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Abstract given input image. We first introduce a concept of “perfect

recognition” and a statistical analysis of similarity scores
mance of a face recognition system, and to predict its indi- from p_erf_ect recognition”. Such _a_naIySIS only depends_ on
the intrinsic structure of a recognition system, and provides

vidual recognition results under various environments. This i th h e th o ;
paper presents generic methods to model and predict the? metr|gt at can ¢ aracterlze.t € recogmyon periormance
under different environments without empirical testing. The

face recognition performance based on analysis of similar- . ; :
ity measurement. We first introduce a concept of “perfect performance metric is further assumed to be Gaussian dis-
recognition”, which only depends on the intrinsic struc- tributions under the cases of success and failure recognition,

ture of a recognition system. A metric extracted from per- and is used to predict the recognition accuracy of a query set

fect recognition similarity scores (PRSS) allows modeling via an EM algorithm. To predict |nd|V|_duaI recognition re-
the face recognition performance without empirical testing. sults, we extract features by_ comparing actual_ recognition
This paper also presents an EM algorithm to predict the results Wlth their correspondlng perfept recognition results,
recognition rate of a query set. Furthermore, features are and train a performance predictor with the extracted fea-
extracted from similarity scores to predict recognition re- res. ) )

sults of individual queries. The presented methods can se- OUr methods can select optimal or near-optimal algo-
lect algorithm parameters offline, predict recognition per- "ithm parameters offline without using additional training
formance online, and adjust face alignment online for better data, predict face recognition result online, and adjust the
recognition. The experimental results show that the perfor- face alignment online for better recognition. Experiment

mance of recognition systems can be greatly improved USmgresults demonstrate that our methods can significantly im—
presented methods. prove the performance of a face recognition system. In this

paper, our methods are validated on PCA based face recog-
nition systems{]. However, the methods can be easily gen-
eralized to any other recognition systems using similarity

It is a challenging task to accurately model the perfor-

1. Introduction

How to evaluate the performance of an algorithm has SCOT€S.
been studied for many years in the computer vision commu- ~ The paper is organized as following. Related work is
nity. Especially with the intensive research and application reviewed in Sectio®. In Section3, we introduce the mod-
of biometric systems, the performance modeling and pre-€ling method of a face recognition system. The face recog-
diction receives a lot of attention since it involves the great Nition prediction methods are introduced in SectiorEx-
concerns of security and privacy4]. Face recognition is ~ Periments results are presented in SecfioWe conclude
one of the most popular biometric systems. However, cur- in Section.
rent face recognition systems always have errors, and their
performance varies under different environments. This pa-2 Related Work
per presents generic methods to model and predict the sys-
tem performance based on analysis of similarity scores. Sampling methods are the most popular methods to em-
In our work, the “performance” of a recognition sys- pirically evaluate a recognition system. In these methods,
tem means its accuracy in correctly matching face images.the training and testing is conducted separately on different
We do not consider other aspects of performance, such asets which are randomly sampled or specially designed. The
speed, cost, availability and maintainability. We also use typical random sampling methods include cross validation
“failure recognition” to refer to the misclassification of a method and Bootstrap method [ To study the system per-
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formance under specific environments, special experimentsusually needs a large pool of features and many training

are designed, such as the face recognition vendor test sets cfamples, so over 10,000 samples are used]in $uch a

FERET PJ] and FRGC §]. Although such specifically de-  large number of training samples are usually difficult to col-

signed experiments can directly assess the performance of &ct for practical systems. The similarity scores are also

system under typical circumstance, they cannot perform on-used to predict CMC curves with a small set of gallery data

line performance prediction, and they need to acquire train-[5, 13]. In their methods, the rank k recognition results are

ing data for different environments. modeled using parametric models. With model parameters
There are already some work on performance model-€stimated from a small gallery set, their methods can predict

ing and prediction of biometric systems, such as fingerprint CMC when more gallery data are applied. Their method can

recognition] 1], iris recognition[.(], and face recognition  only work well for the case that gallery data and query data

[9, 8, 4]. In [11], the quality of a fingerprint image is de- are under the same condition, and cannot predict individual

fined as the normalized distance between matching and nontecognition results online either.

matching similarity scores. A 11-dimensional feature vec-

tor is extracted from image analysis algorithms to identify 3. Performance Modeling

the existence of feature points, e.g., minutia, and outliers.

Then a Neural Network is trained using the feature vectors [N this section, we analyze face recognition systems, and

to predict the image quality. The experiments show that then introduce a concept of “perfect recognition”. By ana-

the images with higher predicted quality will achieve bet- lyzing the similarity scores output from perfect recognition,

ter recognition accuracy. The feature extraction method for We present a metric that can model system performance

fingerprint image quality prediction cannot be directly used Without using additional training data.

to face recognition since most face recognition methods use

holistic appearance instead of feature points. 3.1. Model of Face Recognition Systems

Schmid et. al. provide a probabilistic estimation of There is no shortage of algorithmic approaches to face
lower bound of Iris recognition algorithms based on analy- recognition [.5]. The function of a face recognition sys-
sis of the hamming distance between query and galleryiem is to map a query (also called probe) image to a label
iris images [(]. The distance is assumed to be a single that represents its identification. Usually a face recognition
Gaussian distribution under both genuine and imposter hy'system consists of at least tvltrinsic components, i.e.,
pothesis, and the likelihood ratio is used to identify the pat- 5 get ofgallery images and a face recogniti@gorithm
tern best matching the query iris. With learned parameters,tpe gallery set, denoted &= {g1, g2, ..., gn }, includesn
the method estimates ROC of iris recognition by applying exemplars of known identification to be used for the com-
the Chernoff bound theory and the Large Deviation theory. parison with query data. A face recognition algorithm maps
However, both of the lower bounds only provide approxi- guery data to a feature space, measures the similarity be-
mate error orders. They cannot be used to predict either any,een query data and gallery data, and outputs the identi-
individual recognition result, or the performance of systems fication of query data . For a query image, a recognition
which do not use likelihood ratio method for recognition. algorithm usually outputs similarity scores corresponding

Givens and Beveridge et. al. apply statistical tools to ton gallery images respectively. For rank k recognition, the
analyze how the human face features, such as age, raceystem outputs labels of the gallery images corresponding
gender, skin, glasses, and expression, affect face recognito thek largest similarity scores.
tion accuracy {]. A generalized linear model is built to The similarity score plays an important role in face
regress the relationship between the affecting factors andrecognition because it relates query images with both the
recognition accuracy. The analysis of variance (ANOVA) is recognition algorithm and each gallery image available in
conducted to study how significantly each factor affects the the system. The similarity score is denoted¥s;, g;),
recognition accuracy. To model the performance, the statis-gr S(i,7), for the comparison between the query and
tical model needs to explicitly identify each affecting factor, the galleryg;. There are many type of similarity measure-
whichis an extremely difficult task in practical implementa- ments []’ and |arge|’ Sim"arity scores mean better recogni-
tion. Also, such factors cannot totally model the face recog- tion. In our work, all the similarity scores are sorted in a
nition performance. It is shown that about 34% of variance descending order, and are further normalized to the range
cannot be explained by the generalized liner model. [0,1]. So the set of similarity scores of data are repre-

Some other work uses similarity scores to predict sys- sented asS; = {S(i,51) = 1,S5(,42), ..., S(i,4n) = 0},
tem performance. Li et. al. cluster the similarity scores into wherej; indicates the label of gallery data corresponding
different sets, and then use the distance among the sets a® the k-th sorted similarity score. The largest similarity
features which are selected and combined with AdaBoost toscore is called “matching” score since it represents the best
detect failure recognitions]. A problem is that AdaBoost  matching between query and gallery while the remaining



similarity scores are called “non-matching” scores. Gaussian model. To quantitatively characterize the differ-
ence between matching and non-matching scores for data

3.2. Perfect Recognition x;, @ measurement is calculated as Equatiof)(
When all the intrinsic components of a recognition sys- o S(i,51) — p™ B
tem are given, we believe that its performance is actually 4= onm

K3

fixed, but unknown to users. To empirically measurement
its performance, we need large sets of query data with

round truth. The resulting performance analysis will ap- ! o .
g gp y P has also been used to represent image quality in fingerprint

ply only to the particularly query images and will not be o . .
extendable to images, even from the same people, if takenreCOgnItlon [1]. Based on the distance between matching

in unknown environments. In this work, we utilize statisti- and non-matching sqi:ores, we de_:fine ametric from similarity
cal analysis of similarity scores to discover the relationship S¢°reS ¥ = ezp {3}, where) is a constant to scale the
between the intrinsic structure of a recognition system and performancg r_netnc._llt Is set as 20 in this paper. prvever,
its performance under various environments. To systemati-""" method is insensitive to the valueofFror a recognition

wherey™ andos*™are the mean and standard deviation of
non-matching scoreS(i, ji), k = 2, ..., n. Such defined;

cally analyze the intrinsic components of a face recognition SyStém, the mean of alfi’s, i.e. f = ==, is used to
system, we introduce the concept of “perfect recognition”. describe the whole set of PRSS.
The definition of “perfect recognition” is simple and Intuitively, a system with good performance should also

straightforward. A query sef) is duplicated from the be able to well discriminate the gallery data, regardless of

gallery set, i.e.Q = G = {g1,...g,}. The “per- query data. Since PRSS represent the similarity measure-
fect recognition” uses the duplicated set as the query sefentamong gallery data, the metfiextracted from PRSS

for recognition, and obtains the similarity scoreS; — is able to model the system performance. To quantitatively

(5(gi,91)s 5(gi g2), s (g gu) i = 1,...n. We call demonstrate the intuition, the following experiments are de-

such similarity scores as “Perfect Recognition Similarity Signed. Firstly, parameters of a recognition algorithm are
Scores” (PRSS). changed to get different recognition systems. In a PCA

The defined perfect recognition has two characteristics. P2S€d recognition system, the parameters can be the dimen-
First, it can achieve 100% recognition accuracy. Second,SIon of subspace, the measurement methods (L1, L2 or Co-
the perfect recognition encodes information of all the com- SN me:’;\surements'),”and the measurement space (“Euclid-
ponents in a recognition system: it uses all the gallery data,€&"" OF “Mahalanobis” space} Thenf of each systemis
and the similarity scores encode both the recognition algo_calculatgd, and the actual recognition accuracy is also vali-
rithm and its parameters. So by analyzing PRSS, it is possi-dated with a query set.

ble to model the performance of a recognition system with-
out using additional query images.
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3.3. Performance Metric from Similarity Scores
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Figure 2. PRSS of two systems using FRGC V1.0 Experiment 1
data set. In each graph, the horizontal axis is the rank, and the
vertical axis is the corresponding PRSS values. (a) dim =40, space
= Euclidean, method = Cosine. The recognition rate is 37.2%,
f = 1.1417. (b) dim = 100, space = Euclidean, method = L2. The
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Figure 1. Normalized similarity scores of a single query data. (a)  Figure2 shows PRSS of two PCA based recognition sys-
normalized similarity scores sorted in a descending order. (b) his-tems with different parameters. As observed from the fig-
togram of normalized similarity scores ure, the system with better performance has larger differ-
ence between matching similarity scores and non-matching

An example of PRSS is shown in Figute where the  similarity scores, so it is larger. More relationship be-
system uses FERET gallery data and PCA based recogiween f and actual recognition rates under different query

nition algorithm. It shows that non-matching scores (less sets is shown in Figur8&, from which we observe that
than 1) are much smaller than the matching score (equal tathe recognition rate almost monotonically increases with
1), and non-matching scores can be modeled using a singlef. Such relationship can be fitted with a generalized linear
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model(GLM). The generalized linear model that character- FROC Bpermen 05 ——

+ unified statistics of all systems

izes the relationship between the recognition accuracy and ,, °* | ting resutts
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04 —fitting results
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Figure 3. Relationship betweefiand actual recognition perfor- P

mance. Blue and red points represent the results of using different4' Performance Prediction

measurement methods. The lines are the flttlng results Using GLM Actual face recogn|t|on results are Categonzed |nto two
model. (a) systems using FRGC V1.0 experiment 1 data. (b) sys-cases: success recognition (SR) and failure recognition
tems using FERET FC set (FR). A variableR(x) is introduced to indicate the recog-

Itis also observed from the graphs that the performancenltlon accuracy of queny. fi(x) is defined as Equat.lc.)n
- . . - (3), where®(z) is the label output from a face recognition
characteristic curve of using Cosine measurement method |s'(5 stem, and (z) is the true label of quer
different from that of using L1 and L2 measurement meth- y ' * query.

ods since Cosine measurement method scales the similar- R(z)=1 : I(z)=2(x)

ity in a different way from other methods. To evaluate the 1 ¢ I(z) # O(x) ©)
systems using various measurement methods, a linear cor-

rection algorithm is presented to unify all the performance R(z) = 1 indicates a success recognition, argr) = —1

characteristics curves into one curve. We assume that albtherwise.

the performance characteristic curves achieve the similar In this section, we study how to predict recognition ac-
mean and lower bound of performance although their per-curacy of a query set or an individual query data. The per-
formance upper bound could be different. The mean andformance prediction methods are also based on the analysis
lower recognition rates of-th performance characteristic  of actual similarity scores. Assuming the metfjof actual
curve are denoted @™ (i) andP?(i). Since all the curves  recognition similarity scores as a single Gaussian under SR
are near linear, the average gradient-tif curve is approxi-  and FR, an EM algorithm is applied to estimate recogni-

mated a: m’Ei)*Pd’<i) wheref™ (i) andf?() are the metric tion rates of a query set at different ranks, i.e., to predict its

RJOREIO) : .
corresponding td(i)™ and P(i)? respectively. Based on cumulative matching curve (CMC). Then, our method pre-

the assumption that™ (i) ~ f™ (5) and f4(i) ~ f2(j) for dicts an individual query to be a success or failure recog-
i-th and;j-th curves, we have nition. For this purpose, a predictor (e.g., a Support Vector

£ — f() Machine) is trained with features extracted from similarity
N 1) ) d; - Scores.
f() =~ 77G) = £40) (f(i) = f() + f°() 2)

Equation ) unifies a metricf (i) on thei-th curve to the 4.1. Predicting CMC of a Query Set

j-th curve, and only PRSS performance metrics are needed. Actual Recognition Similarity Scores (ARSS), which are
The actual recognition rate is eliminated by assuming simi- the similarity scores between query data and gallery data,
lar mean and low performance bounds. This assumption, ofare used to predict the actual recognition performance given
course, is only very approximate and may introduce somea query set. The performance metric of ARSS is defined in
errors during parameter selection. However, it allows us to the same way as PRSS, and is also denotef] &8 query
avoid using training data for offline parameter tuning and dataz;. In fact, PRSS can be seen as a special case of ARSS
can be generalized to other measurement methods due to itsince the query set in perfect recognition is the duplication
simplicity. of gallery data.

Figure 4 shows the unified performance characteristic ~ We model f; using a single Gaussian distribution un-
curve. The monotonic relationship between uniffednd der SR or FR , i.e.,P(f;|]SR) = N(fi;pus,05) and
system performance can be used to select system parame?(f;|FR) = N(fi;ur,or). Given a query set, the distri-
ters offline to achieve optimal or near-optimal performance. bution of f; is actually a mixture of Gaussian, as Equation
More experiment results are presented in Seciion (4), where its two components correspond to success and



failure recognition respectively.
P(f,) = 7, P(filSR) + n;P(fi| FR) (4) e Given a query set. Initialize model with parameters

learned from a small set of query datz, = 0;

In (4), 75 and7; are the percentages of success and failure
recognition, andr, + 7y = 1. Thereforer, is actually the
recognition rate of rank. Given a data set, we can apply an
EM algorithm to estimate the model parameters, therefore 1. Initialize the mixture model P(f¥) =
to predict the recognition rate. TEN(FE b oF) + akN(fE ek ak’) with
, . , . s VUG5 sy O FVU Ry O
The previously defined; only characterizes recognition ! & k1
. : S the parameters of rank — 1, i.e. pu*® = p* 1,

quality of rank 1 . Following the same principle, the met- k P & b1
ok : . o . o¥ =¢" andr”® = ¢,
ric f;* are defined to characterize the recognition quality of

e Fork = 1...T, estimate the recognition rate of rahk
as the follows.

rankk, as Equation%): 2. For each data; in the query set, calculatg’ as
S0, ju) — pm (k) Equation B). The set off} is applied to learn
@ = ) 1nm Hi the parameters aP(fF) using the standard EM
o™ (k) algorithm.
k
fik = ezp{ql} (5) 3. The weight corresponding to the component with
A larger mean in the mixture modelts, andC), =
where p™ (k) and o™ (k) are the mean and stan- maz(ms, Ck—1).

dard deviation of rank & non-matching scores
{S(%, jg+1), -, S(i,jn)}. Compared with the previ-
ously definedf; for rank 1 recognition, the non-matching
scores in Equation5] are limited to the scores aftérth
rank. The reason behind is that for rabkecognition, the
first k similarity scores are all matching scores, and the
maximum of matching scores #(i, j1).

To estimate the parameters in the mixture of GaussianThe difference of:-th similarity scorei, () is smoothed by
model, an EM learning algorithm is applied. It needs an ini- @ weightw; to emphasize the scores of first several ranks
tialization of mean and standard deviation at rank 1, which since they are more important for recognition. In this paper,
can be learned from a small set of data. We assume that they,, is defined asv, = exp{ ‘(’;;21)2 } whereo, is set as 20.
parameters of the mixture modg&l( /) smoothly change Based on our experiments, the first differentdz)
with increasing rank, so the estimation results from rank -5 separate about 50% of success recognition results
k can be used as the initialization of rakik- 1. Alsorecog-  from the failure recognition results. However, it is still
nition rate of rankk + 1 is not less than the recognition rate ot enough to predict all the success and failure recogni-
of rank &, which can help smooth the prediction result of tion cases. So the difference vectors of more ranks are
CMC. The EM algorithm to predict CMC is summarized in jncluded as features. For rank, the difference vec-
Tablel. tor is D = {d"(x)w, ..., A7 (z)w, } whered](z) =
s(x, jr) — $(4m,Jx). The extracted feature vectors is
as:

e Output CMC curve(Cy, k=1,...,T.

Table 1. Algorithm of predicting CMC curve

4.2. Predicting Individual Recognition

To predict each individual recognition result as success
or failure recognition, the relationship of ARSS and PRSS
are further studied. If an actual recognition is closer to its -
corresponding perfect recognition, it is more likely to get a dM (z)wy, ..., d¥ ()wg}
success recognition result. The difference between an actual ] .
recognition and its corresponding perfect recognition can beWhere the difference between ARSS and FRSS of the first
quantitatively represented by the difference between ARSSM ranks are used. For each rank, only difference of the first

and PRSS. Mathematically, the similarity score difference ¢ Scores are used. Totally there dtex K elements in the
vectorD! of rank 1 is defined as: feature vector (some elements may be redundant because

s(x, j1) = s(j1,41) = 1 due to normalization).

Ve ={ d%(x)wl,...,d}((a:)w;(,

*y

di(z) = s(x, k) — s(j1, jr) A Support Vector Machine (SVMY] is trained with ex-
D! = {d(z)wi,..,d\(x)w,} (6) tracted features to preqlict face recognition re§ults. Usually,
a SVM outputs a continuous valug&s(V,,), which repre-
wheres(z, ji.) is k-th score of ARSS, anelj1, ji) is thek- sents a distance of input dakta to the class boundary in a

th score of PRSS corresponding to rank 1 recognition result.high dimensional feature space. By thresholding the con-



tinuous outputlis(V,) , the SVM gives the prediction re- different query sets actually need different parameters to
sults R/ (x) as failure recognitionR’(x) = —1) or success  achieve the maximal accuracy. However, the offline se-
recognition &' (z) = 1), as in Equation?). lected parameters consistently achieve near-optimal accu-
/ o o racy under different environments even the accuracy range
R(z) = 1:dis(Va) >=disy is large for some sets, such as FERET FC.
= —1:dis(Vy) < disy @)

. . ) . Table 2. Summary of parameter selection and actual recognition
R/(x) is the predicted value aR(z) in Equation §). The  5ccyracy

performance predictor also has misclassification error itself.

. i X . Query Accuracy of | Accuracy range | Parameters of
By adjusting the thresholdis;,, the predictor shows differ- Set selected maximal actual
ent false alarm rate and positive error rate. The false alarm parameter accuracy
of performance predictor means that the data causing fail- EEEE EE ig-gz//" goz-f/% 5327'%] Hggv '(-:tvSEU,\jZE]a]
s H : s 4% 2%, A% s . .
ure relcognltlon is predicted to cause suc_c_essful recogn_ltlon FERET Dupl 317% [25.6%  38.8%] | [100 Cos. Maha]
i.e., R'(z) = 1andR(z) = —1. The positive error rate is [ FRGCExp. 1| 75.1% | [32.7%, 75.5%] | [100, Cos., Maha ]
the case wher®&’(z) = —1 andR(x) = 1. FRGC Exp. 4 23.4% [4.9% , 27.0%] | [100, Cos., Maha.]

5. Experiments

Two face databases, FERE]] pnd FRGC V1.0 §], are
used in our experiments. FERET provides a fixed gallery ~ We apply the algorithm shown in Tableto predict the
set and some query sets to study recognition performancéecognition accuracy of a query set. The prediction results
under changes of facial expression (FB), illumination (FC) are summarized, and compared with actual recognition re-
and age (Dupl). In FRGC experiment 1, both gallery sults in Table3. In this experiment, the initial parameters
and query images are taken under controlled environmentf the Gaussian models are learned from a small set (20%
while query images in experiment 4 are taken under un-Of the whole query set), and are used to predict the perfor-
controlled environments. We implement the PCA-based Mance on the remaining data. Due to model error, the algo-
recognition method, in which each face is normalized to rithm usually underestimates the recognition rate. However,
the size of 45 by 30, and the pixels at image corners arethe method provides a rough estimation of the error range
removed with an ellipse mask. Pixel intensity is normal- in the case that only a small portion of ground truth is pro-
ized by histogram equalization. The following experiments Vided.
show ﬂ.“.:" results of offline selgct!on of SVSte”.‘ pararnetgrs,.rable 3. Summary of predicting recognition rate (actual recogni-
recognition performance predlc_tl_on, and online adjusting 4, rate vs. predicted recognition rate)
face alignment for better recognition.

5.2. Recognition Performance Prediction

Data Set Rank=1 Rank=5 Rank=15
FERET FB | 80% vs. 71%| 90% vs. 76%)]| 96% vs. 82%
FERET FC | 49% vs. 42%| 82% vs. 47%]| 90% vs. 57/%

In the previous sections, we have shown tfiat ZTf FERET Dupl| 35% vs. 31%| 46% vs. 36%)]| 55% vs. 48%
can be used to offline select system parameters 'sfn.ce Eigg Eig:i ;g;‘: . ing; 2222 = ;ngé 2222 = Zgzz
has near linear relationship with recognition accuracy with-
out using training data. In this experiment, we try to find
the optimal parameter out of all possible parameters based To predict individual recognition results, the difference
on f of PRSS. The parameters include the dimension of values between ARSS and FRSS are extracted as features
subspace, measurement method and measurement spade,train a SVM to classify individual recognition results into
as stated in Sectio.3. The performance characteristic two cases: success and failure cases. In the following exper-
curves for different measurement methods are unified intoiments, we firstly validate the accuracy of trained predictor
one curve by linear correction, and the parameter corre-on FERET and FRGC data sets, and then apply the predic-
sponding to the largest unifieflis selected as the optimal tor to improve face recognition performance. The perfor-
parameter. As a result, the selected parameter for FERET isnance predictor is validated using cross-validation meth-

[200, Cosine, M ahalanobios], which means that the sys- ods, in which50% data is used for training, and the re-
tem uses 200 PCA features, Cosine measurement methodsnaining 50% data is used for validation. To validate the
and Mahalanobios space. The parameter selected for FRG@eneralization capability of trained predictor, two types of
V1.0 Experiment 1 and 4 {420, Cosine, M ahalanobios]. cross-validation methods, intra-set and inter-set validation
We test the recognition rates of all the possible parametersmethods, are applied. In the intra-set validation method, the
and compare them with the recognition rate of selected pa-training data is uniformly sampled from all the data sets,
rameter, as Tabl@. From the table, we can observe that and then the predictor is validated on the remaining data

5.1. Offline Parameter Selection




of each set. In the inter-set validation method, the predic- recognition will be discarded. The experiments compar-
tor is trained with data selected from only some of the sets,ing the recognition results with or without applying perfor-
and validated on the other sets. From example, when ussmance prediction are shown in Figuieln the experiments,
ing FERET data sets, the predictor is trained with data from the data can actually be successfully recognized is called
FB (or FC and Dupl) set, and validated on FC and Dupl “good” data, and a threshold is adjusted to preserve a certain
(or FB) sets. When using FRGC V1.0 data sets, the predic-percentage of good data for recognition. The percentage is
tor is trained with experiment 1 (or experiment 4 ) set, and denoted a$>, and the threshold corresponding to e&tls
validated on experiment 4 (or experiment 1). The intra-set obtained from training sets. The experiments results sum-
validation method assumes that we can obtain training datamarized in Tables show that performance are greatly im-
from different environments while inter-set validate method proved by applying performance prediction. For example,
simulates the situation that we can only obtain training datathe recognition rate of FERET FB set is increased to 96.2%
of limited environments. from 80.0% when only 10% good data is discarded. For
Figure5 shows the intra-set validation results on FERET the query sets that usually have low recognition rate, such
data sets, and the false alarm rate and positive error rate aras FERET FC, FERET Dupl, and FRGC experiment 4, the
further summarized in Tablé for both intra-set and inter-  performance improvement is also obvious. It is shown the
set validation. The overall error rate of the performance pre- error rate is near zero when only 10% of good data are pre-
dictor is between 15% and 25% for FERET sets and FRGCserved. But, the price paid is that many useful data is also
experiment 1 while FRGC experiment 4 shows worse accu-discarded. It remains our future research to preserve all the
racy. From the table, we can see that the accuracy of inter-data while still improving face recognition performance.
set validation is only slightly worse than intra-set validation,
which demonstrates that the presented prediction method isfable 5. Summ_ary of rank 1 recognition rate with and without per-
not constrained in a specific environment, but can be ap-formance prediction

plied in various environments after the predictor has been DataSet | All | P=90%| P=60%] P =10%
trained FERETFB | 80.0% | 96.2% | 99.7% | 100.0%

FERETFC | 49.3% | 93.7% 96.4% 100.0%
FERET Dupl | 34.7% | 82.9% 93.1% 100.0%

TaoFesFe FRGCExp. 1| 75.0% | 91.8% | 100.0% | 100.0%
o % Feret Dopd FRGC Exp. 4| 23.9% | 57.2% | 64.3% | 97.9%

o4

5.3. Adjusting Face Alignment Online

Positive Error Rate

4’3;;-.-3: ..... All the above experiments use the manually marked eye
o 02 _ 04 o6 ) positions for face alignment. However, real world appli-

_ eSS dllam Rate _ ~_ cations require automatic eye localization. Although some
Figure 5. ROC curves of predictor on FERET (intra-set validation) eye localization methods have been developed, there still
exist localization errors, so the results of using automatic

Table 4. Summary of performance prediction accuracy with intra- €y€ localizations are consistently lower than those of using

-
08

set and inter-set cross-validation on FERET and FRGC manually marked eye[17]. In addition, the problem if
Data Set Prediction accuracy the ma_nually marked eye positions can provide the op_tlmal
([false alarm rate, positive error rate]) face alignment for recognition has not been answered in the
Intra-set validation Inter-set validation face recognition community.
FERET FB %8'1?22’8'}223} %8&;3’8?2;3} Our method automatically adjusts the eye position
CERETFC [0.1079,0.2121] [0.1218,0.2096] around an initial eye position, WhICh.IS automatically or
0.1601,0.1623 0.1921,0.1622 manually marked, for better recognition. In our experi-
FERET Dup1| |0-0961,0.3106 0.0843,0.3629 ments, 9 candidates are searched around each initial eye.
%g'éggg’ggg‘% %g'%gg’ggi’i} The distance between neighbor candidates is 2 pixel. There
FRGCEXp.- 1| 101649 0.2025 0.1447. 0.2500 are totally81 eye-pair candidates to be evaluated. We calcu-
FRGC Exp. 4| 10-1295,0.5625 0.2366, 0.5000 late thef; of each eye-pair candidate to represent its recog-
P [0.2634, 0.3625] [0.3259, 0.3500] nition quality. The eye-pair candidate corresponding to the

maximal f; is selected as the adjusted eyes for alignment.
The predictor is applied on validation sets to improve Table6 compares the recognition rates of using the origi-
the recognition results. To improve the recognition per- nal eyes and adjusted eyes. In this experiment, the auto-
formance, the data predicted to cause success recognitiomatic eye localization method inf] is used. Itis observed
will be preserved while the data predicted to cause failure that the adjusted eyes not only outperform the automatically
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Figure 6. CMC curves of face recognition with and without performance prediction: (a) FERET FB set; (b) FERET FC set; (c) FERET
Dup1 set; (d) FRGC V1.0 Experiment 1 set; (e) FRGC V1.0 Experiment 4 set

detected eyes, but also provide better recognition accuracy[3] Richard O. Duda, P.E.Hart, and David G. StoPattern classifica-

than the manua”y marked eyes. tion, second ed., John Willey Sons, 2000.
[4] G. Givens, J. R. Beveridge, B. A. Draper, P. Grother, and P. J.
Table 6. Summary of rank 1 recognition rate with adjusted eyes Phillips, How features of the human face affect recognition: a statis-
- . . tical comparison of three face recognition algorithnr@®/PR, vol. 2.
Data Manual | Adjusted on| Automatic | Adjusted on 2
Set eyes | manual eyes eyes automatic eyes
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FERET Dupl| 34.8% 24.6% 30.6% 22.9% leries, IEEE International Workshop on Analysis and Modeling of
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