

Possibility of bright, polarized high energy photon sources at the Advanced Photon Source

Yuelin Li

Advanced Photon Source, Argonne National Laboratory

Workshop on New Aspects of Quark Nuclear Physics with Polarized Photons, Feb. 17-20, Honolulu

1. Introduction:Existing γ-ray facilities
APS overview
Why APS γ-ray?

- 2. Compton scattering basics
- **3.** Possible performance of the APS γ-ray facility Booster Storage ring
- 4. Laser systems
- 5. Summary

1. Introduction:Existing γ-ray facilitiesAPS overview

Why APS γ-ray?

- 2. Compton scattering basics
- **3.** Possible performance of APS γ-ray facility Booster Storage ring
- 4. Laser systems
- 5. Summary

Existing γ**-ray facilities**

APS overview 1

Workshop on New Aspects of Quark Nuclear Physics with Polarized Photons, Feb. 17-20, Honolulu

APS Collaborative Access Teams by Sector & Discipline

Workshop on New Aspects of Quark Nuclear Physics with Polarized Photons, Feb. 17-20, Honolulu

Workshop on New Aspects of Quark Nuclear Physics with Polarized Photons, Feb. 17-20, Honolulu

1. Introduction:Existing γ-ray facilities
APS overview
Why APS γ-ray?

- 2. Compton scattering basics
- **3. Possible performance of APS γ-ray facility Booster Storage ring**
- 4. Laser systems
- 5. Summary

	Booster	APS SR	APS SR
		ID	$\mathbf{B}\mathbf{M}$
Revolution Frequency (kHz)	815	272	
Injection frequency $F_{\rm ai}$ (Hz)	2	0.008	
Nominal energy (GeV)	7	7	
Stored beam energy (GeV)	0.45-4		7
Energy gain per turn (keV)	32.0	-	
Energy spread, ms @ 7-GeV	0.1%	0.1%	
Emittance ε ₀ @ 7 GeV (m-rad)	130×10-7 a	2.5×10-9	
Coupling factor k	0.1	1-3%	
Electrons per bunch	6.25×10 ¹⁰ (10 nC) ^b	10 ¹¹ (15 nC)	
Number of bunches	1	2	23 °
Bunch repetition rate (kHz)	815	6528	
Bunch length, ms, @ 7 GeV (ps)	77	45	
Beta functions β_{xx} (m)	16, 2.7	19.5, 2.9	2.12, 26.1
Beam size $\sigma_{\rm x}$, $\sigma_{\rm v}$ (µm)	786, 102	274, 8.5	91.8, 25.5
Beam divergence $\sigma_{\rm x}$, $\sigma_{\rm y}$ (µrad)		11.3, 2.9	56.3, 1.1

Table 1. APS Booster and storage ring (SR) beam parameters

a. Recent improvement of the focus of the magnets has improved this down to 93 nm rad [6].

b. This is determined by the safety envelope. The highest ever achieved is 4-5 nC.

c. The typical bunch pattern is 23 bunches spaced evenly at 1/24 of the ring circumference with the 24^{th} bunch missing.

APS: Top-up operation

1. Introduction:Existing γ-ray facilities
APS overview
Why APS γ-ray?

- 2. Compton scattering basics
- **3. Possible performance of APS γ-ray facility Booster Storage ring**
- 4. Laser systems
- 5. Summary

Compton scattering basics

$$E_{s} = \frac{4\gamma^{2}E_{L}}{1 + \frac{4\gamma E_{L}}{mc^{2}} + (\theta\gamma)^{2}}$$

$$\Sigma = \frac{2\pi r_e^2}{x} \left[\left(1 - \frac{4}{x} - \frac{8}{x^2} \right) \ln(1+x) + \frac{1}{2} + \frac{8}{x} - \frac{1}{2(1+x^2)} \right]$$

$$x = \frac{2\gamma E_L (1 - \beta \cos \phi)}{mc^2} = \frac{4\gamma E_L}{mc^2}$$

Photon flux calculation

$$f_e = \frac{N_e}{(2\pi)^{3/2} \sigma_x \sigma_y \sigma_z} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2} - \frac{(z-ct)^2}{2\sigma_z^2}\right)$$

$$f_{p} = \frac{N_{p}}{(2\pi)^{3/2} \sigma_{0}^{2} \sigma_{t}} \exp\left(-\frac{x^{2} + y^{2}}{2\sigma_{0}^{2}} - \frac{(z/c+t)^{2}}{2\sigma_{t}^{2}}\right)$$

Photon flux and bunch lifetime

Photons per
scattering N_{γ}

]

$$= \Sigma \frac{N_e N_p}{2\pi \sqrt{\sigma_0^2 + \sigma_x^2} \sqrt{\sigma_0^2 + \sigma_y^2}}$$

Flux
$$F = rN_e \sum_{j=0}^{f-1} (1-r)^j = N_e [1-(1-r)^f] \approx rfN_e,$$

Lifetime
$$T = -\frac{1}{f} \frac{\ln 2}{\ln(1-r)} \approx \frac{\ln 2}{fr}.$$

 $r = \frac{N_{\gamma}}{N_e}$

 Introduction: Existing γ-ray facilities APS overview Why APS γ-ray?
Compton scattering basics

- 3. Possible performance of APS γ-ray facility Booster Storage ring
- 4. Laser systems
- 5. Summary

Coherent Reg A9000, 2.5 W, 250 kHz @ 800 nm 5 nC charge

Reality and Future: booster

Currently working charge: Highest ever achieved: Off-the-shelf laser: Immediately available: 2-3 nC 4-5 nC 2.5 W 1×10⁸ @ 0.1 GeV 2×10⁶ @ 1 GeV 200 photons in 0.1 ns at 815 kHz

Repetition rate:

To get to higher fluxes

- * Need to up grade rf tuner to compensate large beam loading at higher charge
- * Replace the magnets for better beam quality
- * More powerful laser/intracavity scattering, 10 times or more

Foreseeable:

Repetition rate:

Machine Limit:

1×10⁹ @ 0.1 GeV 2×10⁷ @ 1 GeV

2000 photons in 0.1 ns at 815 kHz

1011

Flux and lifetime: SR

Spectra Physics Tsunami, 3.5 W, 80 MHz @ 800 nm

Reality and Future: SR

Currently injection charge:2-3 nC/2 min
 $\rightarrow 1-1.5 \times 10^8 \text{ e}/\text{s loss}$ Highest ever achieved:4-5 nC
 $\rightarrow 1-1.5 \times 10^8 \text{ e}/\text{s for d}$ Off the shelf laser:3.5 WImmediately available: $1-2 \times 10^8 \text{ @}, 1, 1.7 \text{ GeV}$

Repetition rate:

To get to higher fluxes

- * Booster upgrade for higher charge per shot
- * Implement new lattice for quiet injection for more frequent injection up to 2 Hz
- * More powerful laser/intracavity scattering: 10 times more

Foreseeable:

Repetition rate:

Machine limit:

1-2×10⁹ @ 1, 1.7 GeV 10⁹ @ 2.8 GeV

300 photons in 0.1 ns at 6.528 MHz

10¹¹/s

Transverse injection: orbit disturbance

Longitudinal injection

Table 2. Comparison of the Performance of the Proposed APS y-Ray Source and HIGS

	APS SR	APS	ESRF	SPring-8	HIGS
		booster	GRAAL [3]	LEPS [3]	future [3]
Beam energy (GeV)	7	0.4-4	6	8	0.2-1.3
y-ray energy (GeV)	1, 1.7, 2.8	0.005 - 1.0	0.55-1.50	1.5-2.4	0.002-
					0.220
Flux (photons/s)			3×10 ⁶	5×10 ⁶	$10^{6} \cdot 10^{10}$
Immediate	$1-2 \times 10^{8}$	$2 \times 10^{6} - 10^{8}$			
Foreseeable upgrade	3×10 ⁹ -3×10 ⁸	$2 \times 10^{7} - 10^{9}$			
Machine limit	1011	1011			

- 1. Introduction:Existing γ-ray facilities
APS overview
Why APS γ-ray?
- 2. Compton scattering basics
- **3. Possible performance of APS γ-ray facility Booster Storage ring**
- 4. Laser systems
- 5. Summary

Make and model	Energy per pulse ^a	Rep rate	Average power
Coherent	5 μJ compressed	250 KHz	2.5 W
RegA9000	10 μJ uncompressed		
Quantronix	>5 mJ compressed	1 kHz	10 W
	10 mJ uncompressed		
Spectra Physics	40 nJ	80 MHz	3.5 W
Tsunami			
Coherent	20 nJ	80 MHz	1.4 W
Mira			

Table C1. Performance of the off-the-shelf Ti:Sa lasers

a. In deriving the uncompressed pulse energy, the compressor efficiency is assumed to be 50%.

Example of custom laser with higher power:

4 W, 75 MHz at 527, → 8 W @ 1053 nm, operating, J Lab 30 W, 75 MHz at 532, → 60 W @ 1064 nm, under development, J Lab

Laser: external buffer cavity

Purpose:Laser repetition rate adjustmentIntracavity scattering?

Jones and Ye, Opt Lett 27, 1848 (2002)

- 1. Introduction:Existing γ-ray facilities
APS overview
Why APS γ-ray?
- **2.** Compton scattering basics
- **3. Possible performance of APS γ-ray facility Booster Storage ring**
- 4. Laser systems
- 5. Summary

Discussion

- What:Technical feasibilityPhysics possibilities
- When: 8:00 PM on Monday (today)
- Where: Ballroom in the Waikiki Terrace Hotel
- Who: Anyone interested
- Also: Dessert and coffee.

Advanced Photon Source

S. V. Milton, L. Emery, N. Sereno, V. Sajaev, Y. Chae, J. Lewellen, Kathy Harkay, and Z Hunag

George Washington University

B. Berman and J. Feldman

J Lab G. Neil

Duke University V. Litvinenko

Supported the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.