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Outline

• Goals and Expected Impact
• Challenges in Videotext Recognition 
• Description of Videotext Recognition System
• Results on English Broadcast News
• Speed Improvements
• Preliminary results on Arabic Broadcast News 
• Conclusions and Future Work
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Conceptual View of Video Indexing System
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• Goal: Develop a videotext understanding component 
for integration into end-to-end video analysis systems

• Impact: Enables content-based search and retrieval, 
real-time alerting, and triage of video in several 
domains

Goals and Expected Impact
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Videotext Understanding: Block Diagram
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Videotext: Examples from Different Domains
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Taxonomy of Text in Video
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Sample BN Video Frames
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Key Challenges in BN Videotext Recognition

• Low Resolution
– Resolution of videotext is much lower than the resolution 

of scanned document images 

• Moving overlay text 
– Causes text to exhibit jagged edges and smear

• Compression 
– Causes artifacts that add to recognition challenge 

• Perspective distortion in scene text
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Text Detection 
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Sample Detected and Binarized BN Images

Text detection misses part 
of the text object
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BBN’s Videotext Recognition Methodology
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Customized Pre-processing for Videotext
Recognition

• Employs Hidden Markov Model (HMM) based BBN 
Byblos Optical Character Recognition (OCR) engine
– Script-independent, trainable methodology

• Customized videotext pre-processing 
– Upsampling: 4x4 upsampling using bilinear interpolation or 

FFT-based filtering
– Gray scale conversion: RGB to YIQ, with only Y (Luminance) 

used for converting color images to Gray scale
– Binarization: thresholds on pixel intensity for representing the 

text object using binary (0 or 255) pixel intensity values
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Recognition with BBN Byblos OCR System



13

Output
Probabilities

Character  k -1 Character k Character  k +1

Character
Models

Feature
Vectors

Time

b1(x) b2(x)

x x

b3(x)

x

0.2 0.4 0.7

0.3

0.5 0.6 0.3
1 2 3

Hidden Markov Model of a Character



14

Feature Extraction

• Locate line tops and bottoms
• Extract narrow overlapping vertical slices of the image
• Compute script-independent features on each slice as 

input to HMM
• Linear Discriminant Analysis (LDA) to reduce the 

dimensionality of the features
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English Videotext Recognition Evaluation

• Evaluation data: Clips from 25 TDT2 videos 
– 12 CNN and 13 ABC

• Development data: 14 CNN and 14 ABC videos 
– Training: ~200K characters, 30K words
– Test: ~18.5K characters, 3K words
– Used hand-annotated text regions for training and test

• Submitted recognition output on automatically 
detected text regions

• More submission plans
– Results on hand-annotated text regions
– Results with fast recognition configuration

NOTE: Results in the following slides are obtained on the 
BBN internal test set and the Dry run test set
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English Videotext Recognition – Results

• Model configuration
– Single model trained on data from both channels
– 14-state, 1 codebook per character tied-mixture (CTM) HMMs, 

256 or 512 Gaussians/codebook (G/cbk)
– Trigram character language model

• Character Error Rate (CER) measured on 5th I-frame of 
the text object

• 256 G/cbk configuration used to submit results on the 
evaluation data

%CER
Channel 256 G/cbk 512 G/cbk
CNN 12.0 11.4
ABC 27.0 26.4
Overall 17.2 16.7
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Channel Specific Modeling

• Estimated separate set of character HMMs for ABC 
channel

• 14-state, 1 codebook per character HMM with 256 
Gaussians/codebook

• Trigram character LM trained on both ABC and CNN

Training %CER (ABC only)
ABC+CNN 27.2

ABC 24.9
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Word-level Segmentation

• Text recognition evaluation scheme uses word-level 
segmentation information to match detected text box to 
reference
– But detection module produces boxes that contain an arbitrary 

number of words

• OCR decoder automatically produces frame-level 
(feature vector) segmentations

• Modified feature extraction and recognition software to 
preserve pixel boundary information

• Added new code to map frame-level segmentation to 
pixel location on input image
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Word-level Segmentation Examples
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Decoding Speed Improvements on English

• Fast Gaussian Computation (FGC) using Gaussian 
shortlists estimated from training data

• Tied-mixture (TM) model in forward pass
– Forward-pass: 14-state HMMs, 1 codebook shared across all 

characters, 1024 Gaussians
– Backward-pass: 14-state HMMs, 1 codebook per character, 512 

Gaussians/codebook

Configuration %CER Char/sec.

Baseline 1 (256 G/cbk) 17.2 23
Baseline 2 (512 G/cbk) 16.7 12
+ Fast Gaussian Computation 17.2 71
+ Tied-mixture Forward Pass 17.3 162
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English Videotext Recognition Progress Graph

Error Rate Improvement on the Dry Run Test Set
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Arabic Videotext Recognition – Corpus

• Annotated and transcribed Arabic videotext objects 
in recorded sequences from Al-Jazeera
– Total Corpus: ~8.3K words, 48.6K characters
– Training: ~7K words, 41K characters
– Test: ~1.3K words, 7.6K characters

Sample Binarized Videotext Objects
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Arabic Videotext Recognition – Results 

• Modeled each presentation form of Arabic character 
with a separate HMM
– Total of 167 character forms 
– Model Configuration: 14-states, 1 codebook per HMM, 256 

Gaussians/codebook

• Trained Arabic-only model to evaluate performance 
on Arabic text
– CER: 21.1%
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Conclusions and Future Work

• Improved CER on English videotext recognition by 
more than a factor of 2
– Improved upsampling, binarization, linefinding, feature set, 

and models
– Increased amount of training data by a factor of 10

• Factor of ~8 speed-up in decoding rate
• Future Work

– Improve Arabic videotext detection and recognition
– Iteratively tune end-to-end system to improve overall 

performance 
– Develop videotext understanding and object classification 

modules
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