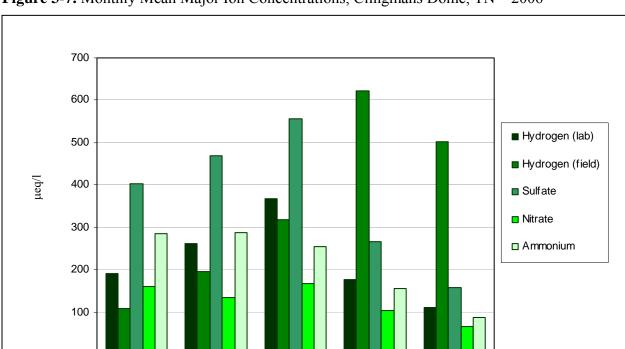





Figure 3-5. Frequency Distribution for Cloud Water pH (Field) at Clingmans Dome, TN (2006)




**Figure 3-6.** Mean Major Ion Concentrations of Cloud Water Samples, Clingmans Dome, TN (1995-2006)



June

July



August

September

October

Figure 3-7. Monthly Mean Major Ion Concentrations, Clingmans Dome, TN – 2006

**Figure 3-8.** Mean Minor Ion Concentrations of Cloud Water Samples (Cations and Chloride) Clingmans Dome, TN (1995 – 2006)

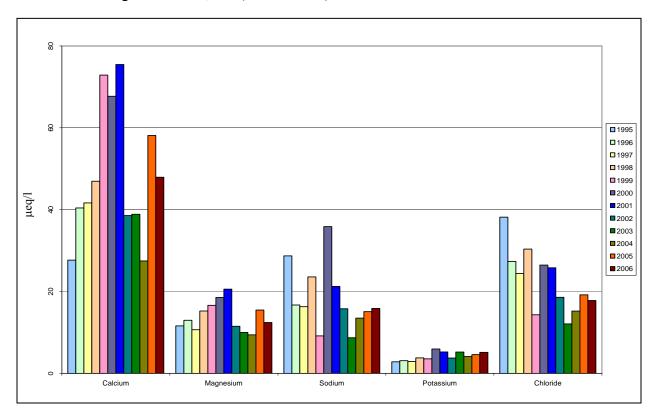
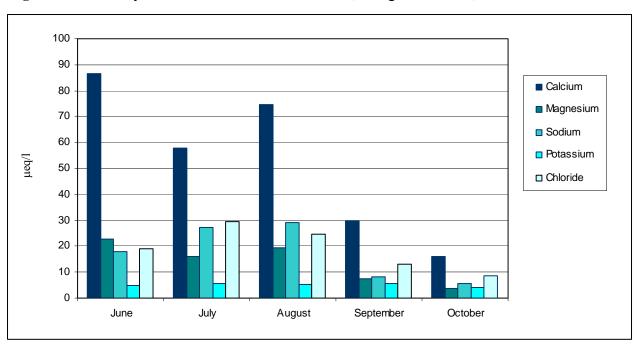




Figure 3-9. Monthly Mean Minor Ion Concentrations, Clingmans Dome, TN – 2006



45 4 ■ 1999 ■ 2000 35 **2001** 30 ■ 2002 ■ 2003 25 ■ 2004 ■ 2005 20 ■ 2006 15 10

July

Aug

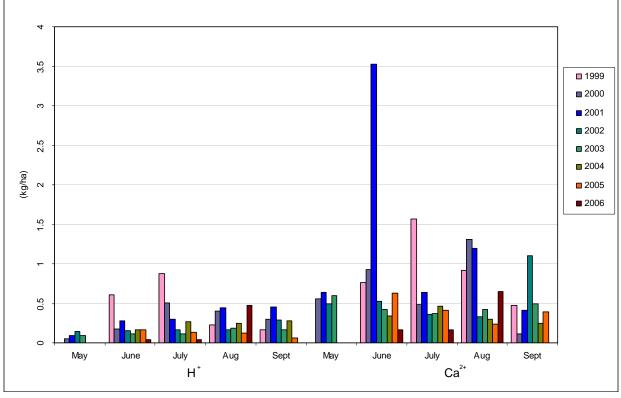
 $NO_3$ 

**Figure 4-1.** Monthly Deposition Estimates – CLOUD Model (SO<sub>4</sub>, NO<sub>3</sub>, NH<sub>4</sub>)

#### Note:

May 2003 data represent May 17-31, 2003 only. August 2003 had only 48 percent completeness. August 2006 had only 65 percent completeness.

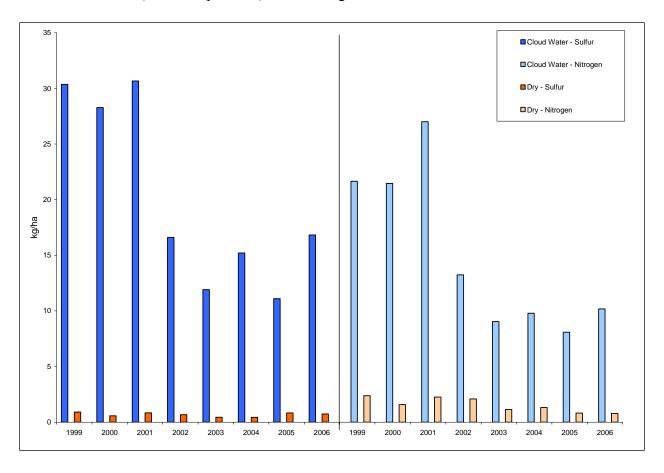
Aug


Sept

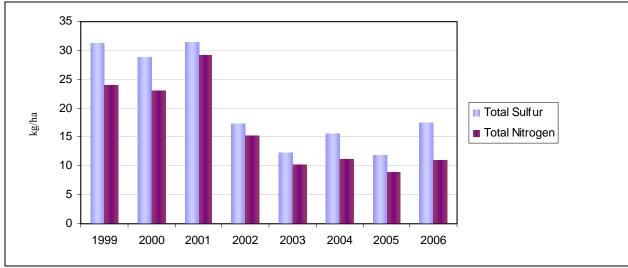
July

 $SO_4^{2-}$ 

 $NH_4^{\dagger}$ 


**Figure 4-2.** Monthly Deposition Estimates – CLOUD Model (H<sup>+</sup>, Ca<sup>2+</sup>)




#### Note:

May 2003 data represent May 17-31, 2003 only. August 2003 had only 48 percent completeness. August 2006 had only 65 percent completeness.

**Figure 5-1.** Total Sulfur and Nitrogen Cloud Water and Dry Deposition Estimates for Clingmans Dome (June – September) 2000 through 2006



**Figure 6-1.** Total Sulfur and Nitrogen Deposition Estimates (Dry and Cloud Components) for 2000 through 2006



## Appendix A

**Cloud Water Deposition to Clingmans Dome in 2006** 

#### **Cloud Water Deposition to Clingmans Dome in 2006**

Report to MACTEC by

MACTEC Purchase/Work # 60060076G

Gary M. Lovett
Institute of Ecosystem Studies
Millbrook, NY 12545

Report Date: February 18, 2007

#### Introduction

This brief report accompanies the Excel spreadsheet CLD 2006.xls, which gives the results of the cloud water deposition modeling for the Clingmans Dome (CLD303) site for the field season of 2006. Raw chemical concentration, meteorological, and cloud frequency data were provided to me by MACTEC (Selma Isil). I ran the CLOUD model (Lovett 1984) on these data to estimate cloud water deposition to this site.

Briefly, the CLOUD model uses an electrical resistance network analogy to model the deposition of cloud water to forest canopies. The model is one-dimensional, assuming vertical mixing of droplet-laden air in to the canopy from the top. Turbulence mixes the droplets into the canopy space, where they cross the boundary layers of canopy tissues by impaction and sedimentation. Sedimentation rates are strictly a function of droplet size. Impaction efficiencies are a function of the Stokes number, which integrates droplet size, obstacle size, and wind speed (Lovett 1984). The impaction efficiency is calculated as a function of the Stokes number based on wind tunnel measurements by Thorne et al (1982).

The forest canopy is modeled as stacked 1-m layers containing specified amounts of various canopy tissues such as leaves, twigs, and trunks. Wind speed at any height within the canopy space is determined based on the above-canopy wind speed and an exponential decline of wind speed as function of downward-cumulated canopy surface area. The wind speed determines the efficiency of mixing of air and droplets into the canopy and also the efficiency with which droplets impact onto canopy surfaces. The model is deterministic and assumes a steady-state, so that for one set of above-canopy conditions it calculates one deposition rate. The model requires as input data:

- 1) the surface area index of canopy tissues in each height layer in the canopy,
- 2) the zero-plane displacement height and roughness length of the canopy
- 3) the wind speed at the canopy top
- 4) the liquid water content (LWC) of the cloud above the canopy
- 5) the mode of the droplet diameter distribution in the cloud

From these input parameters, the model calculates the deposition of cloud water, expressed both as a water flux rate (g cm<sup>-2</sup> min<sup>-1</sup>), and as a deposition velocity (flux rate/LWC, in units of cm/s). Deposition rates of ions are calculated by multiplying the water deposition velocity by the ion concentration in cloud water above the canopy. In the original version of the model, a calculation of the evaporation rate from the canopy was also included in order to estimate net deposition of cloud water. For this project, only gross deposition rate was required so the evaporation routine was not invoked.

The 2006 data set covered the period June-October 2006. Two sampling dates (August 3 and August 7) were excluded from this analysis because there were no wind speed, cloud liquid water content or event duration data, thus deposition rates and duration-weighted mean concentrations could not be calculated. Excluding those two samples, there were 43 sample periods. All months had sampling completeness values greater than 75%, except August (69.8%) and October (65.5%).

The calculations done here for 2006 followed closely those done previously for the Clingmans Dome (e.g., Lovett 2006). After the model was run for all sample periods, seasonal and monthly means and totals were calculated in a SAS program. I calculated total seasonal deposition by summing the five monthly totals.

As in previous results, these model runs were made assuming a 10-m tall, intact, homogeneous conifer canopy. The actual canopy structure at Clingmans Dome has not been quantified, but I have observed that there are many dead trees at that site, and those still alive are generally taller than 10m. Consequently, this deposition estimate is best viewed an index of cloud deposition that can be used to compare the effects of changing meteorological and cloud chemical conditions across different sites and different times, assuming the same "standard" canopy were present at each site and time.

Because the measurement periods vary in length, I weighted all the means presented here by the duration of the sampling event. In this way, when calculating seasonal and monthly means, I avoid giving the same weight to a 10-minute event as I do to a 10-hour event.

#### Results

The model was run on 43 time periods as discussed above, and the results are presented as deposition velocities and deposition fluxes in the CLD 2006.xls spreadsheet and in Appendix I.

The period of measurement was June - October 2006. Monthly mean concentrations of ions in cloud water and in meteorological and deposition variables are given in Appendix I. During the measurement period, duration-weighted mean concentrations of all ions were highest in July and August (Fig. 1).

Seasonal mean concentrations (duration weighted) of these ions in 2006 continued trends seen from the last few years. Beginning in 1997 there was a general decline in hydrogen ion, sulfate, nitrate and ammonium ion concentrations, but since 2003 hydrogen ion and nitrate appear to have leveled off while sulfate and ammonium are showing consistent increases (Fig. 2). The pH trends (or lack thereof) must be interpreted with caution because of the variation from year to year in whether lab pH or field pH was used. In general, lab pH values are higher (i.e. lower H<sup>+</sup> concentration, less acidic) than field pH values because H<sup>+</sup> is very reactive and is consumed during the sample holding period prior to laboratory analysis. For these 2006 data we used exclusively lab pH values because of concerns about the quality of the field pH measurements. In previous years, primarily field pH values have been used.

Note that the trends shown in Figure 2 are based on duration-weighted mean concentrations and represent only those data used for modeling cloud water deposition (i.e. those events for which liquid water content and wind speed were also measured). These trends may not match other calculations of trends if more complete chemistry datasets or non-duration-weighted means are used.

Subtle variation in mean wind speed from month to month can cause substantial differences in cloud water deposition velocity. In September and October 2006, relatively high mean wind speeds are associated with high calculated deposition velocities (Figure 3). The high deposition velocities in September and October also reflect higher estimated cloud droplet diameters for those months. In the model, the mean of the droplet diameter distribution is estimated from the cloud liquid water content (LWC) using an empirical relationship from the cloud physics literature. Cloud LWC measurements for September and October are quite high (see next paragraph), which would lead to high estimated droplet diameters as well. The high deposition velocities lead in turn to high calculated deposition rates for cloud water and for some ions (e.g., chloride and potassium) for those months. For other ions (e.g., sulfate) lower

concentrations in September in October partially offset the higher water deposition rates, so that the highest deposition rates were in August (Appendix I, Table I-3).

Mean duration-weighted deposition velocity for the 2006 season was 23.4 cm/s. The overall mean LWC for the season was 0.61 g/m³, well above the 1995-2006 mean of 0.35 g/m³. The high mean LWC is a result of consistently high LWC measurements from August 31 through September and November, which are reflected in the September and October mean LWC values (Figure 4). It is unclear whether this late-season increase is a real phenomenon or was a result of instrument or operator error, consequently I advise interpreting the LWC results (and consequently the calculated deposition rates) with caution.

Seasonal deposition totals were calculated by summing the values across all five months. For comparison with the results of the previous reports, I express these in Table 1 as the mean monthly deposition rate in kg/ha/month. Cloud water deposition rate in 2006 was the highest yet recorded for this site, leading to the highest ion deposition rates (hydrogen ion, sulfate, nitrate and ammonium) since 2002 (Table 1).

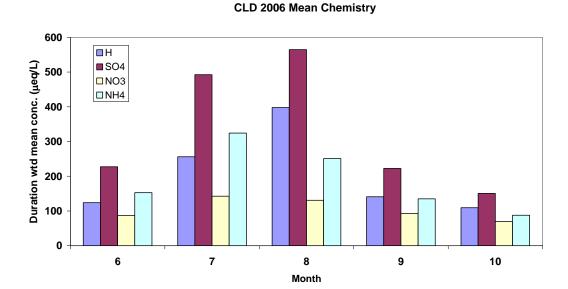
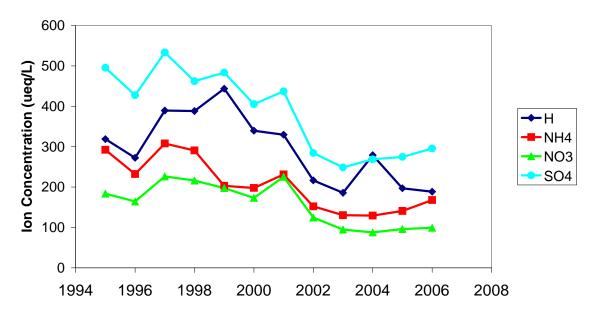




Figure 1. Duration-weighted mean concentration of four ions in cloud water, calculated by month.

### **Trends in Ion Concentrations, Clingmans Dome**



**Figure 2. Trends in ion concentrations at Clingmans Dome, 1995-2006**. Data are duration-weighted means for the warm season and include only the samples for which deposition was modeled (i.e. LWC and meteorological data were also present).



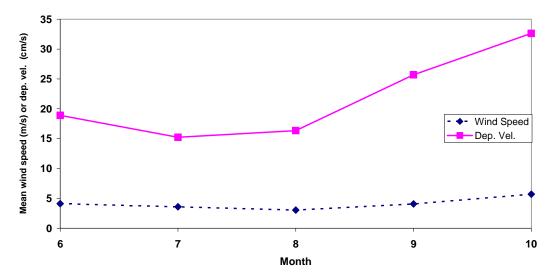



Figure 3. Mean wind speed and deposition velocity for each month.

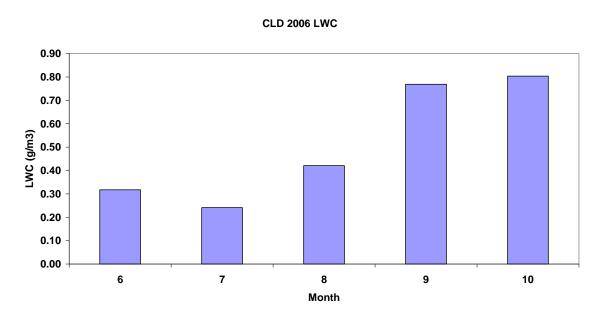



Figure 4. Mean liquid water content for each month of the study.

Table 1. Mean monthly deposition rates for several ions (in kg/ha/month) and water (cm/month) for the Clingmans Dome site for the 1995-2006 period. The seasonal averages include the months of June-October for 2004-2006 and May-September for previous years.

|             | Water | $\operatorname{H}^{+}$ | NH <sub>4</sub> | $SO_4$ | NO <sub>3</sub> |
|-------------|-------|------------------------|-----------------|--------|-----------------|
| CLD 2006    | 13.0  | 0.22                   | 3.1             | 15.5   | 6.8             |
| CLD 2005    | 8.7   | 0.12                   | 1.5             | 7.8    | 3.5             |
| CLD 2004    | 10.6  | 0.27                   | 2.1             | 11.5   | 4.8             |
| CLD 2003    | 10.5  | 0.14                   | 1.8             | 9.3    | 4.7             |
| CLD 2002    | 9.2   | 0.18                   | 2.3             | 11.9   | 6.1             |
| CLD 2001    | 8.6   | 0.31                   | 3.3             | 18.4   | 12.5            |
| CLD 2000    | 9.7   | 0.29                   | 3.0             | 16.9   | 8.8             |
| CLD 1999    | 11.0  | 0.47                   | 3.6             | 22.7   | 11.5            |
| CLD 1995-98 | 8.1   | 0.23                   | 3.0             | 14.3   | 7.7             |

#### **Literature Cited**

- Lovett, G. M. 1984. Rates and mechanisms of cloud water deposition to a subalpine balsam fir forest. Atmospheric Environment **18**:361-371.
- Lovett, G.M. 2006. Cloud water deposition to Clingmans Dome in 2005. Report to MACTEC, March 2006. 8 pp.
- Thorne, P. G., G. M. Lovett, and W. A. Reiners. 1982. Experimental determination of droplet deposition on canopy components of balsam fir. J. Appl. Meteorol. 21:1413-1416.

## Appendix I.

Table I-1. Monthly mean meteorological and deposition variables. All means are duration-weighted. TUBFLUX, SEDFLUX and TOTFLUX are turbulent, sedimentation and total water fluxes ( $g/cm^2/min$ ) for the time period, and TURBVD, SEDVD and TOTVD are the corresponding deposition velocities (cm/s). WS is wind speed (m/s) and LWC is cloud liquid water content in  $g/m^3$ .

| MONTH | OBC | DURATION | VOLUME  | We   | LWC   | TURBFLUX | SEDFLUX  | TOTELLIV | TURB  | SED   | TOT   |
|-------|-----|----------|---------|------|-------|----------|----------|----------|-------|-------|-------|
| MONTH | OBS | DURATION | VOLUME  | WS   | LVVC  | TURBFLUX | SEDFLUX  | TOTFLUX  | VD    | VD    | VD    |
| 6     | 7   | 10.69    | 1059.04 | 4.11 | 0.317 | 0.000230 | 0.000134 | 0.000365 | 12.27 | 6.62  | 18.89 |
| 7     | 8   | 8.60     | 864.78  | 3.57 | 0.241 | 0.000141 | 0.000086 | 0.000226 | 9.38  | 5.85  | 15.23 |
| 8     | 5   | 17.01    | 4623.05 | 3.04 | 0.421 | 0.000224 | 0.000231 | 0.000455 | 8.37  | 7.98  | 16.35 |
| 9     | 14  | 15.33    | 7363.71 | 4.06 | 0.769 | 0.000683 | 0.000547 | 0.001231 | 14.12 | 11.58 | 25.70 |
| 10    | 9   | 14.09    | 7342.66 | 5.70 | 0.803 | 0.000974 | 0.000578 | 0.001551 | 21.26 | 11.37 | 32.63 |

Table I- 2. Monthly mean ion concentrations (µeq/L). All means are duration- weighted.

| Month | H (field) | Ca    | Mg    | K    | Na    | NH4    | SO4    | NO3    | Cl    |
|-------|-----------|-------|-------|------|-------|--------|--------|--------|-------|
| 6     | 123.94    | 39.30 | 11.37 | 3.05 | 10.74 | 152.69 | 227.40 | 86.68  | 10.55 |
| 7     | 256.11    | 54.03 | 15.97 | 5.61 | 28.32 | 324.41 | 492.60 | 142.57 | 29.56 |
| 8     | 397.74    | 41.29 | 9.68  | 4.43 | 9.42  | 251.11 | 564.58 | 130.98 | 14.17 |
| 9     | 141.12    | 30.12 | 7.11  | 5.43 | 7.56  | 134.99 | 222.44 | 92.67  | 10.91 |
| 10    | 109.20    | 15.26 | 3.73  | 3.67 | 6.24  | 87.66  | 150.55 | 69.38  | 9.23  |

Table I-3. Monthly deposition in kg/ha/month. Water deposition in cm/month.

| Month | HDEP | KDEP | NADEP | CADEP | MGDEP | NH4DEP | SO4DEP | NO3DEP | CLDEP | H2ODEP |
|-------|------|------|-------|-------|-------|--------|--------|--------|-------|--------|
| 6     | 0.04 | 0.03 | 0.08  | 0.17  | 0.03  | 0.71   | 2.92   | 1.37   | 0.11  | 3.72   |
| 7     | 0.04 | 0.04 | 0.10  | 0.16  | 0.03  | 1.07   | 4.05   | 1.47   | 0.16  | 1.57   |
| 8     | 0.47 | 0.17 | 0.17  | 0.65  | 0.10  | 4.81   | 30.62  | 8.16   | 0.50  | 10.32  |
| 9     | 0.33 | 0.52 | 0.39  | 1.78  | 0.23  | 6.13   | 25.96  | 14.96  | 0.92  | 26.81  |
| 10    | 0.22 | 0.32 | 0.26  | 0.55  | 0.09  | 2.94   | 13.88  | 8.19   | 0.64  | 22.61  |

# Appendix B Cloud Water Data and QC Summary

#### **Cloud Water Data and QC Summary**

Analytical data for the 45 cloud deposition samples are presented in Table B-1 including measured field pH, field conductivity, sample volume, average LWC, valid hours, average scalar wind speed, and calculated cations and anions. A cumulative volume-weighted mean is shown for the various indicated analytes and ions.

Tables B-2, B-3, and B-4 provide summaries of the QC results associated with the samples. The QC results for all parameters are within the measured criteria of the CASTNET QC program (MACTEC, 2005a). Table B-2 summarizes the QC data for the reference samples for each parameter in each analytical batch. The reference sample is traceable to NIST and is supplied in a matrix similar to the cloud samples. An outside laboratory supplies these reference samples with a certificate of analysis stating the target values. A reference sample is analyzed at the beginning and end of each analytical batch to verify the accuracy and stability of the calibration curve. The QC limits require the measured value to be within  $\pm$  5 percent of the known value for anions, within  $\pm$  10 percent of the known value for cations, and within  $\pm$  15 percent of the known value for conductivity. For pH, the QC limits require the measured value to be within  $\pm$  0.05 pH units of the known value. The data from all required reference samples analyzed with the Clingmans Dome samples are within the CASTNET QC criteria.

The results of the analyses of the CVS for each parameter in each analytical batch are provided in Table B-3. A CVS is a NIST traceable solution supplied in a matrix similar to that of the sample being analyzed with a target value at approximately the midpoint of the calibration curve. This QC solution is supplied to MACTEC by an outside laboratory independent of the laboratory supplying the reference sample solution. A CVS is analyzed after every 10 environmental samples to verify that the instrument calibration has not drifted more than  $\pm$  5 percent for anions and base cations,  $\pm$  10 percent for NH $_4^+$ ,  $\pm$  0.05 pH units for pH, and  $\pm$  15 percent for conductivity. The results of all CVS analyses were within acceptance criteria.

Table B-4 summarizes the percent difference between samples reanalyzed within the same analytical batch. Five percent of the samples in each analytical batch were randomly selected for replicate analysis. This table presents only the samples that were replicated. The replicate percent difference criteria are  $\pm$  5 percent for anions and base cations,  $\pm$  10 percent for NH $_4^+$ , and  $\pm$  15 percent for conductivity for samples with concentrations greater than five times the analytical detection limit. For samples with lower concentrations, the difference between the two values cannot be more than the analytical detection limit. For pH, the difference between the two values cannot be more than  $\pm$  0.05 pH units. The data from all required replicate samples are within the CASTNET QC criteria.

**Table B-1.** Cloud Deposition 2006 Sampling Season – Clingmans Dome, TN (1 of 2)

| Number   | Sample Date           | alid Hours   | olume mL     | WC g/m³  | Scalar Wind<br>m/sec | H Field      | I Lab        | Cond. Field  | Ca²⁺ mg∕L        | Mg²+ mg/L        | a⁺ mg/L          | mg/L             | NH¹,mg/L         | SO⁴² mg/L     | NO; mg/L       | l'mg/L         | Field Cation<br>μeq/L | Lab Cation<br>μeq/L | Anion µeq/L        | Field Cation/<br>Anion | Lab Cation/<br>Anion |
|----------|-----------------------|--------------|--------------|----------|----------------------|--------------|--------------|--------------|------------------|------------------|------------------|------------------|------------------|---------------|----------------|----------------|-----------------------|---------------------|--------------------|------------------------|----------------------|
| Ź        | Sa                    | Š            | >            | <u> </u> | Sc<br>n              | Hd           | Hd           | చ            |                  | Σ                | Za               | ×                | Z                | S             | ž              | <u></u> 5      | E an                  | L H                 | Ā                  | Ę 4                    | P. L.                |
| 1        | 6/2/2006              | 12.8         | 1824         | 0.425    | 2.44                 | 3.91         | 3.89         | 92.1         | 0.3765           | 0.0718           | 0.2316           | 0.1044           | 2.2346           | 11.50         | 0.986          | 0.314          | 320.004               | 325.802             | 318.675            | 0.42                   | 2.21                 |
| 2        | 6/3/2006              | 15.1         | 1121         | 0.337    | 5.48                 | 4.89         | 4.48         | 18.7         | 0.0291           | 0.0091           | 0.0060           | 0.0264           | 0.2008           | 1.52          | 0.209          | 0.024          | 30.356                | 50.586              | 47.244             | -43.53                 | 6.83                 |
| 3        | 6/1/2006              | 1.2          | 73           | 0.136    | 1.20                 | 3.91         | 3.90         | 103.1        | 1.3886           | 0.1905           | 0.0822           | 0.1815           | 3.2162           | 14.50         | 1.910          | 0.337          | 445.832               | 448.697             | 447.750            | -0.43                  | 0.21                 |
| 4        | 6/5/2006              | 2.1          | 274          | 0.265    | 3.15                 | 4.59         | 4.09         | 119.5        | 5.0860           | 0.5654           | 0.1001           | 0.2667           | 4.6641           | 22.50         | 3.780          | 0.600          | 670.196               | 725.775             | 755.231            | -11.93                 | -3.98                |
| 5        | 6/13/2006             | 4.1          | 165          | 0.113    | 3.43                 | 3.62         | 3.57         | 155.4        | 1.9122           | 0.3876           | 0.0936           | 0.3161           | 4.4157           | 21.70         | 2.710          | 0.484          | 694.611               | 723.881             | 658.912            | 5.27                   | 9.40                 |
| 6        | 6/18/2006             | 3.4          | 179          | 0.233    | 5.90                 | 4.19         | 3.65         | 124.7        | 0.8051           | 0.2646           | 1.4454           | 0.1606           | 2.3026           | 14.50         | 1.680          | 1.480          | 357.884               | 517.191             | 463.570            | -25.73                 | 10.93                |
| 7        | 6/17/2006             | 1.3          | 107          | 0.150    | 6.25                 | 3.75         | 3.32         | NA           | 2.5509           | 0.4363           | 0.9359           | 0.3139           | 11.0178          | 49.10         | 4.410          | 1.460          | 1176.367              | 1477.169            | 1378.265           | -15.81                 | 6.93                 |
| 8        | 7/6/2006              | 3.9          | 420          | 0.223    | 2.37                 | 3.44         | 3.40         | 213.2        | 0.7086           | 0.1550           | 0.3787           | 0.2861           | 3.7647           | 28.40         | 1.520          | 0.693          | 703.760               | 738.789             | 719.339            | -2.19                  | 2.67                 |
| 9        | 7/5/2006              | 11.1         | 645          | 0.229    | 2.31                 | 3.72         | 3.76         | 89.1         | 0.3651           | 0.0908           | 0.1141           | 0.0922           | 0.6486           | 10.50         | 0.569          | 0.186          | 269.864               | 253.098             | 264.474            | 2.02                   | -4.40                |
| 10       | 7/11/2006             | 6.1          | 1150         | 0.339    | 5.16                 | 3.45         | 3.42         | 219.0        | 0.4319           | 0.0970           | 0.3503           | 0.2577           | 7.2186           | 31.90         | 1.990          | 0.745          | 921.540               | 946.916             | 827.229            | 10.79                  | 13.49                |
| 11       | 7/12/2006             | 11.5         | 1363         | 0.234    | 4.05                 | 3.41         | 3.54         | 262.3        | 0.8638           | 0.1815           | 0.8207           | 0.3091           | 10.2966          | 36.70         | 3.500          | 0.943          | 1225.804              | 1125.162            | 1040.552           | 16.35                  | 7.81                 |
| 12       | 7/20/2006             | 4.1          | 660          | 0.260    | 3.13                 | 4.34         | 3.82         | 74.3         | 0.6750           | 0.0863           | 0.0985           | 0.0935           | 1.7715           | 9.55          | 1.310          | 0.206          | 219.644               | 325.292             | 298.163            | -30.33                 | 8.70                 |
| 13       | 7/22/2006             | 9.8          | 820          | 0.245    | 3.70                 | 3.95         | 3.45         | 198.0        | 0.8960           | 0.1348           | 0.0996           | 0.1331           | 3.7070           | 27.40         | 2.180          | 0.438          | 440.400               | 683.012             | 738.447            | -50.57                 | -7.80                |
| 14       | 7/24/2006             | 6.6          | 668          | 0.197    | 4.05                 | 4.68         | 4.29         | 98.5         | 3.9864           | 0.6617           | 2.9214           | 0.4211           | 2.3434           | 16.50         | 2.250          | 4.680          | 579.420               | 609.813             | 636.164            | -9.34                  | -4.23                |
| 15       | 7/26/2006             | 1.0          | 147          | 0.110    | 4.53                 | 4.05         | 3.52         | 150.7        | 1.3314           | 0.1661           | 0.2449           | 0.1328           | 2.4434           | 19.50         | 1.820          | 0.516          | 357.726               | 570.596             | 550.471            | -42.45                 | 3.59                 |
| 16       | 8/3/2006              | NA           | 411          | NA       | NA                   | 3.52         | 3.51         | 180.0        | 4.0470           | 0.6996           | 2.2746           | 0.3406           | 3.1400           | 29.70         | 3.850          | 2.320          | 893.344               | 900.378             | 958.644            | -7.05                  | -6.27                |
| 17       | 8/7/2006              | NA           | 776          | NA       | NA                   | 3.69         | 3.68         | 140.7        | 0.4237           | 0.0531           | 0.1602           | 0.0593           | 2.1016           | 14.00         | 1.140          | 0.213          | 388.213               | 392.969             | 378.870            | 2.44                   | 3.65                 |
| 18       | 8/29/2006             | 3.7          | 992          | 0.380    | 3.49                 | 3.39         | 3.29         | 215.0        | 3.1470           | 0.4873           | 1.6566           | 0.3805           | 6.4792           | 38.70         | 4.640          | 1.830          | 1148.886              | 1254.367            | 1188.599           | -3.40                  | 5.38                 |
| 19       | 8/20/2006             | 20.0         | 3863         | 0.282    | 2.66                 | 3.46         | 3.46         | 129.1        | 0.6996           | 0.0909           | 0.1619           | 0.0852           | 3.0224           | 22.90         | 1.580          | 0.388          | 614.131               | 614.131             | 600.512            | 2.24                   | 2.24                 |
| 20       | 8/18/2006             | 16.0         | 2294         | 0.248    | 3.10                 | 3.37         | 3.33         | 231.0        | 1.5050           | 0.1987           | 0.2778           | 0.2628           | 5.1297           | 36.20         | 2.440          | 0.631          | 903.067               | 944.223             | 945.664            | -4.61                  | -0.15                |
| 21       | 8/22/2006             | 15.3         | 3929         | 0.355    | 3.49                 | 3.67         | 3.75         | 69.1         | 0.2723           | 0.0517           | 0.0654           | 0.1698           | 1.1653           | 10.70         | 0.984          | 0.289          | 322.022               | 286.053             | 301.172            | 6.69                   | -5.15                |
| 22       | 9/5/2006<br>8/31/2006 | 8.0          | 5551<br>8715 | <br>     | 3.58<br>2.92         | 3.54<br>3.48 | 3.76         | 58.5<br>52.3 | 0.2003           | 0.0394           | 0.0433<br>0.0612 | 0.1722<br>0.1521 | 0.7070           | 8.29          | 0.893<br>1.730 | 0.280<br>0.426 | 358.404               | 243.781             | 244.246            | 37.89                  | -0.19                |
| 23<br>24 | 9/1/2006              | 18.7<br>20.4 | 10000        |          | 2.30                 | 3.40         | 3.26<br>3.79 | 179.0        | 0.3794<br>0.1418 | 0.0578<br>0.0307 | 0.0012           | 0.1054           | 4.0053<br>0.3798 | 35.00<br>6.34 | 0.816          | 0.420          | 647.327<br>716.749    | 865.736<br>202.847  | 864.209<br>196.148 | -28.70<br>114.05       | 0.18<br>3.36         |
| 25       | 9/2/2006              | 19.4         | 8390         |          | 2.70                 | 3.38         | 3.73         | 95.2         | 1.1904           | 0.1001           | 0.0288           | 0.1034           | 4.2702           | 18.10         | 2.380          | 0.416          | 798.198               | 567.537             | 558.484            | 35.34                  | 1.61                 |
| 26       | 9/3/2006              | 13.3         | 7920         |          | 3.11                 | 3.69         | 3.73<br>4.17 | 35.2         | 0.5515           | 0.1521           | 0.0536           | 1.0186           | 1.6578           | 7.48          | 0.960          | 0.717          | 408.258               | 271.692             | 244.492            | 50.18                  | 10.54                |
| 27       | 9/7/2006              | 8.9          | 6850         | i        | 2.88                 | 3.31         | 4.65         | 100.3        | 0.1993           | 0.0185           | 0.4313           | 0.0331           | 0.3447           | 1.86          | 0.300          | 0.089          | 527.647               | 60.255              | 60.582             | 158.80                 | -0.54                |
| 28       | 9/11/2006             | 13.6         | 6175         | '<br>    | 4.03                 | 3.50         | 4.03         | 69.3         | 1.1198           | 0.3091           | 0.0217           | 0.3682           | 3.0236           | 13.70         | 2.150          | 0.009          | 665.332               | 444.603             | 466.141            | 35.21                  | -4.73                |
| 29       | 9/14/2006             | 6.7          | 3278         | i        | 3.97                 | 3.24         | 3.64         | 99.2         | 0.2371           | 0.0435           | 0.3772           | 0.1254           | 2.8212           | 16.50         | 1.380          | 0.478          | 802.321               | 455.968             | 455.528            | 55.14                  | 0.10                 |
| 30       | 9/15/2006             | 4.5          | 4025         | i        | 1.98                 | 3.11         | 3.36         | 157.2        | 0.5027           | 0.0763           | 0.0773           | 0.2359           | 4.6122           | 29.00         | 2.240          | 0.474          | 1146.290              | 806.559             | 777.057            | 38.39                  | 3.73                 |
| 31       | 9/17/2006             | 6.4          | 2192         | ı        | 4.43                 | 3.28         | 3.74         | 88.8         | 0.4073           | 0.0822           | 0.3804           | 0.1359           | 2.9660           | 16.20         | 1.220          | 0.657          | 783.673               | 440.836             | 442.908            | 55.56                  | -0.47                |
| 32       | 9/18/2006             | 20.5         | 8452         | i        | 3.82                 | 3.04         | 4.68         | 10.9         | 0.0157           | 0.0033           | 0.0050           | 0.0234           | 0.1251           | 1.05          | 0.119          | 0.038          | 922.813               | 31.695              | 31.428             | 186.83                 | 0.85                 |
| 33       | 9/19/2006             | 15.2         | 6712         | I        | 3.43                 | 3.05         | 3.62         | 11.7         | 0.5356           | 0.0859           | 0.1522           | 0.1585           | 2.3170           | 17.30         | 1.510          | 0.346          | 1101.141              | 449.773             | 477.741            | 78.97                  | -6.03                |

**Table B-1.** Cloud Deposition 2006 Sampling Season – Clingmans Dome, TN (2 of 2)

| Number | Sample Date | Valid Hours | Volume mL | LWC g/m³ | Scalar Wind<br>m/sec | pH Field | pH Lab  | Cond. Field | Ca²⁺ mg∕L | $\mathbf{Mg}^{2^+}\mathbf{mg/L}$ | Na⁺ mg/L | K⁺ mg/L | NH⁴mg/L | $\mathrm{SO}_4^2\mathrm{mg/L}$ | NO; mg/L | Cl · mg/L | Field Cation<br>μeq/L | Lab Cation<br>μeq/L | Anion µeq/L | Field Cation/<br>Anion | Lab Cation/<br>Anion |
|--------|-------------|-------------|-----------|----------|----------------------|----------|---------|-------------|-----------|----------------------------------|----------|---------|---------|--------------------------------|----------|-----------|-----------------------|---------------------|-------------|------------------------|----------------------|
| 34     | 9/22/2006   | 22.3        | 10000     | I        | 9.42                 | 3.03     | 4.39    | 27.8        | 0.9000    | 0.0679                           | 0.0178   | 0.0775  | 1.3987  | 5.510                          | 1.000    | 0.115     | 1086.369              | 193.853             | 189.353     | 140.630                | 2.35                 |
| 35     | 9/23/2006   | 6.3         | 4558      | 1        | 5.60                 | 2.92     | 3.28    | 209.0       | 1.3740    | 0.1670                           | 0.2461   | 0.2301  | 4.0482  | 29.600                         | 3.910    | 1.410     | 1590.179              | 912.722             | 935.178     | 51.870                 | -2.43                |
| 36     | 9/26/2006   | 9.7         | 4903      | 1        | 2.20                 | 3.29     | 3.96    | 64.8        | 1.0476    | 0.0793                           | 0.0816   | 0.1132  | 1.6143  | 8.680                          | 1.400    | 0.272     | 693.360               | 290.147             | 288.337     | 82.510                 | 0.63                 |
| 37     | 10/1/2006   | 9.5         | 4833      | 1        | 6.31                 | 3.03     | 3.83    | 57.8        | 0.1632    | 0.0321                           | 0.1647   | 0.0766  | 1.1062  | 8.570                          | 0.828    | 0.438     | 1032.139              | 246.795             | 249.891     | 122.030                | -1.25                |
| 38     | 10/6/2006   | 5.7         | 3265      | 1        | 6.97                 | 3.07     | 3.59    | 115.1       | 0.8170    | 0.1060                           | 0.2000   | 0.3747  | 3.4764  | 21.500                         | 2.080    | 0.526     | 1167.107              | 573.009             | 610.955     | 62.560                 | -6.41                |
| 39     | 10/8/2006   | 16.2        | 3271      | 1        | 8.38                 | 3.20     | 3.76    | 94.3        | 0.8734    | 0.0966                           | 0.3000   | 0.1277  | 2.2732  | 13.300                         | 1.930    | 0.524     | 861.099               | 403.922             | 429.470     | 66.890                 | -6.13                |
| 40     | 10/11/2006  | 22.0        | 9147      | 1        | 3.60                 | 3.29     | 3.92    | 55.4        | 0.2405    | 0.0607                           | 0.2451   | 0.0995  | 1.9417  | 8.450                          | 1.420    | 0.449     | 681.689               | 289.054             | 289.969     | 80.630                 | -0.32                |
| 41     | 10/17/2006  | 15.6        | 10000     | 1        | 4.11                 | 3.47     | 4.43    | 12.2        | 0.0260    | 0.0041                           | 0.0255   | 0.2010  | 0.0372  | 1.340                          | 0.135    | 0.212     | 349.385               | 47.694              | 43.516      | 155.700                | 9.16                 |
| 42     | 10/19/2006  | 6.1         | 8916      | 1        | 3.02                 | 3.36     | 3.95    | 52.2        | 0.5640    | 0.0663                           | 0.0711   | 0.1690  | 1.5503  | 8.960                          | 1.230    | 0.170     | 588.213               | 263.899             | 279.152     | 71.260                 | -5.62                |
| 43     | 10/20/2006  | 6.7         | 5468      | 1        | 5.87                 | 3.94     | 4.78    | 5.9         | 0.0955    | 0.0175                           | 0.0481   | 0.1764  | 0.1734  | 0.999                          | 0.114    | 0.176     | 140.004               | 41.785              | 33.902      | 122.020                | 20.83                |
| 44     | 10/22/2006  | 7.0         | 6780      | 1        | 4.27                 | 3.47     | 4.19    | 19.5        | 0.0689    | 0.0104                           | 0.0480   | 0.1293  | 0.2030  | 2.250                          | 0.364    | 0.167     | 363.026               | 88.747              | 77.542      | 129.600                | 13.48                |
| 45     | 10/27/2006  | 14.6        | 10000     | 1        | 8.41                 | 3.43     | 4.11    | 23.5        | 0.0693    | 0.0153                           | 0.0266   | 0.0999  | 0.3058  | 3.040                          | 0.365    | 0.111     | 401.797               | 107.886             | 92.481      | 125.160                | 15.38                |
|        |             |             |           |          | Volum                | e Weigh  | ted Mea | n           | 0.9600    | 0.1510                           | 0.3650   | 0.2010  | 2.8140  | 16.689                         | 1.687    | 0.632     | 678.124               | 493.660             | 485.703     | 40.609                 | 2.225                |

#### Note:

NA = not available

I = invalid liquid water content

**Table B-2.** Cloud Deposition 2006 Sampling Season – QC Batch Summary for Cloud Samples – Reference Samples – Clingmans Dome, TN (1 of 3)

| _               |                    | Lab pH                 |                       | _                   | _               | N            | NH <sub>4</sub> -N |               |                     |                 |            | SO <sub>4</sub> <sup>2</sup> · |               | _                   |
|-----------------|--------------------|------------------------|-----------------------|---------------------|-----------------|--------------|--------------------|---------------|---------------------|-----------------|------------|--------------------------------|---------------|---------------------|
| Batch<br>Number | Lab Key            | Target<br>STD<br>Units | Found<br>STD<br>Units | Percent<br>Recovery | Batch<br>Number | Lab Key      | Target<br>mg/L     | Found<br>mg/L | Percent<br>Recovery | Batch<br>Number | Lab Key    | Target<br>mg/L                 | Found<br>mg/L | Percent<br>Recovery |
| G100640         | P126977*1          | 6.03                   | 6.02                  | 99.8                | G100634         | ERAP108505*1 | 1.038              | 1.0306        | 99.3                | G100632         | HP603026*1 | 10.1                           | 10.20         | 101.0               |
| G100640         | P126977*2          | 6.03                   | 6.03                  | 100.0               | G100634         | ERAP108505*2 | 1.038              | 1.0345        | 99.7                | G100632         | HP603026*2 | 10.1                           | 10.20         | 101.0               |
| G100676         | P126977*1          | 6.03                   | 6.00                  | 99.5                | G100677         | ERAP108505*1 | 1.038              | 1.0427        | 100.5               | G100657         | HP603026*1 | 10.1                           | 10.00         | 99.0                |
| G100676         | P126977*2          | 6.03                   | 6.01                  | 99.7                | G100677         | ERAP108505*2 | 1.038              | 1.0373        | 99.9                | G100657         | HP603026*2 | 10.1                           | 9.97          | 98.7                |
| G100790         | P126977*1          | 6.03                   | 6.02                  | 99.8                | G100715         | ERAP108505*1 | 1.038              | 1.0218        | 98.4                | G100700         | HP603026*1 | 10.1                           | 10.20         | 101.0               |
| G100790         | P126977*2          | 6.03                   | 5.99                  | 99.3                | G100715         | ERAP108505*2 | 1.038              | 1.0256        | 98.8                | G100700         | HP603026*2 | 10.1                           | 10.20         | 101.0               |
| G100801         | P126977*1          | 6.03                   | 6.02                  | 99.8                | G100770         | ERAP108505*1 | 1.038              | 1.0340        | 99.6                | G100713         | HP603026*1 | 10.1                           | 10.20         | 101.0               |
| G100801         | P126977*2          | 6.03                   | 6.01                  | 99.7                | G100770         | ERAP108505*2 | 1.038              | 1.0354        | 99.7                | G100713         | HP603026*3 | 10.1                           | 10.20         | 101.0               |
| G100845         | P126977*1          | 6.03                   | 6.00                  | 99.5                | G100791         | ERAP108505*1 | 1.038              | 1.0350        | 99.7                | G100767         | HP603026*1 | 10.1                           | 10.20         | 101.0               |
| G100845         | P126977*2          | 6.03                   | 6.05                  | 100.3               | G100791         | ERAP108505*2 | 1.038              | 1.0374        | 99.9                | G100767         | HP603026*2 | 10.1                           | 10.30         | 102.0               |
|                 |                    |                        |                       |                     | G100811         | ERAP108505*1 | 1.038              | 1.0239        | 98.6                | G100789         | HP603026*1 | 10.1                           | 9.96          | 98.6                |
|                 |                    |                        |                       |                     | G100811         | ERAP108505*2 | 1.038              | 1.0178        | 98.1                | G100789         | HP603026*2 | 10.1                           | 9.90          | 98.0                |
|                 |                    |                        |                       |                     |                 |              |                    |               |                     | G100813         | HP603026*1 | 10.1                           | 10.20         | 101.0               |
|                 |                    |                        |                       |                     |                 |              |                    |               |                     | G100813         | HP603026*2 | 10.1                           | 10.30         | 102.0               |
| Mean            |                    |                        |                       | 99.80               |                 |              |                    |               | 99.40               | Mean            |            |                                |               | 100.40              |
| Standard De     | Standard Deviation |                        |                       |                     | Standard I      | Deviation    |                    |               | 0.72                | Standard [      | Deviation  |                                |               | 1.28                |
| Count           |                    |                        |                       | 10                  | Count           |              |                    |               | 12                  | Count           |            |                                |               | 14                  |

**Table B-2.** Cloud Deposition 2006 Sampling Season – QC Batch Summary for Cloud Samples – Reference Samples – Clingmans Dome, TN (2 of 3)

| Batch<br>Number | Lab Key    | NO <sub>3</sub> -N<br>Target<br>mg/L | Found<br>mg/L | Percent<br>Recovery | Batch<br>Number | Lab Key    | Cl <sup>-</sup><br>Target<br>mg/L | Found<br>mg/L | Percent<br>Recovery | Batch<br>Number | Lab Key    | Ca <sup>2+</sup><br>Target<br>mg/L | Found<br>mg/L | Percent<br>Recovery |
|-----------------|------------|--------------------------------------|---------------|---------------------|-----------------|------------|-----------------------------------|---------------|---------------------|-----------------|------------|------------------------------------|---------------|---------------------|
| G100632         | HP603026*1 | 1.6                                  | 1.61          | 100.6               | G100632         | HP603026*1 | 0.98                              | 0.955         | 97.4                | G100627         | HP603026*1 | 0.052                              | 0.0536        | 103.1               |
| G100632         | HP603026*2 | 1.6                                  | 1.61          | 100.6               | G100632         | HP603026*2 | 0.98                              | 0.953         | 97.2                | G100627         | HP603026*2 | 0.052                              | 0.0539        | 103.7               |
| G100657         | HP603026*1 | 1.6                                  | 1.60          | 100.0               | G100657         | HP603026*1 | 0.98                              | 0.979         | 99.9                | G100652         | HP603026*1 | 0.052                              | 0.0529        | 101.7               |
| G100657         | HP603026*2 | 1.6                                  | 1.59          | 99.4                | G100657         | HP603026*2 | 0.98                              | 0.982         | 100.2               | G100652         | HP603026*2 | 0.052                              | 0.0527        | 101.3               |
| G100700         | HP603026*1 | 1.6                                  | 1.62          | 101.3               | G100700         | HP603026*1 | 0.98                              | 0.972         | 99.2                | G100652         | HP603026*3 | 0.052                              | 0.0526        | 101.2               |
| G100700         | HP603026*2 | 1.6                                  | 1.63          | 101.9               | G100700         | HP603026*2 | 0.98                              | 0.974         | 99.4                | G100703         | HP603026*1 | 0.052                              | 0.0532        | 102.3               |
| G100713         | HP603026*1 | 1.6                                  | 1.62          | 101.3               | G100713         | HP603026*1 | 0.98                              | 0.975         | 99.5                | G100703         | HP603026*2 | 0.052                              | 0.0528        | 101.5               |
| G100713         | HP603026*3 | 1.6                                  | 1.61          | 100.6               | G100713         | HP603026*3 | 0.98                              | 0.976         | 99.6                | G100711         | HP603026*1 | 0.052                              | 0.0554        | 106.5               |
| G100767         | HP603026*1 | 1.6                                  | 1.62          | 101.3               | G100767         | HP603026*1 | 0.98                              | 0.963         | 98.3                | G100711         | HP603026*2 | 0.052                              | 0.0550        | 105.8               |
| G100767         | HP603026*2 | 1.6                                  | 1.62          | 101.3               | G100767         | HP603026*2 | 0.98                              | 0.967         | 98.7                | G100711         | HP603026*3 | 0.052                              | 0.0547        | 105.2               |
| G100789         | HP603026*1 | 1.6                                  | 1.59          | 99.4                | G100789         | HP603026*1 | 0.98                              | 0.951         | 97.0                | G100763         | HP603026*1 | 0.052                              | 0.0536        | 103.1               |
| G100789         | HP603026*2 | 1.6                                  | 1.58          | 98.8                | G100789         | HP603026*2 | 0.98                              | 0.964         | 98.4                | G100763         | HP603026*2 | 0.052                              | 0.0539        | 103.7               |
| G100813         | HP603026*1 | 1.6                                  | 1.63          | 101.9               | G100813         | HP603026*1 | 0.98                              | 0.966         | 98.6                | G100785         | HP603026*1 | 0.052                              | 0.0540        | 103.8               |
| G100813         | HP603026*2 | 1.6                                  | 1.64          | 102.5               | G100813         | HP603026*2 | 0.98                              | 0.965         | 98.5                | G100785         | HP603026*2 | 0.052                              | 0.0548        | 105.4               |
|                 |            |                                      |               |                     |                 |            |                                   |               |                     | G100808         | HP603026*1 | 0.052                              | 0.0526        | 101.2               |
|                 |            |                                      |               |                     |                 |            |                                   |               |                     | G100808         | HP603026*2 | 0.052                              | 0.0529        | 101.7               |
| Mean            |            |                                      |               | 100.80              | Mean            |            |                                   |               | 98.70               | Mean            |            |                                    |               | 103.20              |
| Standard [      | Deviation  |                                      |               | 1.07                | Standard D      | eviation   |                                   |               | 0.99                | Standard        | Deviation  |                                    |               | 1.77                |
| Count           |            |                                      |               | 14                  | Count           |            |                                   |               | 14                  | Count           |            |                                    |               | 16                  |

**Table B-2.** Cloud Deposition 2006 Sampling Season – QC Batch Summary for Cloud Samples – Reference Samples – Clingmans Dome, TN (3 of 3)

| Batch<br>Number | Lab Key    | Mg <sup>2+</sup><br>Target<br>mg/L | Found<br>mg/L | Percent<br>Recovery | Batch<br>Number | Lab Key    | Na <sup>†</sup><br>Target<br>mg/L | Found<br>mg/L | Percent<br>Recovery | Batch<br>Number | Lab Key    | K <sup>+</sup><br>Target<br>mg/L | Found<br>mg/L | Percent<br>Recovery |
|-----------------|------------|------------------------------------|---------------|---------------------|-----------------|------------|-----------------------------------|---------------|---------------------|-----------------|------------|----------------------------------|---------------|---------------------|
| G100627         | HP603026*1 | 0.05                               | 0.0506        | 101.2               | G100627         | HP603026*1 | 0.4                               | 0.3726        | 93.2                | G100627         | HP603026*1 | 0.097                            | 0.0983        | 101.3               |
| G100627         | HP603026*2 | 0.05                               | 0.0513        | 102.6               | G100627         | HP603026*2 | 0.4                               | 0.3791        | 94.8                | G100627         | HP603026*2 | 0.097                            | 0.0984        | 101.4               |
| G100652         | HP603026*1 | 0.05                               | 0.0516        | 103.2               | G100652         | HP603026*1 | 0.4                               | 0.3799        | 95.0                | G100652         | HP603026*1 | 0.097                            | 0.0971        | 100.1               |
| G100652         | HP603026*2 | 0.05                               | 0.0504        | 100.8               | G100652         | HP603026*2 | 0.4                               | 0.3774        | 94.4                | G100652         | HP603026*2 | 0.097                            | 0.0969        | 99.9                |
| G100652         | HP603026*3 | 0.05                               | 0.0506        | 101.2               | G100652         | HP603026*3 | 0.4                               | 0.3776        | 94.4                | G100652         | HP603026*3 | 0.097                            | 0.0964        | 99.4                |
| G100703         | HP603026*1 | 0.05                               | 0.0508        | 101.6               | G100703         | HP603026*1 | 0.4                               | 0.3716        | 92.9                | G100703         | HP603026*1 | 0.097                            | 0.0990        | 102.1               |
| G100703         | HP603026*2 | 0.05                               | 0.0501        | 100.2               | G100703         | HP603026*2 | 0.4                               | 0.3705        | 92.6                | G100703         | HP603026*2 | 0.097                            | 0.0963        | 99.3                |
| G100711         | HP603026*1 | 0.05                               | 0.0513        | 102.6               | G100711         | HP603026*1 | 0.4                               | 0.3852        | 96.3                | G100711         | HP603026*1 | 0.097                            | 0.1012        | 104.3               |
| G100711         | HP603026*2 | 0.05                               | 0.0513        | 102.6               | G100711         | HP603026*2 | 0.4                               | 0.3835        | 95.9                | G100711         | HP603026*2 | 0.097                            | 0.1001        | 103.2               |
| G100711         | HP603026*3 | 0.05                               | 0.0508        | 101.6               | G100711         | HP603026*3 | 0.4                               | 0.3821        | 95.5                | G100711         | HP603026*3 | 0.097                            | 0.1014        | 104.5               |
| G100763         | HP603026*1 | 0.05                               | 0.0513        | 102.6               | G100763         | HP603026*1 | 0.4                               | 0.3809        | 95.2                | G100763         | HP603026*1 | 0.097                            | 0.1007        | 103.8               |
| G100763         | HP603026*2 | 0.05                               | 0.0506        | 101.2               | G100763         | HP603026*2 | 0.4                               | 0.3817        | 95.4                | G100763         | HP603026*2 | 0.097                            | 0.0992        | 102.3               |
| G100785         | HP603026*1 | 0.05                               | 0.0517        | 103.4               | G100785         | HP603026*1 | 0.4                               | 0.3834        | 95.9                | G100785         | HP603026*1 | 0.097                            | 0.0992        | 102.3               |
| G100785         | HP603026*2 | 0.05                               | 0.0513        | 102.6               | G100785         | HP603026*2 | 0.4                               | 0.3867        | 96.7                | G100785         | HP603026*2 | 0.097                            | 0.0976        | 100.6               |
| G100808         | HP603026*1 | 0.05                               | 0.0507        | 101.4               | G100808         | HP603026*1 | 0.4                               | 0.3750        | 93.8                | G100808         | HP603026*1 | 0.097                            | 0.0979        | 100.9               |
| G100808         | HP603026*2 | 0.05                               | 0.0509        | 101.8               | G100808         | HP603026*2 | 0.4                               | 0.3768        | 94.2                | G100808         | HP603026*2 | 0.097                            | 0.0966        | 99.6                |
| Mean            |            |                                    |               | 101.90              | Mean            |            |                                   |               | 94.80               | Mean            |            |                                  |               | 101.60              |
| Standard De     | viation    |                                    |               | 0.91                | Standard De     | viation    |                                   |               | 1.21                | Standard D      | eviation   |                                  |               | 1.74                |
| Count           |            |                                    |               | 16                  | Count           |            |                                   |               | 16                  | Count           |            |                                  |               | 16                  |

**Table B-3.** Cloud Deposition 2006 Sampling Season – QC Batch Summary for Cloud Samples – CVS – Clingmans Dome, TN (1 of 3)

|            | o. cloud Dep  | Lab pH |                    |         |            |          | NH <sub>4</sub> -N |        | <u> </u> |            | <u> </u> | SO <sub>4</sub> <sup>2-</sup> |       |          |
|------------|---------------|--------|--------------------|---------|------------|----------|--------------------|--------|----------|------------|----------|-------------------------------|-------|----------|
| Batch      | Lab Key       | Target | Found<br>STD Units | Percent | Batch      | Lob Voy  | Target             | Found  | Percent  | Batch      | Lob Voy  | Target                        | Found | Percent  |
| Number     | •             |        |                    | •       |            | Lab Key  | mg/L               | mg/L   | Recovery |            | Lab Key  | mg/L                          | mg/L  | Recovery |
| G100640    | SP1*180714IIB | 4.81   | 4.83               | 104.7   |            | SP1*QC*1 | 1                  | 0.9921 | 99.2     |            | SP1*QC*1 | 2.5                           | 2.47  | 98.8     |
| G100640    | SP2*180714IIB | 4.81   | 4.83               | 104.7   |            | SP2*QC*1 | 1                  | 1.0044 | 100.4    |            | SP2*QC*1 | 2.5                           | 2.50  | 100.0    |
| G100640    | SP3*180714IIB | 4.81   | 4.82               | 102.3   | G100634    | SP3*QC*1 | 1                  | 1.0050 | 100.5    | G100632    | SP3*QC*1 | 2.5                           | 2.49  | 99.6     |
| G100676    | SP1*180716IA  | 4.81   | 4.81               | 100.0   | G100677    | SP1*QC*1 | 1                  | 1.0006 | 100.1    | G100657    | SP1*QC*1 | 2.5                           | 2.45  | 98.0     |
| G100676    | SP2*180716IA  | 4.81   | 4.81               | 100.0   | G100677    | SP2*QC*1 | 1                  | 0.9945 | 99.5     | G100657    | SP2*QC*1 | 2.5                           | 2.47  | 98.8     |
| G100676    | SP3*180716IA  | 4.81   | 4.84               | 107.2   | G100677    | SP3*QC*1 | 1                  | 0.9995 | 100.0    | G100657    | SP3*QC*1 | 2.5                           | 2.47  | 98.8     |
| G100676    | SP4*180716IA  | 4.81   | 4.83               | 104.7   | G100715    | SP1*QC*1 | 1                  | 0.9769 | 97.7     | G100657    | SP4*QC*1 | 2.5                           | 2.47  | 98.8     |
| G100790    | SP1*180716IA  | 4.81   | 4.78               | 93.3    | G100715    | SP2*QC*1 | 1                  | 0.9864 | 98.6     | G100700    | SP1*QC*1 | 2.5                           | 2.48  | 99.2     |
| G100790    | SP2*180716IA  | 4.81   | 4.76               | 89.1    | G100770    | SP1*QC*1 | 1                  | 0.9856 | 98.6     | G100700    | SP2*QC*1 | 2.5                           | 2.48  | 99.2     |
| G100790    | SP3*180716IA  | 4.81   | 4.77               | 91.2    | G100770    | SP2*QC*1 | 1                  | 0.9962 | 99.6     | G100713    | SP1*QC*1 | 2.5                           | 2.47  | 98.8     |
| G100801    | SP1*180716IA  | 4.81   | 4.80               | 97.7    | G100770    | SP3*QC*1 | 1                  | 0.9910 | 99.1     | G100713    | SP2*QC*1 | 2.5                           | 2.48  | 99.2     |
| G100801    | SP1*180719IA  | 4.81   | 4.83               | 104.7   | G100791    | SP1*QC*1 | 1                  | 0.9881 | 98.8     | G100713    | SP3*QC*1 | 2.5                           | 2.49  | 99.6     |
| G100801    | SP2*180716IA  | 4.81   | 4.78               | 93.3    | G100791    | SP2*QC*1 | 1                  | 0.9986 | 99.9     | G100767    | SP1*QC*1 | 2.5                           | 2.48  | 99.2     |
| G100801    | SP3*180716IA  | 4.81   | 4.77               | 91.2    | G100791    | SP3*QC*1 | 1                  | 0.9977 | 99.8     | G100767    | SP2*QC*1 | 2.5                           | 2.49  | 99.6     |
| G100845    | SP1*180719IA  | 4.81   | 4.82               | 102.3   | G100811    | SP1*QC*1 | 1                  | 0.9800 | 98.0     | G100767    | SP3*QC*1 | 2.5                           | 2.47  | 98.8     |
| G100845    | SP2*180719IA  | 4.81   | 4.79               | 95.5    | G100811    | SP2*QC*1 | 1                  | 0.9805 | 98.1     | G100789    | SP1*QC*1 | 2.5                           | 2.44  | 97.6     |
| G100845    | SP3*180719IA  | 4.81   | 4.82               | 102.3   | G100811    | SP3*QC*1 | 1                  | 0.9764 | 97.6     | G100789    | SP2*QC*1 | 2.5                           | 2.41  | 96.4     |
|            |               |        |                    |         |            |          |                    |        |          | G100789    | SP3*QC*1 | 2.5                           | 2.42  | 96.8     |
|            |               |        |                    |         |            |          |                    |        |          | G100789    | SP4*QC*1 | 2.5                           | 2.48  | 99.2     |
|            |               |        |                    |         |            |          |                    |        |          | G100813    | SP1*QC*1 | 2.5                           | 2.52  | 100.8    |
|            |               |        |                    |         |            |          |                    |        |          | G100813    | SP2*QC*1 | 2.5                           | 2.51  | 100.4    |
|            |               |        |                    |         |            |          |                    |        |          | G100813    | SP3*QC*1 | 2.5                           | 2.50  | 100.0    |
|            |               |        |                    |         |            |          |                    |        |          | G100813    | SP4*QC*1 | 2.5                           | 2.51  | 100.4    |
| Mean       |               |        |                    | 99.10   | Mean       |          |                    |        | 99.10    | Mean       |          |                               |       | 99.00    |
| Standard D | eviation      |        |                    | 5.75    | Standard D | eviation |                    |        | 0.93     | Standard D | eviation |                               |       | 1.07     |
| Count      |               |        |                    | 17      | Count      |          |                    |        | 17       | Count      |          |                               |       | 23       |

Table B-3. Cloud Deposition 2006 Sampling Season – QC Batch Summary for Cloud Samples – CVS – Clingmans Dome, TN (2 of 3)

|                 |          | NON            |               | T 8                 |                 |          | Cl             |               | impies evo          |                 | iuns Donie | Ca <sup>2+</sup> |               |                     |
|-----------------|----------|----------------|---------------|---------------------|-----------------|----------|----------------|---------------|---------------------|-----------------|------------|------------------|---------------|---------------------|
| Batch<br>Number | Lab Key  | Target<br>mg/L | Found<br>mg/L | Percent<br>Recovery | Batch<br>Number | Lab Key  | Target<br>mg/L | Found<br>mg/L | Percent<br>Recovery | Batch<br>Number | Lab Key    | Target<br>mg/L   | Found<br>mg/L | Percent<br>Recovery |
| G100632         | SP1*QC*1 | 0.5            | 0.491         | 98.2                | G100632         | SP1*QC*1 | 0.5            | 0.485         | 97.0                | G100627         | SP1*QC*1   | 0.5              | 0.5029        | 100.6               |
| G100632         | SP2*QC*1 | 0.5            | 0.491         | 98.2                | G100632         | SP2*QC*1 | 0.5            | 0.487         | 97.4                | G100627         | SP2*QC*1   | 0.5              | 0.5034        | 100.7               |
| G100632         | SP3*QC*1 | 0.5            | 0.493         | 98.6                | G100632         | SP3*QC*1 | 0.5            | 0.481         | 96.2                | G100627         | SP3*QC*1   | 0.5              | 0.5005        | 100.1               |
| G100657         | SP1*QC*1 | 0.5            | 0.492         | 98.4                | G100657         | SP1*QC*1 | 0.5            | 0.493         | 98.6                | G100652         | SP1*QC*1   | 0.5              | 0.5050        | 101.0               |
| G100657         | SP2*QC*1 | 0.5            | 0.497         | 99.4                | G100657         | SP2*QC*1 | 0.5            | 0.497         | 99.4                | G100652         | SP2*QC*1   | 0.5              | 0.5002        | 100.0               |
| G100657         | SP3*QC*1 | 0.5            | 0.492         | 98.4                | G100657         | SP3*QC*1 | 0.5            | 0.492         | 98.4                | G100652         | SP3*QC*1   | 0.5              | 0.5021        | 100.4               |
| G100657         | SP4*QC*1 | 0.5            | 0.497         | 99.4                | G100657         | SP4*QC*1 | 0.5            | 0.495         | 99.0                | G100652         | SP4*QC*1   | 0.5              | 0.5036        | 100.7               |
| G100700         | SP1*QC*1 | 0.5            | 0.498         | 99.6                | G100700         | SP1*QC*1 | 0.5            | 0.499         | 99.8                | G100703         | SP1*QC*1   | 0.5              | 0.5026        | 100.5               |
| G100700         | SP2*QC*1 | 0.5            | 0.500         | 100.0               | G100700         | SP2*QC*1 | 0.5            | 0.497         | 99.4                | G100703         | SP2*QC*1   | 0.5              | 0.5023        | 100.5               |
| G100713         | SP1*QC*1 | 0.5            | 0.496         | 99.2                | G100713         | SP1*QC*1 | 0.5            | 0.495         | 99.0                | G100711         | SP1*QC*1   | 0.5              | 0.5061        | 101.2               |
| G100713         | SP2*QC*1 | 0.5            | 0.498         | 99.6                | G100713         | SP2*QC*1 | 0.5            | 0.500         | 100.0               | G100711         | SP2*QC*1   | 0.5              | 0.4980        | 99.6                |
| G100713         | SP3*QC*1 | 0.5            | 0.497         | 99.4                | G100713         | SP3*QC*1 | 0.5            | 0.494         | 98.8                | G100711         | SP3*QC*1   | 0.5              | 0.4997        | 99.9                |
| G100767         | SP1*QC*1 | 0.5            | 0.493         | 98.6                | G100767         | SP1*QC*1 | 0.5            | 0.489         | 97.8                | G100763         | SP1*QC*1   | 0.5              | 0.5123        | 102.5               |
| G100767         | SP2*QC*1 | 0.5            | 0.495         | 99.0                | G100767         | SP2*QC*1 | 0.5            | 0.491         | 98.2                | G100763         | SP2*QC*1   | 0.5              | 0.5024        | 100.5               |
| G100767         | SP3*QC*1 | 0.5            | 0.490         | 98.0                | G100767         | SP3*QC*1 | 0.5            | 0.486         | 97.2                | G100785         | SP1*QC*1   | 0.5              | 0.5046        | 100.9               |
| G100789         | SP1*QC*1 | 0.5            | 0.492         | 98.4                | G100789         | SP1*QC*1 | 0.5            | 0.491         | 98.2                | G100785         | SP2*QC*1   | 0.5              | 0.5056        | 101.1               |
| G100789         | SP2*QC*1 | 0.5            | 0.485         | 97.0                | G100789         | SP2*QC*1 | 0.5            | 0.484         | 96.8                | G100785         | SP3*QC*1   | 0.5              | 0.5122        | 102.4               |
| G100789         | SP3*QC*1 | 0.5            | 0.492         | 98.4                | G100789         | SP3*QC*1 | 0.5            | 0.481         | 96.2                | G100808         | SP1*QC*1   | 0.5              | 0.4960        | 99.2                |
| G100789         | SP4*QC*1 | 0.5            | 0.507         | 101.4               | G100789         | SP4*QC*1 | 0.5            | 0.508         | 101.6               | G100808         | SP2*QC*1   | 0.5              | 0.5009        | 100.2               |
| G100813         | SP1*QC*1 | 0.5            | 0.499         | 99.8                | G100813         | SP1*QC*1 | 0.5            | 0.487         | 97.4                |                 |            |                  |               |                     |
| G100813         | SP2*QC*1 | 0.5            | 0.500         | 100.0               | G100813         | SP2*QC*1 | 0.5            | 0.491         | 98.2                |                 |            |                  |               |                     |
| G100813         | SP3*QC*1 | 0.5            | 0.498         | 99.6                | G100813         | SP3*QC*1 | 0.5            | 0.504         | 100.8               |                 |            |                  |               |                     |
| G100813         | SP4*QC*1 | 0.5            | 0.506         | 101.2               | G100813         | SP4*QC*1 | 0.5            | 0.501         | 100.2               |                 |            |                  |               |                     |
| Mean            |          |                |               | 99.10               | Mean            |          |                |               | 98.50               | Mean            |            |                  |               | 100.60              |
| Standard D      | eviation |                |               | 1.01                | Standard De     | eviation |                |               | 1.42                | Standard D      | eviation   |                  |               | 0.82                |
| Count           |          |                |               | 23                  | Count           |          |                |               | 23                  | Count           |            |                  |               | 19                  |

**Table B-3.** Cloud Deposition 2006 Sampling Season – QC Batch Summary for Cloud Samples – CVS – Clingmans Dome, TN (3 of 3)

| Batch<br>Number | Lab Key  | Mg <sup>2+</sup> Target mg/L | Found<br>mg/L | Percent<br>Recovery | Batch<br>Number | Lab Key  | Na <sup>+</sup><br>Target<br>mg/L | Found<br>mg/L | Percent<br>Recovery | Batch<br>Number | Lab Key  | K <sup>+</sup> Target mg/L | Found<br>mg/L | Percent<br>Recovery |
|-----------------|----------|------------------------------|---------------|---------------------|-----------------|----------|-----------------------------------|---------------|---------------------|-----------------|----------|----------------------------|---------------|---------------------|
| G100627         | SP1*QC*1 | 0.5                          | 0.5001        | 100.0               | G100627         | SP1*QC*1 | 0.5                               | 0.4960        | 99.20               | G100627         | SP1*QC*1 | 0.5                        | 0.5022        | 100.4               |
| G100627         | SP2*QC*1 | 0.5                          | 0.4988        | 99.8                | G100627         | SP2*QC*1 | 0.5                               | 0.4980        | 99.60               | G100627         | SP2*QC*1 | 0.5                        | 0.5040        | 100.8               |
| G100627         | SP3*QC*1 | 0.5                          | 0.5034        | 100.7               | G100627         | SP3*QC*1 | 0.5                               | 0.5004        | 100.08              | G100627         | SP3*QC*1 | 0.5                        | 0.5008        | 100.2               |
| G100652         | SP1*QC*1 | 0.5                          | 0.5103        | 102.1               | G100652         | SP1*QC*1 | 0.5                               | 0.4998        | 99.96               | G100652         | SP1*QC*1 | 0.5                        | 0.5086        | 101.7               |
| G100652         | SP2*QC*1 | 0.5                          | 0.4940        | 98.8                | G100652         | SP2*QC*1 | 0.5                               | 0.4993        | 99.86               | G100652         | SP2*QC*1 | 0.5                        | 0.5018        | 100.4               |
| G100652         | SP3*QC*1 | 0.5                          | 0.4973        | 99.5                | G100652         | SP3*QC*1 | 0.5                               | 0.5002        | 100.04              | G100652         | SP3*QC*1 | 0.5                        | 0.4993        | 99.9                |
| G100652         | SP4*QC*1 | 0.5                          | 0.4999        | 100.0               | G100652         | SP4*QC*1 | 0.5                               | 0.5026        | 100.52              | G100652         | SP4*QC*1 | 0.5                        | 0.5026        | 100.5               |
| G100703         | SP1*QC*1 | 0.5                          | 0.5006        | 100.1               | G100703         | SP1*QC*1 | 0.5                               | 0.4995        | 99.90               | G100703         | SP1*QC*1 | 0.5                        | 0.5048        | 101.0               |
| G100703         | SP2*QC*1 | 0.5                          | 0.4983        | 99.7                | G100703         | SP2*QC*1 | 0.5                               | 0.4997        | 99.94               | G100703         | SP2*QC*1 | 0.5                        | 0.5034        | 100.7               |
| G100711         | SP1*QC*1 | 0.5                          | 0.5026        | 100.5               | G100711         | SP1*QC*1 | 0.5                               | 0.5028        | 100.56              | G100711         | SP1*QC*1 | 0.5                        | 0.5083        | 101.7               |
| G100711         | SP2*QC*1 | 0.5                          | 0.4994        | 99.9                | G100711         | SP2*QC*1 | 0.5                               | 0.4964        | 99.28               | G100711         | SP2*QC*1 | 0.5                        | 0.5028        | 100.6               |
| G100711         | SP3*QC*1 | 0.5                          | 0.4995        | 99.9                | G100711         | SP3*QC*1 | 0.5                               | 0.4995        | 99.90               | G100711         | SP3*QC*1 | 0.5                        | 0.5005        | 100.1               |
| G100763         | SP1*QC*1 | 0.5                          | 0.5073        | 101.5               | G100763         | SP1*QC*1 | 0.5                               | 0.5120        | 102.40              | G100763         | SP1*QC*1 | 0.5                        | 0.5122        | 102.4               |
| G100763         | SP2*QC*1 | 0.5                          | 0.5013        | 100.3               | G100763         | SP2*QC*1 | 0.5                               | 0.5001        | 100.02              | G100763         | SP2*QC*1 | 0.5                        | 0.5055        | 101.1               |
| G100785         | SP1*QC*1 | 0.5                          | 0.5049        | 101.0               | G100785         | SP1*QC*1 | 0.5                               | 0.5045        | 100.90              | G100785         | SP1*QC*1 | 0.5                        | 0.5078        | 101.6               |
| G100785         | SP2*QC*1 | 0.5                          | 0.4991        | 99.8                | G100785         | SP2*QC*1 | 0.5                               | 0.5058        | 101.16              | G100785         | SP2*QC*1 | 0.5                        | 0.5068        | 101.4               |
| G100785         | SP3*QC*1 | 0.5                          | 0.5035        | 100.7               | G100785         | SP3*QC*1 | 0.5                               | 0.5101        | 102.02              | G100785         | SP3*QC*1 | 0.5                        | 0.5091        | 101.8               |
| G100808         | SP1*QC*1 | 0.5                          | 0.4964        | 99.3                | G100808         | SP1*QC*1 | 0.5                               | 0.4952        | 99.04               | G100808         | SP1*QC*1 | 0.5                        | 0.5005        | 100.1               |
| G100808         | SP2*QC*1 | 0.5                          | 0.5034        | 100.7               | G100808         | SP2*QC*1 | 0.5                               | 0.5005        | 100.10              | G100808         | SP2*QC*1 | 0.5                        | 0.5040        | 100.8               |
| Mean            |          |                              |               | 100.20              | Mean            |          |                                   |               | 100.20              | Mean            |          |                            |               | 100.90              |
| Standard De     | eviation |                              |               |                     | Standard De     | eviation |                                   |               | 0.88                | Standard Do     | eviation |                            |               | 0.70                |
| Count           |          |                              |               | 19                  | Count           |          |                                   |               | 19                  | Count           |          |                            |               | 19                  |

Table B-4. Cloud Deposition 2006 Sampling Season – Replicate Summary for Cloud Samples – Clingmans Dome, TN (1 of 3)

|            |               |            | SO <sub>4</sub> <sup>2-</sup> |               |                    |              |
|------------|---------------|------------|-------------------------------|---------------|--------------------|--------------|
| Sample No. | Replicate No. | Station ID | Analysis Date                 | Sample Result | Replicate Result   | Percent Diff |
| C06303*2   | RP*C06303*2   | CLD303     | 6/2/2006                      | 1.52          | 1.51               | 0.66         |
| C06303*9   | RP*C06303*9   | CLD303     | 7/10/2006                     | 10.50         | 10.40              | 0.95         |
| C06303*12  | RP*C06303*12  | CLD303     | 7/20/2006                     | 9.55          | 9.55               | 0.00         |
| C06303*17  | RP*C06303*17  | CLD303     | 8/7/2006                      | 14.00         | 14.00              | 0.00         |
| C06303*21  | RP*C06303*21  | CLD303     | 8/29/2006                     | 10.70         | 10.60              | 0.93         |
| C06303*33  | RP*C06303*33  | CLD303     | 9/19/2006                     | 17.30         | 17.20              | 0.58         |
| C06303*37  | RP*C06303*37  | CLD303     | 10/1/2006                     | 8.57          | 8.67               | 1.17         |
|            |               |            |                               |               | Mean               | 0.61         |
|            |               |            |                               |               | Standard Deviation | 0.00         |

|            |               |            | NO <sub>3</sub> - N |               |                    |              |
|------------|---------------|------------|---------------------|---------------|--------------------|--------------|
| Sample No. | Replicate No. | Station ID | Analysis Date       | Sample Result | Replicate Result   | Percent Diff |
| C06303*2   | RP*C06303*2   | CLD303     | 6/2/2006            | 0.209         | 0.209              | 0.00         |
| C06303*9   | RP*C06303*9   | CLD303     | 7/10/2006           | 0.569         | 0.567              | 0.35         |
| C06303*12  | RP*C06303*12  | CLD303     | 7/20/2006           | 1.310         | 1.310              | 0.00         |
| C06303*17  | RP*C06303*17  | CLD303     | 8/7/2006            | 1.140         | 1.140              | 0.00         |
| C06303*21  | RP*C06303*21  | CLD303     | 8/29/2006           | 0.984         | 0.986              | 0.20         |
| C06303*33  | RP*C06303*33  | CLD303     | 9/19/2006           | 1.510         | 1.510              | 0.00         |
| C06303*37  | RP*C06303*37  | CLD303     | 10/1/2006           | 0.828         | 0.825              | 0.36         |
|            |               |            |                     |               | Mean               | 0.11         |
|            |               |            |                     |               | Standard Deviation | 0.00         |

|            |               |            | Cl            |               |                           |              |
|------------|---------------|------------|---------------|---------------|---------------------------|--------------|
| Sample No. | Replicate No. | Station ID | Analysis Date | Sample Result | Replicate Result          | Percent Diff |
| C06303*2   | RP*C06303*2   | CLD303     | 6/2/2006      | 0.024         | 0.024                     | 0.00         |
| C06303*9   | RP*C06303*9   | CLD303     | 7/10/2006     | 0.186         | 0.183                     | 1.61         |
| C06303*12  | RP*C06303*12  | CLD303     | 7/20/2006     | 0.206         | 0.210                     | 1.94         |
| C06303*17  | RP*C06303*17  | CLD303     | 8/7/2006      | 0.213         | 0.217                     | 1.88         |
| C06303*21  | RP*C06303*21  | CLD303     | 8/29/2006     | 0.289         | 0.292                     | 1.04         |
| C06303*33  | RP*C06303*33  | CLD303     | 9/19/2006     | 0.346         | 0.346                     | 0.00         |
| C06303*37  | RP*C06303*37  | CLD303     | 10/1/2006     | 0.438         | 0.434                     | 0.91         |
|            |               |            |               |               | Mean                      | 1.05         |
|            |               |            |               |               | <b>Standard Deviation</b> | 0.01         |

Table B-4. Cloud Deposition 2006 Sampling Season – Replicate Summary for Cloud Samples – Clingmans Dome, TN (2 of 3)

|            | . 1           |            | NH <sub>4</sub> -N |               | · · · · · · · · · · · · · · · · · · · | ,            |
|------------|---------------|------------|--------------------|---------------|---------------------------------------|--------------|
| Sample No. | Replicate No. | Station ID | Analysis Date      | Sample Result | Replicate Result                      | Percent Diff |
| C06303*7   | RP*C06303*7   | CLD303     | 6/19/2006          | 11.0178       | 11.0352                               | 0.16         |
| C06303*20  | RP*C06303*20  | CLD303     | 8/23/2006          | 5.1297        | 5.1330                                | 0.06         |
| C06303*22  | RP*C06303*22  | CLD303     | 8/30/2006          | 0.7070        | 0.7054                                | 0.23         |
| C06303*26  | RP*C06303*26  | CLD303     | 9/3/2006           | 1.6578        | 1.6590                                | 0.07         |
| C06303*29  | RP*C06303*29  | CLD303     | 9/14/2006          | 2.8212        | 2.8212                                | 0.00         |
| C06303*36  | RP*C06303*36  | CLD303     | 9/28/2006          | 1.6143        | 1.6238                                | 0.59         |
| C06303*44  | RP*C06303*44  | CLD303     | 10/22/2006         | 0.2030        | 0.1915                                | 5.67         |
|            |               |            |                    |               | Mean                                  | 0.97         |
|            |               |            |                    |               | Standard Deviation                    | 0.02         |

|            |               |            | $Ca^{2+}$     |               |                    |              |
|------------|---------------|------------|---------------|---------------|--------------------|--------------|
| Sample No. | Replicate No. | Station ID | Analysis Date | Sample Result | Replicate Result   | Percent Diff |
| C06303*2   | RP*C06303*2   | CLD303     | 6/2/2006      | 0.0291        | 0.0289             | 0.69         |
| C06303*9   | RP*C06303*9   | CLD303     | 7/10/2006     | 0.3651        | 0.3591             | 1.64         |
| C06303*12  | RP*C06303*12  | CLD303     | 7/20/2006     | 0.6750        | 0.6787             | 0.55         |
| C06303*16  | RP*C06303*16  | CLD303     | 8/4/2006      | 4.0470        | 4.0296             | 0.43         |
| C06303*21  | RP*C06303*21  | CLD303     | 8/29/2006     | 0.2723        | 0.2759             | 1.32         |
| C06303*27  | RP*C06303*27  | CLD303     | 9/7/2006      | 0.1993        | 0.2014             | 1.05         |
| C06303*37  | RP*C06303*37  | CLD303     | 10/1/2006     | 0.1632        | 0.1631             | 0.06         |
|            |               |            |               |               | Mean               | 0.82         |
|            |               |            |               |               | Standard Deviation | 0.01         |

|            |               |            | $Mg^{2+}$            |               |                    |              |
|------------|---------------|------------|----------------------|---------------|--------------------|--------------|
| Sample No. | Replicate No. | Station ID | <b>Analysis Date</b> | Sample Result | Replicate Result   | Percent Diff |
| C06303*2   | RP*C06303*2   | CLD303     | 6/2/2006             | 0.0091        | 0.0091             | 0.00         |
| C06303*9   | RP*C06303*9   | CLD303     | 7/10/2006            | 0.0908        | 0.0905             | 0.33         |
| C06303*12  | RP*C06303*12  | CLD303     | 7/20/2006            | 0.0863        | 0.0857             | 0.70         |
| C06303*16  | RP*C06303*16  | CLD303     | 8/4/2006             | 0.6996        | 0.6971             | 0.36         |
| C06303*21  | RP*C06303*21  | CLD303     | 8/29/2006            | 0.0517        | 0.0510             | 1.35         |
| C06303*27  | RP*C06303*27  | CLD303     | 9/7/2006             | 0.0185        | 0.0177             | 4.32         |
| C06303*37  | RP*C06303*37  | CLD303     | 10/1/2006            | 0.0321        | 0.0313             | 2.49         |
|            |               |            |                      |               | Mean               | 1.36         |
|            |               |            |                      |               | Standard Deviation | 0.02         |

Table B-4. Cloud Deposition 2006 Sampling Season – Replicate Summary for Cloud Samples – Clingmans Dome, TN (3 of 3)

|            |               |            | Na <sup>+</sup>      |               |                    |              |
|------------|---------------|------------|----------------------|---------------|--------------------|--------------|
| Sample No. | Replicate No. | Station ID | <b>Analysis Date</b> | Sample Result | Replicate Result   | Percent Diff |
| C06303*2   | RP*C06303*2   | CLD303     | 6/2/2006             | 0.0060        | 0.0061             | 1.67         |
| C06303*9   | RP*C06303*9   | CLD303     | 7/10/2006            | 0.1141        | 0.1121             | 1.75         |
| C06303*12  | RP*C06303*12  | CLD303     | 7/20/2006            | 0.0985        | 0.0991             | 0.61         |
| C06303*16  | RP*C06303*16  | CLD303     | 8/4/2006             | 2.2746        | 2.2914             | 0.74         |
| C06303*21  | RP*C06303*21  | CLD303     | 8/29/2006            | 0.0654        | 0.0661             | 1.07         |
| C06303*27  | RP*C06303*27  | CLD303     | 9/7/2006             | 0.0217        | 0.0213             | 1.84         |
| C06303*37  | RP*C06303*37  | CLD303     | 10/1/2006            | 0.1647        | 0.1637             | 0.61         |
|            |               |            |                      |               | Mean               | 1.18         |
|            |               |            |                      |               | Standard Deviation | 0.01         |

|            |               |            | K <sup>+</sup>       |               |                    |              |
|------------|---------------|------------|----------------------|---------------|--------------------|--------------|
| Sample No. | Replicate No. | Station ID | <b>Analysis Date</b> | Sample Result | Replicate Result   | Percent Diff |
| C06303*2   | RP*C06303*2   | CLD303     | 6/2/2006             | 0.0264        | 0.0269             | 1.89         |
| C06303*9   | RP*C06303*9   | CLD303     | 7/10/2006            | 0.0922        | 0.0908             | 1.52         |
| C06303*12  | RP*C06303*12  | CLD303     | 7/20/2006            | 0.0935        | 0.0946             | 1.18         |
| C06303*16  | RP*C06303*16  | CLD303     | 8/4/2006             | 0.3406        | 0.3404             | 0.06         |
| C06303*21  | RP*C06303*21  | CLD303     | 8/29/2006            | 0.1698        | 0.1717             | 1.12         |
| C06303*27  | RP*C06303*27  | CLD303     | 9/7/2006             | 0.0331        | 0.0328             | 0.91         |
| C06303*37  | RP*C06303*37  | CLD303     | 10/1/2006            | 0.0766        | 0.0768             | 0.26         |
|            |               |            |                      |               | Mean               | 0.99         |
|            |               |            |                      |               | Standard Deviation | 0.01         |

## **Appendix C**

## **Filter Pack Data and QC Summary**

## Filter Pack Data and QC Summary

Table C-1 presents the total microgram data for each filter type from each sample.

Table C-2 presents the results of the analyses of the laboratory filter blank samples. Laboratory filter blanks are prepared weekly while the filter packs are being prepared for the field. Each laboratory blank is prepared using filters from the same lot of filters used to prepare the field filter packs. The analytical results of the laboratory blanks demonstrate no significant contamination. There are four laboratory blanks for the cellulose filters with "hits" for sulfate. Such "hits" are not uncommon with the cellulose filters. The field and laboratory blank results indicate that logistical and analytical processes did not contribute to the measured analytes.

The QC results for all parameters are within the measurement criteria of the CASTNET program. Tables C-3 through C-5 summarize the reference sample QC data for each filter type and parameter in each analytical batch. Each reference sample is a NIST-traceable solution in a matrix similar to the filter sample extracts. An outside laboratory supplies these reference samples with a certificate of analysis stating the known or target value. A reference sample is analyzed at the beginning and end of each analytical batch to verify the accuracy and stability of the instrument response. The QC limits require the measured value be within  $\pm$  5 percent of the known value for anions and within  $\pm$  10 percent of the known value for cations. The data from all reference samples analyzed with the Great Smoky Mountains National Park, TN (GSR420) samples are within the CASTNET QC criteria.

Summary statistics from the analysis of CVS for each parameter and filter type are presented in Table C-6. A CVS is a NIST-traceable solution supplied in a matrix similar to that of the sample being analyzed with a target value at approximately the midpoint of the calibration curve. This QC solution is supplied to MACTEC by a second outside laboratory. A CVS is analyzed after every 10 environmental samples to verify that the instrument calibration has not drifted more than  $\pm$  5 percent for anions and base cations, and  $\pm$  10 percent for NH $_4^+$ . All CVS analyzed with the GSR420 samples are within the CASTNET QC criteria.

Table C-7 summarizes the percent difference of replicate samples reanalyzed within the same analytical batch. Samples are randomly selected from each analytical batch for replicate analysis. This table presents only the samples that were replicated. The replicate percent difference criteria are  $\pm$  5 percent for anions and base cations and  $\pm$  10 percent for NH $_4^+$  for samples with concentrations greater than five times the analytical detection limit. For samples with lower concentrations, the difference between the two values cannot be more than the analytical detection limit. All of the GSR420 replicated samples are within the QC criteria.

Table C-1. Dry Deposition 2006 Sampling Season – Great Smoky Mountains National Park, TN

|            |            |             | Teflon®<br>SO <sub>4</sub> <sup>2-</sup> | Teflon®<br>NO <sub>3</sub> -N | Nylon<br>SO <sub>4</sub> <sup>2-</sup> | Nylon<br>NO <sub>3</sub> -N | Cellulose<br>SO <sub>4</sub> <sup>2-</sup> | Teflon®<br>NH <sub>4</sub> -N | Teflon®<br>Ca <sup>2+</sup> | Teflon® Mg <sup>2+</sup> | Teflon®<br>Na⁺ | Teflon®<br>K⁺ | Teflon®<br>Cl |
|------------|------------|-------------|------------------------------------------|-------------------------------|----------------------------------------|-----------------------------|--------------------------------------------|-------------------------------|-----------------------------|--------------------------|----------------|---------------|---------------|
| Sample No. | Station ID | Filter Date | T.µg                                     | T.µg                          | T.µg                                   | T.µg                        | T.µg                                       | T.µg                          | T.µg                        | T.µg                     | T.µg           | T.µg          | T.µg          |
| 0622001-39 | GRS420     | 5/30/06     | 207.100                                  | <0.200                        | 24.000                                 | 11.820                      | 86.250                                     | 45.380                        | 4.485                       | 0.914                    | 1.246          | 2.095         | <0.500        |
| 0623001-39 | GRS420     | 6/6/06      | 211.900                                  | 3.252                         | 28.320                                 | 17.350                      | 166.600                                    | 49.540                        | 15.860                      | 2.421                    | 0.846          | 3.207         | <0.500        |
| 0624001-39 | GRS420     | 6/13/06     | 260.900                                  | 0.825                         | 18.000                                 | 11.700                      | 130.600                                    | 63.200                        | 7.895                       | 1.786                    | 3.743          | 2.070         | <0.500        |
| 0625001-39 | GRS420     | 6/20/06     | 166.500                                  | 0.253                         | 28.900                                 | 10.880                      | 93.100                                     | 38.030                        | 5.498                       | 1.064                    | 1.493          | 2.031         | <0.500        |
| 0626001-39 | GRS420     | 6/27/06     | 255.900                                  | 0.775                         | 23.980                                 | 15.120                      | 212.500                                    | 64.360                        | 14.300                      | 1.709                    | 0.778          | 3.095         | <0.500        |
| 0627001-39 | GRS420     | 7/4/06      | 238.200                                  | <0.200                        | 28.450                                 | 11.300                      | 132.600                                    | 49.140                        | 4.193                       | 0.932                    | 1.267          | 3.400         | <0.500        |
| 0628001-39 | GRS420     | 7/11/06     | 198.200                                  | <0.200                        | 25.250                                 | 10.180                      | 101.200                                    | 43.190                        | 4.120                       | 1.194                    | 3.667          | 2.523         | <0.500        |
| 0629001-39 | GRS420     | 7/18/06     | 231.800                                  | <0.200                        | 23.220                                 | 11.180                      | 64.550                                     | 46.960                        | 4.547                       | 0.852                    | 0.949          | 2.161         | <0.500        |
| 0630001-39 | GRS420     | 7/25/06     | 173.100                                  | <0.200                        | 18.100                                 | 11.820                      | 61.800                                     | 28.370                        | 10.500                      | 2.567                    | 6.335          | 2.588         | <0.500        |
| 0631001-39 | GRS420     | 8/1/06      | 270.300                                  | 1.040                         | 24.550                                 | 14.250                      | 144.600                                    | 48.540                        | 13.520                      | 3.399                    | 8.118          | 3.052         | <0.500        |
| 0632001-39 | GRS420     | 8/8/06      | 195.300                                  | <0.200                        | 25.100                                 | 10.750                      | 123.000                                    | 35.360                        | 4.366                       | 1.248                    | 3.801          | 1.792         | <0.500        |
| 0633001-39 | GRS420     | 8/15/06     | 337.800                                  | <0.200                        | 31.000                                 | 14.380                      | 126.600                                    | 60.560                        | 4.975                       | 1.053                    | 1.872          | 2.380         | <0.500        |
| 0634001-39 | GRS420     | 8/22/06     | 305.200                                  | <0.200                        | 20.180                                 | 11.620                      | 96.050                                     | 54.660                        | 5.139                       | 1.143                    | 2.229          | 2.288         | <0.500        |
| 0635001-39 | GRS420     | 8/29/06     | 146.400                                  | 0.330                         | 15.200                                 | 9.175                       | 47.650                                     | 25.230                        | 2.311                       | 0.564                    | 1.196          | 1.842         | <0.500        |
| 0636001-39 | GRS420     | 9/5/06      | 287.400                                  | 0.723                         | 17.400                                 | 11.620                      | 79.100                                     | 58.620                        | 4.275                       | 0.790                    | 1.607          | 2.637         | <0.500        |
| 0637001-39 | GRS420     | 9/12/06     | 199.600                                  | <0.200                        | 16.580                                 | 10.220                      | 78.550                                     | 36.910                        | 3.096                       | 0.580                    | 1.132          | 1.742         | <0.500        |
| 0638001-39 | GRS420     | 9/19/06     | 120.200                                  | <0.200                        | 13.400                                 | 9.625                       | 109.300                                    | 24.540                        | 6.069                       | 1.010                    | 1.913          | 2.069         | <0.500        |
| 0639001-39 | GRS420     | 9/26/06     | 114.900                                  | 0.822                         | 18.580                                 | 11.400                      | 185.600                                    | 27.140                        | 8.074                       | 0.911                    | 0.671          | 1.976         | <0.500        |

Table C-2. Dry Deposition 2006 Sampling Season - Laboratory Filter Pack Blanks - Great Smoky Mountains National Park, TN

|            | Tefl                         | on®                | Nyl                          |                    | Cellulose       |         |           | Teflon®               |                                      |                                      |
|------------|------------------------------|--------------------|------------------------------|--------------------|-----------------|---------|-----------|-----------------------|--------------------------------------|--------------------------------------|
|            | SO <sub>4</sub> <sup>2</sup> | NO <sub>3</sub> -N | SO <sub>4</sub> <sup>2</sup> | NO <sub>3</sub> -N | SO <sub>4</sub> | NH⁴-N   | $Ca^{2+}$ | $\mathbf{Mg}^{^{2+}}$ | $\mathbf{Na}^{\scriptscriptstyle +}$ | $\mathbf{K}^{\scriptscriptstyle{+}}$ |
| Lab Key    | T.µg                         | T.µg               | T.µg                         | T.µg               | T.µg            | T.µg    | T.µg      | T.µg                  | T.µg                                 | T.µg                                 |
| 0624002-01 |                              |                    |                              |                    | 2.100           |         |           |                       |                                      |                                      |
| 0624002-02 |                              |                    |                              |                    | <2.000          |         |           |                       |                                      |                                      |
| 0625002-01 | <1.000                       | < 0.200            | <1.000                       | < 0.200            |                 | <0.500  | < 0.0750  | < 0.075               | <0.125                               | <0.125                               |
| 0625002-02 | <1.000                       | < 0.200            | <1.000                       | < 0.200            |                 | <0.500  | 0.2673    | < 0.075               | <0.125                               | <0.125                               |
| 0626002-01 |                              |                    | <1.000                       | < 0.200            | <2.000          | <0.500  |           |                       |                                      |                                      |
| 0626002-02 |                              |                    | <1.000                       | < 0.200            | <2.000          | <0.500  |           |                       |                                      |                                      |
| 0627002-01 | <1.000                       | < 0.200            |                              |                    | <2.000          | <0.500  | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0627002-02 | <1.000                       | < 0.200            |                              |                    | <2.000          | <0.500  | < 0.0750  | < 0.075               | < 0.125                              | <0.125                               |
| 0628002-01 | <1.000                       | < 0.200            | <1.000                       | < 0.200            | <2.000          | <0.500  | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0628002-02 | <1.000                       | < 0.200            | <1.000                       | < 0.200            | <2.000          | <0.500  | < 0.0750  | < 0.075               | < 0.125                              | <0.125                               |
| 0629002-01 | <1.000                       | < 0.200            | <1.000                       | < 0.200            |                 | <0.500  | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0629002-02 | <1.000                       | < 0.200            | <1.000                       | < 0.200            |                 | <0.500  | < 0.0750  | < 0.075               | < 0.125                              | <0.125                               |
| 0630002-01 |                              |                    | <1.000                       | < 0.200            | 2.250           |         |           |                       |                                      |                                      |
| 0630002-02 |                              |                    | <1.000                       | < 0.200            | <2.000          |         |           |                       |                                      |                                      |
| 0631002-01 | <1.000                       | < 0.200            | <1.000                       | < 0.200            |                 | <0.500  | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0631002-02 | <1.000                       | < 0.200            | <1.000                       | < 0.200            |                 | <0.500  | < 0.0750  | <0.075<br><0.075      | < 0.125                              | < 0.125                              |
| 0632002-01 | <1.000                       | < 0.200            | <1.000                       | < 0.200            |                 | <0.500  | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0632002-02 | <1.000                       | < 0.200            | <1.000                       | < 0.200            |                 | <0.500  | < 0.0750  | <0.075<br><0.075      | < 0.125                              | < 0.125                              |
| 0633002-01 | <1.000                       | < 0.200            |                              |                    |                 | <0.500  | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0633002-02 | <1.000                       | < 0.200            |                              |                    |                 | <0.500  | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0634002-01 |                              |                    | <1.000                       | < 0.200            |                 |         |           |                       |                                      |                                      |
| 0634002-02 |                              |                    | <1.000                       | < 0.200            |                 |         |           |                       |                                      |                                      |
| 0635002-01 | <1.000                       | < 0.200            |                              |                    | <2.000          | <0.500  | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0635002-02 | <1.000                       | < 0.200            |                              |                    | <2.000          | < 0.500 | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0636002-01 | <1.000                       | < 0.200            | <1.000                       | < 0.200            | <2.000          |         | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0636002-02 | <1.000                       | < 0.200            | <1.000                       | < 0.200            | <2.000          |         | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0637002-01 | <1.000                       | < 0.200            | <1.000                       | < 0.200            | 2.350           | <0.500  | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0637002-02 | <1.000                       | < 0.200            | <1.000                       | < 0.200            | <2.000          | < 0.500 | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0638002-01 |                              |                    | <1.000                       | < 0.200            | <2.000          | < 0.500 |           |                       |                                      |                                      |
| 0638002-02 |                              |                    | <1.000                       | < 0.200            | <2.000          | < 0.500 |           |                       |                                      |                                      |
| 0639002-01 | <1.000                       | < 0.200            |                              |                    | <2.000          |         | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0639002-02 | <1.000                       | <0.200             |                              |                    | <2.000          |         | < 0.0750  | < 0.075               | <0.125                               | <0.125                               |
| 0640002-01 |                              |                    | <1.000                       | < 0.200            | <2.000          | < 0.500 |           |                       |                                      |                                      |
| 0640002-02 |                              |                    | <1.000                       | <0.200             | <2.000          | <0.500  |           |                       |                                      |                                      |
| 0641002-01 | <1.000                       | < 0.200            |                              |                    | <2.000          | <0.500  | < 0.0750  | < 0.075               | < 0.125                              | < 0.125                              |
| 0641002-02 | <1.000                       | <0.200             |                              |                    | 2.250           | < 0.500 | < 0.0750  | < 0.075               | <0.125                               | <0.125                               |
| 0642002-01 | 11.000                       | 10.200             | <1.000                       | < 0.200            | <2.000          | 10.000  | 10.07.00  | 10.0.0                | 101120                               | 101.120                              |
| 0642002-02 |                              |                    | <1.000                       | <0.200             | <2.000          |         |           |                       |                                      |                                      |
| 0643002-01 | <1.000                       | < 0.200            | 11.000                       | 10.200             | <2.000          | <0.500  | < 0.0750  | < 0.075               | <0.125                               | <0.125                               |
| 0643002-02 | <1.000                       | <0.200             |                              |                    | <2.000          | < 0.500 | < 0.0750  | <0.075<br><0.075      | <0.125                               | <0.125                               |
| 0644002-01 | <1.000                       | <0.200             | <1.000                       | < 0.200            | ,               | < 0.500 | < 0.0750  | < 0.075               | <0.125                               | <0.125                               |
| 0644002-01 | <1.000                       | <0.200             | <1.000                       | <0.200             | 1               | <0.500  | < 0.0750  | <0.075<br><0.075      | <0.125                               | <0.125                               |
| 0645002-01 | <1.000                       | <0.200             | 11.000                       | 10.200             | <2.000          | < 0.500 | < 0.0750  | <0.075                | <0.125                               | <0.125                               |
| 0645002-01 | <1.000                       | <0.200             |                              |                    | <2.000          | < 0.500 | < 0.0750  | <0.075                | <0.125                               | <0.125                               |
| 0646002-01 | 11.000                       | 10.200             | <1.000                       | < 0.200            | 12.000          | 10.000  | 10.0100   | 30.070                | 30.120                               | 30.120                               |
| 0646002-01 |                              |                    | <1.000                       | <0.200             | 1               |         |           |                       |                                      |                                      |

**Table C-3.** Dry Deposition 2006 Sampling Season – QC Batch Summary for Teflon<sup>®</sup> Filters – Reference Samples – Great Smoky Mountains National Park, TN (1 of 5)

|                    | Mount        |              | ionai i a      | rk, 1 N (1     | 01 5)              |              |            |                |                  |                    |              |                |                |                 |
|--------------------|--------------|--------------|----------------|----------------|--------------------|--------------|------------|----------------|------------------|--------------------|--------------|----------------|----------------|-----------------|
|                    |              | $SO_4^{2-}$  |                |                |                    |              | NO N       |                |                  |                    |              | $NH_4^+ - N$   |                |                 |
|                    |              | Target       | Found          | Percent        |                    |              | Target     | Found          | Percent          |                    |              | Target         |                | Percent         |
| Batch              | QC Key       | mg/L         | mg/L           | Recovery       | Batch              | QC Key       | mg/L       | mg/L           | Recovery         | Batch              | QC Key       | mg/L           | Found mg/L     | Recovery        |
| L606021            | SRM1         | 10.1         | 9.904          | 98.06          | L606021            | SRM1         | 1.6        | 1.622          | 101.38           | L606019            | SRM1         | 1.038          | 1.055          | 101.64          |
| L606021            | SRM2         | 10.1         | 10.050         | 99.50          | L606021            | SRM2         | 1.6        | 1.649          | 103.06           | L606019            | SRM2         | 1.038          | 1.102          | 106.17          |
| L606027            | SRM1         | 10.1         | 9.898          | 98.00          | L606027            | SRM1         | 1.6        | 1.630          | 101.88           | L606032            | SRM1         | 1.038          | 1.041          | 100.29          |
| L606027            | SRM2         | 10.1         | 10.000         | 99.01          | L606027            | SRM2         | 1.6        | 1.653          | 103.31           | L606032            | SRM2         | 1.038          | 1.025          | 98.75           |
| L607006            | SRM1         | 10.1         | 9.882          | 97.84          | L607006            | SRM1         | 1.6        | 1.627          | 101.69           | L607002            | SRM1         | 1.038          | 1.056          | 101.73          |
| L607006            | SRM2         | 10.1         | 9.932          | 98.34          | L607006            | SRM2         | 1.6        | 1.639          | 102.44           | L607002            | SRM2         | 1.038          | 1.088          | 104.82          |
| L607016            | SRM1         | 10.1         | 10.080         | 99.80          | L607016            | SRM1         | 1.6        | 1.600          | 100.00           | L607009            | SRM1         | 1.038          | 1.027          | 98.94           |
| L607016            | SRM2         | 10.1         | 10.140         | 100.40         | L607016            | SRM2         | 1.6        | 1.608          | 100.50           | L607009            | SRM2         | 1.038          | 1.055          | 101.64          |
| L607017            | SRM1         | 10.1         | 9.766          | 96.69          | L607017            | SRM1         | 1.6        | 1.609          | 100.56           | L607012            | SRM1         | 1.038          | 1.033          | 99.52           |
| L607017            | SRM2         | 10.1         | 9.934          | 98.36          | L607017            | SRM2         | 1.6        | 1.637          | 102.31           | L607012            | SRM2         | 1.038          | 1.046          | 100.77          |
| L607017            | SRM3         | 10.1         | 9.877          | 97.79          | L607017            | SRM3         | 1.6        | 1.623          | 101.44           | L607028            | SRM1         | 1.038          | 1.052          | 101.35          |
| L607017            | SRM4         | 10.1         | 10.040         | 99.41          | L607017            | SRM4         | 1.6        | 1.650          | 103.13           | L607028            | SRM2         | 1.038          | 1.069          | 102.99          |
| L607029            | SRM1         | 10.1         | 9.749          | 96.52          | L607029            | SRM1         | 1.6        | 1.610          | 100.63           | L608001            | SRM1         | 1.038          | 1.043          | 100.48          |
| L607029            | SRM2         | 10.1         | 9.861          | 97.63          | L607029            | SRM2         | 1.6        | 1.627          | 101.69           | L608001            | SRM2         | 1.038          | 1.032          | 99.42           |
| L607033            | SRM1         | 10.1         | 9.721          | 96.25          | L607033            | SRM1         | 1.6        | 1.606          | 100.38           | L608005            | SRM1         | 1.038          | 1.036          | 99.81           |
| L607033            | SRM2         | 10.1         | 9.786          | 96.89          | L607033            | SRM2         | 1.6        | 1.618          | 101.13           | L608005            | SRM2         | 1.038          | 1.042          | 100.39          |
| L608003            | SRM1         | 10.1         | 9.729          | 96.33          | L608003            | SRM1         | 1.6        | 1.613          | 100.81           | L608016            | SRM1         | 1.038          | 1.033          | 99.52           |
| L608003            | SRM2         | 10.1         | 9.910          | 98.12          | L608003            | SRM2         | 1.6        | 1.641          | 102.56           | L608016            | SRM2         | 1.038          | 1.042          | 100.39          |
| L608018            | SRM1         | 10.1         | 9.655          | 95.59          | L608018            | SRM1         | 1.6        | 1.607          | 100.44           | L608029            | SRM1         | 1.038          | 1.033          | 99.52           |
| L608018            | SRM2         | 10.1         | 9.823          | 97.26          | L608018            | SRM2         | 1.6        | 1.631          | 101.94           | L608029            | SRM2         | 1.038          | 1.034          | 99.61           |
| L608027            | SRM1         | 10.1         | 9.722          | 96.26          | L608027            | SRM1         | 1.6        | 1.626          | 101.63           | L608033            | SRM1         | 1.038          | 1.038          | 100.00          |
| L608027            | SRM2         | 10.1         | 9.906          | 98.08          | L608027            | SRM2         | 1.6        | 1.654          | 103.38           | L608033            | SRM2         | 1.038          | 1.036          | 99.81           |
| L608027            | SRM3         | 10.1         | 9.878          | 97.80          | L608027            | SRM3         | 1.6        | 1.654          | 103.38           | L609012            | SRM1         | 1.038          | 1.038          | 100.00          |
| L608032<br>L608032 | SRM1         | 10.1         | 9.717          | 96.21          | L608032<br>L608032 | SRM1         | 1.6<br>1.6 | 1.625<br>1.653 | 101.56           | L609012<br>L609015 | SRM2         | 1.038<br>1.038 | 1.058          | 101.93<br>98.36 |
| L609001            | SRM2<br>SRM1 | 10.1<br>10.1 | 9.921<br>9.689 | 98.23<br>95.93 | L609001            | SRM2<br>SRM1 | 1.6        | 1.627          | 103.31<br>101.69 | L609015<br>L609015 | SRM1<br>SRM2 | 1.038          | 1.021<br>1.030 | 98.36           |
| L609001            | SRM2         | 10.1         | 9.009          | 93.93<br>98.45 | L609001            | SRM2         | 1.6        | 1.657          | 103.56           | L609013            | SRM1         | 1.038          | 1.046          | 100.77          |
| L609001            | SRM1         | 10.1         | 10.220         | 101.19         | L609001            | SRM1         | 1.6        | 1.626          | 103.56           | L609018            | SRM2         | 1.038          | 1.050          | 100.77          |
| L609006            | SRM2         | 10.1         | 10.220         | 101.39         | L609006            | SRM2         | 1.6        | 1.623          | 101.44           | L609032            | SRM1         | 1.038          | 1.037          | 99.90           |
| L609017            | SRM1         | 10.1         | 9.699          | 96.03          | L609017            | SRM1         | 1.6        | 1.622          | 101.38           | L609032            | SRM2         | 1.038          | 1.054          | 101.54          |
| L609017            | SRM2         | 10.1         | 9.821          | 97.24          | L609017            | SRM2         | 1.6        | 1.641          | 102.56           | L609034            | SRM1         | 1.038          | 1.037          | 99.90           |
| L609028            | SRM1         | 10.1         | 9.713          | 96.17          | L609028            | SRM1         | 1.6        | 1.627          | 101.69           | L609034            | SRM2         | 1.038          | 1.053          | 101.45          |
| L609028            | SRM2         | 10.1         | 9.812          | 97.15          | L609028            | SRM2         | 1.6        | 1.629          | 101.81           | L610010            | SRM1         | 1.038          | 1.042          | 100.39          |
| L610002            | SRM1         | 10.1         | 9.720          | 96.24          | L610002            | SRM1         | 1.6        | 1.628          | 101.75           | L610010            | SRM2         | 1.038          | 1.056          | 101.73          |
| L610002            | SRM2         | 10.1         | 9.764          | 96.67          | L610002            | SRM2         | 1.6        | 1.628          | 101.75           | L610015            | SRM1         | 1.038          | 1.046          | 100.77          |
| L610009            | SRM1         | 10.1         | 9.698          | 96.02          | L610009            | SRM1         | 1.6        | 1.628          | 101.75           | L610015            | SRM2         | 1.038          | 1.043          | 100.48          |
| L610009            | SRM2         | 10.1         | 9.809          | 97.12          | L610009            | SRM2         | 1.6        | 1.648          | 103.00           | L610023            | SRM1         | 1.038          | 1.076          | 103.66          |
| L610016            | SRM1         | 10.1         | 9.692          | 95.96          | L610016            | SRM1         | 1.6        | 1.601          | 100.06           | L610023            | SRM2         | 1.038          | 1.030          | 99.23           |
| L610016            | SRM2         | 10.1         | 9.858          | 97.60          | L610016            | SRM2         | 1.6        | 1.623          | 101.44           | L611004            | SRM1         | 1.038          | 1.029          | 99.13           |
| L610021            | SRM1         | 10.1         | 10.050         | 99.50          | L610021            | SRM1         | 1.6        | 1.597          | 99.81            | L611004            | SRM2         | 1.038          | 1.023          | 98.55           |
| L610021            | SRM2         | 10.1         | 9.813          | 97.16          | L610021            | SRM2         | 1.6        | 1.560          | 97.50            | L611010            | SRM1         | 1.038          | 1.022          | 98.46           |
| L610028            | SRM1         | 10.1         | 9.778          | 96.81          | L610028            | SRM1         | 1.6        | 1.614          | 100.88           | L611010            | SRM2         | 1.038          | 1.020          | 98.27           |
| L610028            | SRM2         | 10.1         | 9.908          | 98.10          | L610028            | SRM2         | 1.6        | 1.630          | 101.88           | L611018            | SRM1         | 1.038          | 1.029          | 99.13           |
| L611009            | SRM1         | 10.1         | 9.768          | 96.71          | L611009            | SRM1         | 1.6        | 1.609          | 100.56           | L611018            | SRM2         | 1.038          | 1.033          | 99.52           |
| L611009            | SRM2         | 10.1         | 9.913          | 98.15          | L611009            | SRM2         | 1.6        | 1.635          | 102.19           |                    |              |                |                |                 |
| L611019            | SRM1         | 10.1         | 9.813          | 97.16          | L611019            | SRM1         | 1.6        | 1.616          | 101.00           | 1                  |              |                |                |                 |
| L611019            | SRM2         | 10.1         | 9.944          | 98.46          | L611019            | SRM2         | 1.6        | 1.634          | 102.13           |                    |              |                |                |                 |
| Mean               |              |              |                | 97.65          | Mean               |              |            |                | 101.62           | Mean               |              |                |                | 100.48          |
| Standard Devia     | ation        |              |                | 1.38<br>47     | Standard Devi      | ation        |            |                | 1.15             | Standard Devia     | ation        |                |                | 1.64            |
| Count              |              |              |                | 4/             | Count              |              |            |                | 47               | Count              |              |                |                | 44              |

**Table C-3.** Dry Deposition 2006 Sampling Season – QC Batch Summary for Teflon<sup>®</sup> Filters – Reference Samples – Great Smoky Mountains National Park, TN (2 of 5)

| L606017         SRM1         0.052         0.05470         105.19         L606017         SRM1         0.05         0.05241         104.82         L606017         SRM2           L606017         SRM2         0.052         0.05459         104.98         L606017         SRM2         0.05         0.05162         103.24         L606017         SRM2           L606017         SRM3         0.052         0.05451         104.83         L606017         SRM3         0.05         0.05150         103.00         L606017         SRM3           L606023         SRM1         0.052         0.05530         106.35         L606023         SRM1         0.05         0.05278         105.56         L606023         SRM2           L606023         SRM2         0.052         0.05431         104.44         L606023         SRM2         0.05         0.05146         102.92         L606023         S           L606023         SRM3         0.052         0.05422         104.27         L606023         SRM3         0.05         0.05179         103.58         L606023         S           L607003         SRM4         0.052         0.05424         104.31         L606023         SRM4         0.05         0.05141 <t< th=""><th>Na           QC Key         Target mg/L           SRM1         0.4           SRM2         0.4           SRM3         0.4           SRM1         0.4           SRM2         0.4           SRM3         0.4</th><th>Found mg/L  0.3792  0.3754  0.3750  0.3872  0.3810</th><th>Percent<br/>Recovery<br/>94.80<br/>93.85<br/>93.75<br/>96.80</th></t<> | Na           QC Key         Target mg/L           SRM1         0.4           SRM2         0.4           SRM3         0.4           SRM1         0.4           SRM2         0.4           SRM3         0.4 | Found mg/L  0.3792  0.3754  0.3750  0.3872  0.3810 | Percent<br>Recovery<br>94.80<br>93.85<br>93.75<br>96.80 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| L606017         SRM1         0.052         0.05470         105.19         L606017         SRM1         0.05         0.05241         104.82         L606017         SRM2           L606017         SRM2         0.052         0.05459         104.98         L606017         SRM2         0.05         0.05162         103.24         L606017         SRM2           L606017         SRM3         0.052         0.05451         104.83         L606017         SRM3         0.05         0.05150         103.00         L606017         SRM3           L606023         SRM1         0.052         0.05530         106.35         L606023         SRM1         0.05         0.05278         105.56         L606023         SRM2           L606023         SRM2         0.052         0.05431         104.44         L606023         SRM2         0.05         0.05146         102.92         L606023         S           L606023         SRM3         0.052         0.05422         104.27         L606023         SRM3         0.05         0.05179         103.58         L606023         S           L607003         SRM4         0.052         0.05480         105.38         L607003         SRM1         0.05         0.05141 <t< th=""><th>SRM1 0.4<br/>SRM2 0.4<br/>SRM3 0.4<br/>SRM1 0.4<br/>SRM2 0.4</th><th>0.3792<br/>0.3754<br/>0.3750<br/>0.3872</th><th>94.80<br/>93.85<br/>93.75</th></t<>                                                                                                                                                                                            | SRM1 0.4<br>SRM2 0.4<br>SRM3 0.4<br>SRM1 0.4<br>SRM2 0.4                                                                                                                                                  | 0.3792<br>0.3754<br>0.3750<br>0.3872               | 94.80<br>93.85<br>93.75                                 |
| L606017         SRM2         0.052         0.05459         104.98         L606017         SRM2         0.05         0.05162         103.24         L606017         SRM2           L606017         SRM3         0.052         0.05451         104.83         L606017         SRM3         0.05         0.05150         103.00         L606017         SRM2           L606023         SRM1         0.052         0.05530         106.35         L606023         SRM1         0.05         0.05278         105.56         L606023         SRM2           L606023         SRM2         0.052         0.05431         104.44         L606023         SRM2         0.05         0.05146         102.92         L606023         S           L606023         SRM3         0.052         0.05422         104.27         L606023         SRM3         0.05         0.05179         103.58         L606023         S           L606023         SRM4         0.052         0.05424         104.31         L606023         SRM4         0.05         0.05141         102.82         L606023         S           L607003         SRM1         0.052         0.05480         105.38         L607003         SRM1         0.05         0.05314         1                                                                                                                                                                                                                                                                                                                                                            | SRM2 0.4<br>SRM3 0.4<br>SRM1 0.4<br>SRM2 0.4                                                                                                                                                              | 0.3754<br>0.3750<br>0.3872                         | 93.85<br>93.75                                          |
| L606017         SRM3         0.052         0.05451         104.83         L606017         SRM3         0.05         0.05150         103.00         L606017         SRM2           L606023         SRM1         0.052         0.05530         106.35         L606023         SRM1         0.05         0.05278         105.56         L606023         SRM2           L606023         SRM2         0.052         0.05431         104.44         L606023         SRM2         0.05         0.05146         102.92         L606023         SRM2           L606023         SRM3         0.052         0.05422         104.27         L606023         SRM3         0.05         0.05179         103.58         L606023         SRM3           L606023         SRM4         0.052         0.05424         104.31         L606023         SRM4         0.05         0.05141         102.82         L606023         SRM4           L607003         SRM1         0.052         0.05480         105.38         L607003         SRM1         0.05         0.05314         106.28         L607003         SRM2           L607003         SRM2         0.052         0.05609         107.87         L607003         SRM2         0.05         0.05249                                                                                                                                                                                                                                                                                                                                                             | SRM3 0.4<br>SRM1 0.4<br>SRM2 0.4                                                                                                                                                                          | 0.3750<br>0.3872                                   | 93.75                                                   |
| L606023         SRM1         0.052         0.05530         106.35         L606023         SRM1         0.05         0.05278         105.56         L606023         S           L606023         SRM2         0.052         0.05431         104.44         L606023         SRM2         0.05         0.05146         102.92         L606023         S           L606023         SRM3         0.052         0.05422         104.27         L606023         SRM3         0.05         0.05179         103.58         L606023         S           L606023         SRM4         0.052         0.05424         104.31         L606023         SRM4         0.05         0.05141         102.82         L606023         S           L607003         SRM1         0.052         0.05480         105.38         L607003         SRM1         0.05         0.05314         106.28         L607003         S           L607003         SRM2         0.052         0.05609         107.87         L607003         SRM2         0.05         0.05249         104.98         L607003         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM1 0.4<br>SRM2 0.4                                                                                                                                                                                      | 0.3872                                             |                                                         |
| L606023         SRM2         0.052         0.05431         104.44         L606023         SRM2         0.05         0.05146         102.92         L606023         S           L606023         SRM3         0.052         0.05422         104.27         L606023         SRM3         0.05         0.05179         103.58         L606023         S           L606023         SRM4         0.052         0.05424         104.31         L606023         SRM4         0.05         0.05141         102.82         L606023         S           L607003         SRM1         0.052         0.05480         105.38         L607003         SRM1         0.05         0.05314         106.28         L607003         S           L607003         SRM2         0.052         0.05609         107.87         L607003         SRM2         0.05         0.05249         104.98         L607003         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SRM2 0.4                                                                                                                                                                                                  |                                                    | 96.80                                                   |
| L606023         SRM3         0.052         0.05422         104.27         L606023         SRM3         0.05         0.05179         103.58         L606023         SRM2           L606023         SRM4         0.052         0.05424         104.31         L606023         SRM4         0.05         0.05141         102.82         L606023         SRM2           L607003         SRM1         0.052         0.05480         105.38         L607003         SRM1         0.05         0.05314         106.28         L607003         SRM2           L607003         SRM2         0.052         0.05609         107.87         L607003         SRM2         0.05         0.05249         104.98         L607003         SRM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                           |                                                    | 05.05                                                   |
| L606023         SRM4         0.052         0.05424         104.31         L606023         SRM4         0.05         0.05141         102.82         L606023         SRM2           L607003         SRM1         0.052         0.05480         105.38         L607003         SRM1         0.05         0.05314         106.28         L607003         SRM2           L607003         SRM2         0.052         0.05609         107.87         L607003         SRM2         0.05         0.05249         104.98         L607003         SRM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                           |                                                    | 95.25                                                   |
| L607003         SRM1         0.052         0.05480         105.38         L607003         SRM1         0.05         0.05314         106.28         L607003         SRM2           L607003         SRM2         0.052         0.05609         107.87         L607003         SRM2         0.05         0.05249         104.98         L607003         SRM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                           | 0.3790                                             | 94.75                                                   |
| L607003 SRM2 0.052 0.05609 107.87 L607003 SRM2 0.05 0.05249 104.98 L607003 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SRM4 0.4<br>SRM1 0.4                                                                                                                                                                                      | 0.3790<br>0.3812                                   | 94.75<br>95.30                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM2 0.4                                                                                                                                                                                                  | 0.3875                                             | 96.88                                                   |
| 2007003 SKWS 0.032 0.03400 103.30 E007003 SKWS 0.03 0.03177 103.34 E007003 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SRM3 0.4                                                                                                                                                                                                  | 0.3797                                             | 94.93                                                   |
| L607008 SRM1 0.052 0.05507 105.90 L607008 SRM1 0.05 0.05206 104.12 L607008 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SRM1 0.4                                                                                                                                                                                                  | 0.3842                                             | 96.05                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM2 0.4                                                                                                                                                                                                  | 0.3840                                             | 96.00                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM3 0.4                                                                                                                                                                                                  | 0.3878                                             | 96.95                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM1 0.4                                                                                                                                                                                                  | 0.3840                                             | 96.00                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM2 0.4                                                                                                                                                                                                  | 0.3755                                             | 93.88                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM3 0.4                                                                                                                                                                                                  | 0.3794                                             | 94.85                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM1 0.4                                                                                                                                                                                                  | 0.3820                                             | 95.50                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM2 0.4                                                                                                                                                                                                  | 0.3805                                             | 95.13                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM3 0.4                                                                                                                                                                                                  | 0.3760                                             | 94.00                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM1 0.4                                                                                                                                                                                                  | 0.3824                                             | 95.60                                                   |
| L607030 SRM2 0.052 0.05467 105.13 L607030 SRM2 0.05 0.05081 101.62 L607030 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SRM2 0.4                                                                                                                                                                                                  | 0.3799                                             | 94.98                                                   |
| L607030 SRM3 0.052 0.05567 107.06 L607030 SRM3 0.05 0.05127 102.54 L607030 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SRM3 0.4                                                                                                                                                                                                  | 0.3824                                             | 95.60                                                   |
| L608006 SRM1 0.052 0.05323 102.37 L608006 SRM1 0.05 0.05122 102.44 L608006 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SRM1 0.4                                                                                                                                                                                                  | 0.3770                                             | 94.25                                                   |
| L608006 SRM2 0.052 0.05480 105.38 L608006 SRM2 0.05 0.05151 103.02 L608006 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SRM2 0.4                                                                                                                                                                                                  | 0.3814                                             | 95.35                                                   |
| L608011 SRM1 0.052 0.05503 105.83 L608011 SRM1 0.05 0.05085 101.70 L608011 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SRM1 0.4                                                                                                                                                                                                  | 0.3867                                             | 96.68                                                   |
| L608011 SRM2 0.052 0.05381 103.48 L608011 SRM2 0.05 0.05094 101.88 L608011 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SRM2 0.4                                                                                                                                                                                                  | 0.3793                                             | 94.83                                                   |
| L608011 SRM3 0.052 0.05517 106.10 L608011 SRM3 0.05 0.05051 101.02 L608011 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SRM3 0.4                                                                                                                                                                                                  | 0.3812                                             | 95.30                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM1 0.4                                                                                                                                                                                                  | 0.3820                                             | 95.50                                                   |
| L608023 SRM2 0.052 0.05513 106.02 L608023 SRM2 0.05 0.05121 102.42 L608023 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SRM2 0.4                                                                                                                                                                                                  | 0.3797                                             | 94.93                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM3 0.4                                                                                                                                                                                                  | 0.3820                                             | 95.50                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM4 0.4                                                                                                                                                                                                  | 0.3794                                             | 94.85                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM1 0.4                                                                                                                                                                                                  | 0.3802                                             | 95.05                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM2 0.4                                                                                                                                                                                                  | 0.3831                                             | 95.78                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM3 0.4                                                                                                                                                                                                  | 0.3832                                             | 95.80                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM1 0.4                                                                                                                                                                                                  | 0.3846                                             | 96.15                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM2 0.4                                                                                                                                                                                                  | 0.3791                                             | 94.78                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM3 0.4                                                                                                                                                                                                  | 0.3773                                             | 94.33                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM1 0.4                                                                                                                                                                                                  | 0.3760                                             | 94.00                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM2 0.4                                                                                                                                                                                                  | 0.3775                                             | 94.38                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM3 0.4                                                                                                                                                                                                  | 0.3792                                             | 94.80                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM1 0.4                                                                                                                                                                                                  | 0.3744                                             | 93.60                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM2 0.4<br>SRM3 0.4                                                                                                                                                                                      | 0.3794<br>0.3763                                   | 94.85<br>94.08                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SRM3 0.4<br>SRM1 0.4                                                                                                                                                                                      | 0.3763                                             | 94.08                                                   |

**Table C-3.** Dry Deposition 2006 Sampling Season – QC Batch Summary for Teflon<sup>®</sup> Filters – Reference Samples – Great Smoky Mountains National Park, TN (3 of 5)

|               | 1.1001 |                  |            | IK, 111 (5 )        | 010)           |        | 2+        |            |                     |               |        | +               |            |                     |
|---------------|--------|------------------|------------|---------------------|----------------|--------|-----------|------------|---------------------|---------------|--------|-----------------|------------|---------------------|
|               |        | Ca <sup>2+</sup> |            |                     |                |        | $Mg^{2+}$ |            |                     |               |        | Na <sup>+</sup> |            |                     |
| Batch         | QC Key | Target<br>mg/L   | Found mg/L | Percent<br>Recovery | Batch          | OC Kev | Target    | Found mg/L | Percent<br>Recovery | Batch         | QC Key | Target<br>mg/L  | Found mg/I | Percent<br>Recovery |
|               |        |                  |            |                     |                |        | mg/L      |            |                     |               |        |                 | Found mg/L |                     |
| L609021       | SRM2   | 0.052            | 0.05483    | 105.44              | L609021        | SRM2   | 0.05      | 0.05135    | 102.70              | L609021       | SRM2   | 0.4             | 0.3790     | 94.75               |
| L609021       | SRM3   | 0.052            | 0.05565    | 107.02              | L609021        | SRM3   | 0.05      | 0.05163    | 103.26              | L609021       | SRM3   | 0.4             | 0.3855     | 96.38               |
| L609030       | SRM1   | 0.052            | 0.05496    | 105.69              | L609030        | SRM1   | 0.05      | 0.05137    | 102.74              | L609030       | SRM1   | 0.4             | 0.3829     | 95.73               |
| L609030       | SRM2   | 0.052            | 0.05473    | 105.25              | L609030        | SRM2   | 0.05      | 0.05138    | 103.08              | L609030       | SRM2   | 0.4             | 0.3763     | 94.08               |
| L609030       | SRM3   | 0.052            | 0.05418    | 104.19              | L609030        | SRM3   | 0.05      | 0.05116    | 1.18                | L609030       | SRM3   | 0.4             | 0.3715     | 92.88               |
| L610005       | SRM1   | 0.052            | 0.05290    | 101.73              | L610005        | SRM1   | 0.05      | 0.05077    | 45.00               | L610005       | SRM1   | 0.4             | 0.3757     | 93.93               |
| L610005       | SRM2   | 0.052            | 0.05291    | 101.75              | L610005        | SRM2   | 0.05      | 0.05092    | 101.84              | L610005       | SRM2   | 0.4             | 0.3765     | 94.13               |
| L610005       | SRM3   | 0.052            | 0.05353    | 102.94              | L610005        | SRM3   | 0.05      | 0.05080    | 101.60              | L610005       | SRM3   | 0.4             | 0.3800     | 95.00               |
| L610013       | SRM1   | 0.052            | 0.05308    | 102.08              | L610013        | SRM1   | 0.05      | 0.05159    | 103.18              | L610013       | SRM1   | 0.4             | 0.3774     | 94.35               |
| L610013       | SRM2   | 0.052            | 0.05398    | 103.81              | L610013        | SRM2   | 0.05      | 0.05083    | 101.66              | L610013       | SRM2   | 0.4             | 0.3789     | 94.73               |
| L610018       | SRM1   | 0.052            | 0.05213    | 100.25              | L610018        | SRM1   | 0.05      | 0.05023    | 100.46              | L610018       | SRM1   | 0.4             | 0.3729     | 93.23               |
| L610018       | SRM2   | 0.052            | 0.05347    | 102.83              | L610018        | SRM2   | 0.05      | 0.05030    | 100.60              | L610018       | SRM2   | 0.4             | 0.3751     | 93.78               |
| L610025       | SRM1   | 0.052            | 0.05450    | 104.81              | L610025        | SRM1   | 0.05      | 0.05172    | 103.44              | L610025       | SRM1   | 0.4             | 0.3871     | 96.78               |
| L610025       | SRM2   | 0.052            | 0.05538    | 106.50              | L610025        | SRM2   | 0.05      | 0.05125    | 102.50              | L610025       | SRM2   | 0.4             | 0.3819     | 95.48               |
| L611003       | SRM1   | 0.052            | 0.05409    | 104.02              | L611003        | SRM1   | 0.05      | 0.05122    | 102.44              | L611003       | SRM1   | 0.4             | 0.3853     | 96.33               |
| L611003       | SRM2   | 0.052            | 0.05545    | 106.63              | L611003        | SRM2   | 0.05      | 0.05087    | 101.74              | L611003       | SRM2   | 0.05            | 0.3830     | 95.75               |
| L611013       | SRM1   | 0.052            | 0.05470    | 105.19              | L611013        | SRM1   | 0.05      | 0.05112    | 102.24              | L611013       | SRM1   | 0.05            | 0.3852     | 96.30               |
| L611013       | SRM2   | 0.052            | 0.05618    | 108.04              | L611013        | SRM2   | 0.05      | 0.05106    | 102.12              | L611013       | SRM2   | 0.05            | 0.3848     | 96.20               |
| Mean          |        |                  |            | 104.74              | Mean           |        |           |            | 100.29              | Mean          |        |                 |            | 95.05               |
| Standard Devi | iation |                  |            | 1.64                | Standard Devia | ntion  |           |            | 14.80               | Standard Devi | ation  |                 |            | 0.99                |
| Count         |        |                  |            | 62                  | Count          |        |           |            | 62                  | Count         |        |                 |            | 62                  |

**Table C-3.** Dry Deposition 2006 Sampling Season – QC Batch Summary for Teflon<sup>®</sup> Filters – Reference Samples – Great Smoky Mountains National Park, TN (4 of 5)

|                    | 17100        |                     | National F         | uik, iiv         | (1013)             |              |              |                  |                  |
|--------------------|--------------|---------------------|--------------------|------------------|--------------------|--------------|--------------|------------------|------------------|
|                    |              | $\mathbf{K}^{^{+}}$ |                    |                  |                    |              | Cl.          |                  |                  |
|                    | 0.077        | Target              |                    | Percent          |                    | 0.077        | Target       |                  | Percent          |
| Batch              | QC Key       | mg/L                | Found mg/L         | Recovery         | Batch              | QC Key       | mg/L         | Found mg/L       | Recovery         |
| L606017            | SRM1         | 0.097<br>0.097      | 0.09881            | 101.87           | L606021            | SRM1         | 0.98<br>0.98 | 0.9910           | 101.12           |
| L606017<br>L606017 | SRM2<br>SRM3 | 0.097               | 0.09701<br>0.09976 | 100.01<br>102.85 | L606021<br>L606027 | SRM2<br>SRM1 | 0.98         | 1.0050<br>0.9964 | 102.55<br>101.67 |
| L606017            | SRM1         | 0.097               | 0.10160            | 102.85           | L606027            | SRM2         | 0.98         | 0.9964           | 102.01           |
| L606023            | SRM2         |                     |                    | 104.74           | L607006            | SRM1         | 0.98         |                  | 102.01           |
| L606023            | SRM3         | 0.097<br>0.097      | 0.09747            | 100.48           | L607006            | SRM2         | 0.98         | 0.9900           | 101.02           |
| L606023            | SRM4         | 0.097               | 0.09750<br>0.09821 | 100.52           | L607016            | SRM1         | 0.98         | 0.9951<br>0.9550 | 97.45            |
| L607003            | SRM1         | 0.097               | 0.10080            | 103.92           | L607016            | SRM2         | 0.98         | 0.9520           | 97.43<br>97.14   |
| L607003            | SRM2         | 0.097               | 0.10270            | 105.88           | L607017            | SRM1         | 0.98         | 0.9808           | 100.08           |
| L607003            | SRM3         | 0.097               | 0.10380            | 107.01           | L607017            | SRM2         | 0.98         | 0.9977           | 101.81           |
| L607008            | SRM1         | 0.097               | 0.09983            | 102.92           | L607017            | SRM3         | 0.98         | 0.9938           | 101.41           |
| L607008            | SRM2         | 0.097               | 0.09892            | 101.98           | L607017            | SRM4         | 0.98         | 1.0060           | 102.65           |
| L607008            | SRM3         | 0.097               | 0.10060            | 103.71           | L607029            | SRM1         | 0.98         | 0.9796           | 99.96            |
| L607013            | SRM1         | 0.097               | 0.09902            | 102.08           | L607029            | SRM2         | 0.98         | 0.9929           | 101.32           |
| L607013            | SRM2         | 0.097               | 0.09738            | 100.39           | L607033            | SRM1         | 0.98         | 0.9789           | 99.89            |
| L607013            | SRM3         | 0.097               | 0.09927            | 102.34           | L607033            | SRM2         | 0.98         | 0.9812           | 100.12           |
| L607023            | SRM1         | 0.097               | 0.09915            | 102.22           | L608003            | SRM1         | 0.98         | 0.9809           | 100.09           |
| L607023            | SRM2         | 0.097               | 0.09664            | 99.63            | L608003            | SRM2         | 0.98         | 0.9945           | 101.48           |
| L607023            | SRM3         | 0.097               | 0.09685            | 99.85            | L608018            | SRM1         | 0.98         | 0.9788           | 99.88            |
| L607030            | SRM1         | 0.097               | 0.09895            | 102.01           | L608018            | SRM2         | 0.98         | 0.9960           | 101.63           |
| L607030            | SRM2         | 0.097               | 0.09652            | 99.51            | L608027            | SRM1         | 0.98         | 0.9892           | 100.94           |
| L607030            | SRM3         | 0.097               | 0.09587            | 98.84            | L608027            | SRM2         | 0.98         | 0.9984           | 101.88           |
| L608006            | SRM1         | 0.097               | 0.09533            | 98.28            | L608027            | SRM3         | 0.98         | 0.9987           | 101.91           |
| L608006            | SRM2         | 0.097               | 0.09822            | 101.26           | L608032            | SRM1         | 0.98         | 0.9911           | 101.13           |
| L608011            | SRM1         | 0.097               | 0.09937            | 102.44           | L608032            | SRM2         | 0.98         | 1.0060           | 102.65           |
| L608011            | SRM2         | 0.097               | 0.09695            | 99.95            | L609001            | SRM1         | 0.98         | 0.9843           | 100.44           |
| L608011            | SRM3         | 0.097               | 0.09826            | 101.30           | L609001            | SRM2         | 0.98         | 1.0080           | 102.86           |
| L608023            | SRM1         | 0.097               | 0.10130            | 104.43           | L609006            | SRM1         | 0.98         | 1.0000           | 102.04           |
| L608023            | SRM2         | 0.097               | 0.09852            | 101.57           | L609006            | SRM2         | 0.98         | 0.9860           | 100.61           |
| L608023            | SRM3         | 0.097               | 0.10000            | 103.09           | L609017            | SRM1         | 0.98         | 0.9877           | 100.79           |
| L608023            | SRM4         | 0.097               | 0.09998            | 103.07           | L609017            | SRM2         | 0.98         | 0.9958           | 101.61           |
| L608028            | SRM1         | 0.097               | 0.09847            | 101.52           | L609028            | SRM1         | 0.98         | 0.9853           | 100.54           |
| L608028            | SRM2         | 0.097               | 0.09908            | 102.14           | L609028            | SRM2         | 0.98         | 0.9893           | 100.95           |
| L608028            | SRM3         | 0.097               | 0.09918            | 102.25           | L610002            | SRM1         | 0.98         | 0.9819           | 100.19           |
| L608036            | SRM1         | 0.097               | 0.10020            | 103.30           | L610002            | SRM2         | 0.98         | 1.0000           | 102.04           |
| L608036            | SRM2         | 0.097               | 0.09702            | 100.02           | L610009            | SRM1         | 0.98         | 0.9903           | 101.05           |
| L608036            | SRM3         | 0.097               | 0.09585            | 98.81            | L610009            | SRM2         | 0.98         | 1.0030           | 102.35           |
| L609005            | SRM1         | 0.097               | 0.09846            | 101.51           | L610016            | SRM1<br>SRM2 | 0.98<br>0.98 | 0.9795           | 99.95            |
| L609005            | SRM2         | 0.097               | 0.09892            | 101.98           | L610016            |              |              | 0.9971           | 101.74           |
| L609005<br>L609011 | SRM3<br>SRM1 | 0.097<br>0.097      | 0.09888<br>0.09990 | 101.94<br>102.99 | L610021<br>L610021 | SRM1<br>SRM2 | 0.98<br>0.98 | 0.9520<br>0.9310 | 97.14<br>95.00   |
| L609011            | SRM2         | 0.097               | 0.09990            | 102.99           | L610021<br>L610028 | SRM2<br>SRM1 | 0.98         | 0.9310           | 95.00<br>99.59   |
| L609011            | SRM3         | 0.097               | 0.09805            | 101.08           | L6110026           | SRM2         | 0.98         | 0.9960           | 101.63           |
| L609021            | SRM1         | 0.097               | 0.09706            | 100.06           | L611019            | SRM1         | 0.98         | 0.9790           | 99.90            |
| L609021            | SRM2         | 0.097               | 0.09789            | 100.00           | L611019            | SRM2         | 0.98         | 0.9889           | 100.91           |
| L609021            | SRM3         | 0.097               | 0.09877            | 101.82           | 2011013            | OINIVIZ      | 0.50         | 0.3003           | 100.31           |
| L609030            | SRM1         | 0.097               | 0.10130            | 104.43           |                    |              |              |                  |                  |
| L609030            | SRM2         | 0.097               | 0.09953            | 102.61           |                    |              |              |                  |                  |
| L609030            | SRM3         | 0.097               | 0.09948            | 102.56           |                    |              |              |                  |                  |
| L610005            | SRM1         | 0.097               | 0.09764            | 100.66           |                    |              |              |                  |                  |
| L610005            | SRM2         | 0.097               | 0.09804            | 101.07           |                    |              |              |                  |                  |
| L610005            | SRM3         | 0.097               | 0.09929            | 102.36           |                    |              |              |                  |                  |
| L610013            | SRM1         | 0.097               | 0.10120            | 104.33           |                    |              |              |                  |                  |
| L610013            | SRM2         | 0.097               | 0.09969            | 102.77           |                    |              |              |                  |                  |
| L610018            | SRM1         | 0.097               | 0.09591            | 98.88            |                    |              |              |                  |                  |
| L610018            | SRM2         | 0.097               | 0.09551            | 98.46            |                    |              |              |                  |                  |

**Table C-3.** Dry Deposition 2006 Sampling Season – QC Batch Summary for Teflon<sup>®</sup> Filters – Reference Samples – Great Smoky Mountains National Park, TN (5 of 5)

| Batch       | QC Key  | K <sup>+</sup><br>Target<br>mg/L | Found mg/L | Percent<br>Recovery | Batch        | QC Key  | Cl <sup>-</sup><br>Target<br>mg/L | Found mg/L | Percent<br>Recovery |
|-------------|---------|----------------------------------|------------|---------------------|--------------|---------|-----------------------------------|------------|---------------------|
| L610025     | SRM1    | 0.097                            | 0.10070    | 103.81              |              |         |                                   |            |                     |
| L610025     | SRM2    | 0.097                            | 0.09768    | 100.70              |              |         |                                   |            |                     |
| L611003     | SRM1    | 0.097                            | 0.10010    | 103.20              |              |         |                                   |            |                     |
| L611003     | SRM2    | 0.097                            | 0.09723    | 100.24              |              |         |                                   |            |                     |
| L611013     | SRM1    | 0.097                            | 0.10090    | 104.02              |              |         |                                   |            |                     |
| L611013     | SRM2    | 0.097                            | 0.09966    | 102.74              |              |         |                                   |            |                     |
| Mean        |         |                                  |            | 101.83              | Mean         |         |                                   |            | 100.76              |
| Standard De | viation |                                  |            | 1.79                | Standard Dev | riation |                                   |            | 1.52                |
| Count       |         |                                  |            | 62                  | Count        |         |                                   |            | 47                  |

**Table C-4.** Dry Deposition 2006 Sampling Season – QC Batch Summary for Nylon Filters – Reference Samples – Great Smoky Mountains National Park, TN

|                | TVIOUITU | 1115 1 1441     | onar rark, | 111      |               |         |        |       |          |
|----------------|----------|-----------------|------------|----------|---------------|---------|--------|-------|----------|
|                |          | SO <sub>4</sub> |            |          |               |         | NO,    |       |          |
|                |          | Target          |            | Percent  |               |         | Target | Found | Percent  |
| Batch          | Lab Key  | mg/L            | Found mg/L | Recovery | Batch         | Lab Key | mg/L   | mg/L  | Recovery |
| L606018        | SRM1     | 10.1            | 10.300     | 101.98   | L606018       | SRM1    | 1.6    | 1.616 | 101.00   |
| L606018        | SRM2     | 10.1            | 10.330     | 102.28   | L606018       | SRM2    | 1.6    | 1.625 | 101.56   |
| L606025        | SRM1     | 10.1            | 10.090     | 99.90    | L606025       | SRM1    | 1.6    | 1.578 | 98.63    |
| L606025        | SRM2     | 10.1            | 10.190     | 100.89   | L606025       | SRM2    | 1.6    | 1.603 | 100.19   |
| L607005        | SRM1     | 10.1            | 10.190     | 100.89   | L607005       | SRM1    | 1.6    | 1.594 | 99.63    |
| L607005        | SRM2     | 10.1            | 10.270     | 101.68   | L607005       | SRM2    | 1.6    | 1.611 | 100.69   |
| L607011        | SRM1     | 10.1            | 10.180     | 100.79   | L607011       | SRM1    | 1.6    | 1.590 | 99.38    |
| L607011        | SRM2     | 10.1            | 10.210     | 101.09   | L607011       | SRM2    | 1.6    | 1.601 | 100.06   |
| L607015        | SRM1     | 10.1            | 10.190     | 100.89   | L607015       | SRM1    | 1.6    | 1.592 | 99.50    |
| L607015        | SRM2     | 10.1            | 10.210     | 101.09   | L607015       | SRM2    | 1.6    | 1.601 | 100.06   |
| L607027        | SRM1     | 10.1            | 10.340     | 102.38   | L607027       | SRM1    | 1.6    | 1.627 | 101.69   |
| L607027        | SRM2     | 10.1            | 10.400     | 102.97   | L607027       | SRM2    | 1.6    | 1.635 | 102.19   |
| L607031        | SRM1     | 10.1            | 10.350     | 102.48   | L607031       | SRM1    | 1.6    | 1.621 | 101.31   |
| L607031        | SRM2     | 10.1            | 10.350     | 102.48   | L607031       | SRM2    | 1.6    | 1.631 | 101.94   |
| L608010        | SRM1     | 10.1            | 10.060     | 99.60    | L608010       | RM1     | 1.6    | 1.565 | 97.81    |
| L608010        | SRM2     | 10.1            | 10.100     | 100.00   | L608010       | SRM2    | 1.6    | 1.572 | 98.25    |
| L608015        | SRM1     | 10.1            | 10.040     | 99.41    | L608015       | SRM1    | 1.6    | 1.592 | 99.50    |
| L608015        | SRM2     | 10.1            | 10.180     | 100.79   | L608015       | SRM2    | 1.6    | 1.617 | 101.06   |
| L608025        | SRM1     | 10.1            | 9.999      | 99.00    | L608025       | SRM1    | 1.6    | 1.561 | 97.56    |
| L608025        | SRM2     | 10.1            | 9.983      | 98.84    | L608025       | SRM2    | 1.6    | 1.567 | 97.94    |
| L608034        | SRM1     | 10.1            | 10.180     | 100.79   | L608034       | SRM1    | 1.6    | 1.594 | 99.63    |
| L608034        | SRM2     | 10.1            | 10.250     | 101.49   | L608034       | SRM2    | 1.6    | 1.614 | 100.88   |
| L609004        | SRM1     | 10.1            | 10.260     | 101.58   | L609004       | SRM1    | 1.6    | 1.608 | 100.50   |
| L609004        | SRM2     | 10.1            | 10.280     | 101.78   | L609004       | SRM2    | 1.6    | 1.612 | 100.75   |
| L609007        | SRM1     | 10.1            | 10.240     | 101.39   | L609007       | SRM1    | 1.6    | 1.604 | 100.25   |
| L609007        | SRM2     | 10.1            | 10.270     | 101.68   | L609007       | SRM2    | 1.6    | 1.612 | 100.75   |
| L609013        | SRM1     | 10.1            | 10.220     | 101.19   | L609013       | SRM1    | 1.6    | 1.613 | 100.81   |
| L609013        | SRM2     | 10.1            | 10.240     | 101.39   | L609013       | SRM2    | 1.6    | 1.615 | 100.94   |
| L609024        |          |                 | 10.130     | 100.30   | L609024       | SRM1    | 1.6    | 1.580 | 98.75    |
| L609024        | SRM2     | 10.1            | 10.080     | 99.80    | L609024       | SRM2    | 1.6    | 1.568 | 98.00    |
| L610001        | SRM1     | 10.1            | 10.090     | 99.90    | L610001       | SRM1    | 1.6    | 1.577 | 98.56    |
| L610001        | SRM2     | 10.1            | 10.200     | 100.99   | L610001       | SRM2    | 1.6    | 1.596 | 99.75    |
| L610003        | SRM1     | 10.1            | 10.050     | 99.50    | L610003       | SRM1    | 1.6    | 1.603 | 100.19   |
| L610003        | SRM2     | 10.1            | 10.160     | 100.59   | L610003       | SRM2    | 1.6    | 1.599 | 99.94    |
| L610014        | SRM1     | 10.1            | 10.130     | 100.30   | L610014       | SRM1    | 1.6    | 1.573 | 98.31    |
| L610014        | SRM2     | 10.1            | 10.220     | 101.19   | L610014       | SRM2    | 1.6    | 1.596 | 99.75    |
| L610024        | SRM1     | 10.1            | 10.090     | 99.90    | L610024       | SRM1    | 1.6    | 1.601 | 100.06   |
| L610024        | SRM2     | 10.1            | 9.861      | 97.63    | L610024       | SRM2    | 1.6    | 1.592 | 99.50    |
| L610027        | SRM1     | 10.1            | 10.280     | 101.78   | L610027       | SRM1    | 1.6    | 1.609 | 100.56   |
| L610027        | SRM2     | 10.1            | 10.320     | 102.18   | L610027       | SRM2    | 1.6    | 1.622 | 101.38   |
| L611008        | SRM1     | 10.1            | 10.090     | 99.90    | L611008       | SRM1    | 1.6    | 1.595 | 99.69    |
| L611008        | SRM2     | 10.1            | 10.350     | 102.48   | L611008       | SRM2    | 1.6    | 1.623 | 101.44   |
| L611015        | SRM1     | 10.1            | 10.060     | 99.60    | L611015       | SRM1    | 1.6    | 1.571 | 98.19    |
| L611015        | SRM2     | 10.1            | 10.120     | 100.20   | L611015       | SRM2    | 1.6    | 1.587 | 99.19    |
| L610014        | SRM1     | 10.1            | 10.130     | 100.30   | L610014       | SRM1    | 1.6    | 1.573 | 98.31    |
| L610014        | SRM2     | 10.1            | 10.220     | 101.19   | L610014       | SRM2    | 1.6    | 1.596 | 99.75    |
| Mean           |          |                 |            | 100.84   | Mean          |         |        |       | 99.95    |
| Standard Devia | ation    |                 |            | 1.14     | Standard Devi | ation   |        |       | 1.20     |
| Count          |          |                 |            | 44       | Count         |         |        |       | 44       |

**Table C-5.** Dry Deposition 2006 Sampling Season – QC Batch Summary for Cellulose Filters– Reference Samples – Great Smoky Mountains National Park, TN

|                    | TVIOUITUIII | S Ivational     | ı uın,        | 111                 |
|--------------------|-------------|-----------------|---------------|---------------------|
|                    |             | SO <sub>4</sub> |               |                     |
| Batch              | Lab Key     | Target mg/L     | Found<br>mg/L | Percent<br>Recovery |
| L606020            | SRM1        | 10.1            | 10.240        | 101.39              |
| L606020            | SRM2        | 10.1            | 10.240        | 101.39              |
| L606020            | SRM1        | 10.1            | 10.240        | 101.19              |
| L606029            | SRM2        | 10.1            | 10.240        | 101.19              |
| L607001            | SRM1        | 10.1            | 10.240        | 101.39              |
| L607001            | SRM2        | 10.1            | 10.240        | 101.98              |
| L607007            | SRM1        | 10.1            | 10.300        | 101.49              |
| L607007            | SRM2        | 10.1            | 10.250        | 101.49              |
|                    |             |                 |               |                     |
| L607018            | SRM1        | 10.1            | 10.160        | 100.59              |
| L607018            | SRM2        | 10.1            | 10.170        | 100.69              |
| L607025            | SRM1        | 10.1            | 10.180        | 100.79              |
| L607025            | SRM2        | 10.1            | 10.210        | 101.09              |
| L607032            | SRM1        | 10.1            | 10.190        | 100.89              |
| L607032            | SRM2        | 10.1            | 10.190        | 100.89              |
| L608004            | SRM1        | 10.1            | 10.180        | 100.79              |
| L608004            | SRM2        | 10.1            | 10.140        | 100.40              |
| L608017            | SRM1        | 10.1            | 10.230        | 101.29              |
| L608017            | SRM2        | 10.1            | 10.160        | 100.59              |
| L608026            | SRM1        | 10.1            | 10.310        | 102.08              |
| L608026            | SRM2        | 10.1            | 10.280        | 101.78              |
| L608037            | SRM1        | 10.1            | 10.250        | 101.49              |
| L608037            | SRM2        | 10.1            | 10.240        | 101.39              |
| L609003            | SRM1        | 10.1            | 10.270        | 101.68              |
| L609003            | SRM2        | 10.1            | 10.260        | 101.58              |
| L609009            | SRM1        | 10.1            | 10.270        | 101.68              |
| L609009            | SRM2        | 10.1            | 10.250        | 101.49              |
| L609022            | SRM1        | 10.1            | 10.280        | 101.78              |
| L609022            | SRM2        | 10.1            | 10.260        | 101.58              |
| L609029            | SRM1        | 10.1            | 10.270        | 101.68              |
| L609029            | SRM2        | 10.1            | 10.260        | 101.58              |
| L610004            | SRM1        | 10.1            | 10.290        | 101.88              |
| L610004            | SRM2        | 10.1            | 10.280        | 101.78              |
| L610006            | SRM1        | 10.1            | 10.290        | 101.88              |
| L610006            | SRM2        | 10.1            | 10.280        | 101.78              |
| L610019            | SRM1        | 10.1            | 10.240        | 101.39              |
| L610019            | SRM2        | 10.1            | 10.275        | 101.73              |
| L610026            | SRM1        | 10.1            | 10.232        | 101.31              |
| L610026            | SRM2        | 10.1            | 10.297        | 101.95              |
| L611005            | SRM1        | 10.1            | 10.175        | 100.74              |
| L611005            | SRM2        | 10.1            | 10.119        | 100.19              |
| L611012            | SRM1        | 10.1            | 10.196        | 100.95              |
| L611012            | SRM2        | 10.1            | 10.195        | 100.94              |
| L611017            | SRM1        | 10.1            | 10.192        | 100.91              |
| L611017            | SRM2        | 10.1            | 10.194        | 100.93              |
| Mean               |             |                 |               | 101.32              |
| Standard Deviation | ,           |                 |               | 0.47                |
| Count              | •           |                 |               | 44                  |
| Jount              |             |                 |               |                     |

Table C-6. Dry Deposition 2006 Sampling Season – CVS (%R) – Great Smoky Mountains National Park, TN

|             | 1 &                           |        | , ,                |       |
|-------------|-------------------------------|--------|--------------------|-------|
| Filter Type | Parameter                     | Mean   | Standard Deviation | Count |
| Teflon®     | $SO_4^{2-}$                   | 99.62  | 1.13               | 243   |
|             | $NO_3$ - $N$                  | 99.38  | 1.07               | 243   |
|             | Cl                            | 99.41  | 1.38               | 243   |
|             | $NH_4^+$ - $N$                | 99.41  | 1.63               | 227   |
|             | $Ca^{2+}$                     | 100.77 | 1.00               | 257   |
|             | $\mathrm{Mg}^{^{2+}}$         | 100.14 | 0.71               | 257   |
|             | $Na^{+}$                      | 100.19 | 0.95               | 257   |
|             | $K^{+}$                       | 100.43 | 0.93               | 257   |
| Nylon       | SO <sub>4</sub> <sup>2-</sup> | 99.91  | 1.84               | 227   |
|             | $NO_3$ - $N$                  | 100.11 | 1.86               | 227   |
| Cellulose   | $SO_4^{2-}$                   | 99.53  | 0.60               | 169   |

Note:

%R = percent recovery

Table C-7. Dry Deposition 2006 Sampling Season – Replicate Summary – Great Smoky Mountains National Park, TN

| Sample No. | Replicate No. | Date      | Parameter                     | Filter<br>Type | Sample Result | Replicate<br>Result | Percent<br>Difference | Mean Percent<br>Difference | Standard<br>Deviation | Count |
|------------|---------------|-----------|-------------------------------|----------------|---------------|---------------------|-----------------------|----------------------------|-----------------------|-------|
| L607013    | RP*L607013    | 6/27/2006 | Calcium                       | Teflon         | 14.300        | 13.9900             | 2.17                  | NA                         | NA                    | 1     |
| L607013    | RP*L607013    | 6/27/2006 | Magnesium                     | Teflon         | 1.709         | 1.7000              | 0.53                  | NA                         | NA                    | 1     |
| L607013    | RP*L607013    | 6/27/2006 | Potassium                     | Teflon         | 3.095         | 3.1470              | -1.68                 | NA                         | NA                    | 1     |
| L607013    | RP*L607013    | 6/27/2006 | Sodium                        | Teflon         | 0.778         | 0.7611              | 2.17                  | NA                         | NA                    | 1     |
| L609024    | RP*L609024    | 9/5/2006  | NO <sub>3</sub> -N            | Nylon          | 11.620        | 11.5000             | 1.03                  | NA                         | NA                    | 1     |
| L609024    | RP*L609024    | 9/5/2006  | SO <sub>4</sub> <sup>2-</sup> | Nylon          | 17.400        | 17.0800             | 1.84                  | NA                         | NA                    | 1     |
| L606029    | RP*L606029    | 6/13/2006 | SO <sub>4</sub> <sup>2-</sup> | Cellulose      | 166.600       | 166.9000            | -0.18                 | NA                         | NA                    | 1     |