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Abstract
It is a challenging task to accurately model the perfor-

mance of a face recognition system, and to predict its indi-
vidual recognition results under various environments. This
paper presents generic methods to model and predict the
face recognition performance based on analysis of similar-
ity measurement. We first introduce a concept of “perfect
recognition”, which only depends on the intrinsic struc-
ture of a recognition system. A metric extracted from per-
fect recognition similarity scores (PRSS) allows modeling
the face recognition performance without empirical testing.
This paper also presents an EM algorithm to predict the
recognition rate of a query set. Furthermore, features are
extracted from similarity scores to predict recognition re-
sults of individual queries. The presented methods can se-
lect algorithm parameters offline, predict recognition per-
formance online, and adjust face alignment online for better
recognition. The experimental results show that the perfor-
mance of recognition systems can be greatly improved using
presented methods.

1. Introduction

How to evaluate the performance of an algorithm has
been studied for many years in the computer vision commu-
nity. Especially with the intensive research and application
of biometric systems, the performance modeling and pre-
diction receives a lot of attention since it involves the great
concerns of security and privacy [14]. Face recognition is
one of the most popular biometric systems. However, cur-
rent face recognition systems always have errors, and their
performance varies under different environments. This pa-
per presents generic methods to model and predict the sys-
tem performance based on analysis of similarity scores.

In our work, the “performance” of a recognition sys-
tem means its accuracy in correctly matching face images.
We do not consider other aspects of performance, such as
speed, cost, availability and maintainability. We also use
“failure recognition” to refer to the misclassification of a

given input image. We first introduce a concept of “perfect
recognition” and a statistical analysis of similarity scores
from “perfect recognition”. Such analysis only depends on
the intrinsic structure of a recognition system, and provides
a metric that can characterize the recognition performance
under different environments without empirical testing. The
performance metric is further assumed to be Gaussian dis-
tributions under the cases of success and failure recognition,
and is used to predict the recognition accuracy of a query set
via an EM algorithm. To predict individual recognition re-
sults, we extract features by comparing actual recognition
results with their corresponding perfect recognition results,
and train a performance predictor with the extracted fea-
tures.

Our methods can select optimal or near-optimal algo-
rithm parameters offline without using additional training
data, predict face recognition result online, and adjust the
face alignment online for better recognition. Experiment
results demonstrate that our methods can significantly im-
prove the performance of a face recognition system. In this
paper, our methods are validated on PCA based face recog-
nition systems [7]. However, the methods can be easily gen-
eralized to any other recognition systems using similarity
scores.

The paper is organized as following. Related work is
reviewed in Section2. In Section3, we introduce the mod-
eling method of a face recognition system. The face recog-
nition prediction methods are introduced in Section4. Ex-
periments results are presented in Section5. We conclude
in Section6.

2. Related Work

Sampling methods are the most popular methods to em-
pirically evaluate a recognition system. In these methods,
the training and testing is conducted separately on different
sets which are randomly sampled or specially designed. The
typical random sampling methods include cross validation
method and Bootstrap method [3]. To study the system per-
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formance under specific environments, special experiments
are designed, such as the face recognition vendor test sets of
FERET [9] and FRGC [8]. Although such specifically de-
signed experiments can directly assess the performance of a
system under typical circumstance, they cannot perform on-
line performance prediction, and they need to acquire train-
ing data for different environments.

There are already some work on performance model-
ing and prediction of biometric systems, such as fingerprint
recognition[11], iris recognition[10], and face recognition
[9, 8, 4]. In [11], the quality of a fingerprint image is de-
fined as the normalized distance between matching and non-
matching similarity scores. A 11-dimensional feature vec-
tor is extracted from image analysis algorithms to identify
the existence of feature points, e.g., minutia, and outliers.
Then a Neural Network is trained using the feature vectors
to predict the image quality. The experiments show that
the images with higher predicted quality will achieve bet-
ter recognition accuracy. The feature extraction method for
fingerprint image quality prediction cannot be directly used
to face recognition since most face recognition methods use
holistic appearance instead of feature points.

Schmid et. al. provide a probabilistic estimation of
lower bound of Iris recognition algorithms based on analy-
sis of the hamming distance between query and gallery
iris images [10]. The distance is assumed to be a single
Gaussian distribution under both genuine and imposter hy-
pothesis, and the likelihood ratio is used to identify the pat-
tern best matching the query iris. With learned parameters,
the method estimates ROC of iris recognition by applying
the Chernoff bound theory and the Large Deviation theory.
However, both of the lower bounds only provide approxi-
mate error orders. They cannot be used to predict either an
individual recognition result, or the performance of systems
which do not use likelihood ratio method for recognition.

Givens and Beveridge et. al. apply statistical tools to
analyze how the human face features, such as age, race,
gender, skin, glasses, and expression, affect face recogni-
tion accuracy [4]. A generalized linear model is built to
regress the relationship between the affecting factors and
recognition accuracy. The analysis of variance (ANOVA) is
conducted to study how significantly each factor affects the
recognition accuracy. To model the performance, the statis-
tical model needs to explicitly identify each affecting factor,
which is an extremely difficult task in practical implementa-
tion. Also, such factors cannot totally model the face recog-
nition performance. It is shown that about 34% of variance
cannot be explained by the generalized liner model.

Some other work uses similarity scores to predict sys-
tem performance. Li et. al. cluster the similarity scores into
different sets, and then use the distance among the sets as
features which are selected and combined with AdaBoost to
detect failure recognition [6]. A problem is that AdaBoost

usually needs a large pool of features and many training
samples, so over 10,000 samples are used in [6]. Such a
large number of training samples are usually difficult to col-
lect for practical systems. The similarity scores are also
used to predict CMC curves with a small set of gallery data
[5, 13]. In their methods, the rank k recognition results are
modeled using parametric models. With model parameters
estimated from a small gallery set, their methods can predict
CMC when more gallery data are applied. Their method can
only work well for the case that gallery data and query data
are under the same condition, and cannot predict individual
recognition results online either.

3. Performance Modeling

In this section, we analyze face recognition systems, and
then introduce a concept of “perfect recognition”. By ana-
lyzing the similarity scores output from perfect recognition,
we present a metric that can model system performance
without using additional training data.

3.1. Model of Face Recognition Systems

There is no shortage of algorithmic approaches to face
recognition [15]. The function of a face recognition sys-
tem is to map a query (also called probe) image to a label
that represents its identification. Usually a face recognition
system consists of at least twointrinsic components, i.e.,
a set ofgallery images and a face recognitionalgorithm.
The gallery set, denoted asG = {g1, g2, ..., gn}, includesn
exemplars of known identification to be used for the com-
parison with query data. A face recognition algorithm maps
query data to a feature space, measures the similarity be-
tween query data and gallery data, and outputs the identi-
fication of query data . For a query image, a recognition
algorithm usually outputsn similarity scores corresponding
to n gallery images respectively. For rank k recognition, the
system outputs labels of the gallery images corresponding
to thek largest similarity scores.

The similarity score plays an important role in face
recognition because it relates query images with both the
recognition algorithm and each gallery image available in
the system. The similarity score is denoted asS(xi, gj),
or S(i, j), for the comparison between the queryxi and
the gallerygj . There are many type of similarity measure-
ments [1], and larger similarity scores mean better recogni-
tion. In our work, all the similarity scores are sorted in a
descending order, and are further normalized to the range
[0, 1]. So the set of similarity scores of dataxi are repre-
sented asSi = {S(i, j1) = 1, S(i, j2), ..., S(i, jn) = 0},
wherejk indicates the label of gallery data corresponding
to the k-th sorted similarity score. The largest similarity
score is called “matching” score since it represents the best
matching between query and gallery while the remaining



similarity scores are called “non-matching” scores.

3.2. Perfect Recognition

When all the intrinsic components of a recognition sys-
tem are given, we believe that its performance is actually
fixed, but unknown to users. To empirically measurement
its performance, we need large sets of query data with
ground truth. The resulting performance analysis will ap-
ply only to the particularly query images and will not be
extendable to images, even from the same people, if taken
in unknown environments. In this work, we utilize statisti-
cal analysis of similarity scores to discover the relationship
between the intrinsic structure of a recognition system and
its performance under various environments. To systemati-
cally analyze the intrinsic components of a face recognition
system, we introduce the concept of “perfect recognition”.

The definition of “perfect recognition” is simple and
straightforward. A query setQ is duplicated from the
gallery set, i.e.,Q = G = {g1, ..., gn}. The “per-
fect recognition” uses the duplicated set as the query set
for recognition, and obtains the similarity scores:Si =
{s(gi, g1), s(gi, g2), ..., s(gi, gn)}, i = 1, ..., n. We call
such similarity scores as “Perfect Recognition Similarity
Scores” (PRSS).

The defined perfect recognition has two characteristics.
First, it can achieve 100% recognition accuracy. Second,
the perfect recognition encodes information of all the com-
ponents in a recognition system: it uses all the gallery data,
and the similarity scores encode both the recognition algo-
rithm and its parameters. So by analyzing PRSS, it is possi-
ble to model the performance of a recognition system with-
out using additional query images.

3.3. Performance Metric from Similarity Scores

(a) (b)
Figure 1. Normalized similarity scores of a single query data. (a)
normalized similarity scores sorted in a descending order. (b) his-
togram of normalized similarity scores

An example of PRSS is shown in Figure1, where the
system uses FERET gallery data and PCA based recog-
nition algorithm. It shows that non-matching scores (less
than 1) are much smaller than the matching score (equal to
1), and non-matching scores can be modeled using a single

Gaussian model. To quantitatively characterize the differ-
ence between matching and non-matching scores for data
xi, a measurementqi is calculated as Equation (1).

qi =
S(i, j1) − µnm

i

σnm
i

(1)

whereµnm
i andσnm

i are the mean and standard deviation of
non-matching scoresS(i, jk), k = 2, ..., n. Such definedqi

has also been used to represent image quality in fingerprint
recognition [11]. Based on the distance between matching
and non-matching scores, we define a metric from similarity
scores asfi = exp{ qi

λ }, whereλ is a constant to scale the
performance metric. It is set as 20 in this paper. However,
our method is insensitive to the value ofλ. For a recognition
system, the mean of allfi’s, i.e. f =

P
i fi

n , is used to
describe the whole set of PRSS.

Intuitively, a system with good performance should also
be able to well discriminate the gallery data, regardless of
query data. Since PRSS represent the similarity measure-
ment among gallery data, the metricf extracted from PRSS
is able to model the system performance. To quantitatively
demonstrate the intuition, the following experiments are de-
signed. Firstly, parameters of a recognition algorithm are
changed to get different recognition systems. In a PCA
based recognition system, the parameters can be the dimen-
sion of subspace, the measurement methods (L1, L2 or Co-
sine measurements), and the measurement space (“Euclid-
ean” or “Mahalanobis” space) [1]. Thenf of each system is
calculated, and the actual recognition accuracy is also vali-
dated with a query set.

(a) (b)
Figure 2. PRSS of two systems using FRGC V1.0 Experiment 1
data set. In each graph, the horizontal axis is the rank, and the
vertical axis is the corresponding PRSS values. (a) dim = 40, space
= Euclidean, method = Cosine. The recognition rate is 37.2%,
f = 1.1417. (b) dim = 100, space = Euclidean, method = L2. The
recognition rate is 73.3%.f = 1.6785

Figure2 shows PRSS of two PCA based recognition sys-
tems with different parameters. As observed from the fig-
ure, the system with better performance has larger differ-
ence between matching similarity scores and non-matching
similarity scores, so itsf is larger. More relationship be-
tweenf and actual recognition rates under different query
sets is shown in Figure3, from which we observe that
the recognition rate almost monotonically increases with
f . Such relationship can be fitted with a generalized linear



model(GLM). The generalized linear model that character-
izes the relationship between the recognition accuracy and
f is called “performance characteristic curve” in this paper.

(a) (b)
Figure 3. Relationship betweenf and actual recognition perfor-
mance. Blue and red points represent the results of using different
measurement methods. The lines are the fitting results using GLM
model. (a) systems using FRGC V1.0 experiment 1 data. (b) sys-
tems using FERET FC set

It is also observed from the graphs that the performance
characteristic curve of using Cosine measurement method is
different from that of using L1 and L2 measurement meth-
ods since Cosine measurement method scales the similar-
ity in a different way from other methods. To evaluate the
systems using various measurement methods, a linear cor-
rection algorithm is presented to unify all the performance
characteristics curves into one curve. We assume that all
the performance characteristic curves achieve the similar
mean and lower bound of performance although their per-
formance upper bound could be different. The mean and
lower recognition rates ofi-th performance characteristic
curve are denoted asPm(i) andP d(i). Since all the curves
are near linear, the average gradient ofi-th curve is approxi-

mated asP
m(i)−P d(i)

fm(i)−fd(i)
wherefm(i) andfd(i) are the metric

corresponding toP (i)m andP (i)d respectively. Based on
the assumption thatfm(i) ≈ fm(j) andfd(i) ≈ fd(j) for
i-th andj-th curves, we have

f(j) ≈ fm(i) − fd(i)
fm(j) − fd(j)

(f(i) − fd(i)) + fd(j) (2)

Equation (2) unifies a metricf(i) on thei-th curve to the
j-th curve, and only PRSS performance metrics are needed.
The actual recognition rate is eliminated by assuming simi-
lar mean and low performance bounds. This assumption, of
course, is only very approximate and may introduce some
errors during parameter selection. However, it allows us to
avoid using training data for offline parameter tuning and
can be generalized to other measurement methods due to its
simplicity.

Figure 4 shows the unified performance characteristic
curve. The monotonic relationship between unifiedf and
system performance can be used to select system parame-
ters offline to achieve optimal or near-optimal performance.
More experiment results are presented in Section5.

(a) (b)
Figure 4. Relationship between unified metrics and actual recog-
nition rates of different systems. (a): systems using FRGC V1.0
experiment 1 data set. (b) systems using FERET FC data set

4. Performance Prediction

Actual face recognition results are categorized into two
cases: success recognition (SR) and failure recognition
(FR). A variableR(x) is introduced to indicate the recog-
nition accuracy of queryx. R(x) is defined as Equation
(3), whereΦ(x) is the label output from a face recognition
system, andI(x) is the true label of queryx.

R(x) = 1 : I(x) = Φ(x)
−1 : I(x) 6= Φ(x) (3)

R(x) = 1 indicates a success recognition, andR(x) = −1
otherwise.

In this section, we study how to predict recognition ac-
curacy of a query set or an individual query data. The per-
formance prediction methods are also based on the analysis
of actual similarity scores. Assuming the metricfi of actual
recognition similarity scores as a single Gaussian under SR
and FR, an EM algorithm is applied to estimate recogni-
tion rates of a query set at different ranks, i.e., to predict its
cumulative matching curve (CMC). Then, our method pre-
dicts an individual query to be a success or failure recog-
nition. For this purpose, a predictor (e.g., a Support Vector
Machine) is trained with features extracted from similarity
scores.

4.1. Predicting CMC of a Query Set

Actual Recognition Similarity Scores (ARSS), which are
the similarity scores between query data and gallery data,
are used to predict the actual recognition performance given
a query set. The performance metric of ARSS is defined in
the same way as PRSS, and is also denoted asfi for query
dataxi. In fact, PRSS can be seen as a special case of ARSS
since the query set in perfect recognition is the duplication
of gallery data.

We modelfi using a single Gaussian distribution un-
der SR or FR , i.e.,P (fi|SR) = N(fi;µs, σs) and
P (fi|FR) = N(fi;µf , σf ). Given a query set, the distri-
bution offi is actually a mixture of Gaussian, as Equation
(4), where its two components correspond to success and



failure recognition respectively.

P (fi) = πsP (fi|SR) + πfP (fi|FR) (4)

In (4), πs andπf are the percentages of success and failure
recognition, andπs + πf = 1. Thereforeπs is actually the
recognition rate of rank1. Given a data set, we can apply an
EM algorithm to estimate the model parameters, therefore
to predict the recognition rate.

The previously definedfi only characterizes recognition
quality of rank 1 . Following the same principle, the met-
ric fk

i are defined to characterize the recognition quality of
rankk, as Equation (5):

qk
i =

S(i, j1) − µnm
i (k)

σnm
i (k)

fk
i = exp{qk

i

λ
} (5)

where µnm
i (k) and σnm

i (k) are the mean and stan-
dard deviation of rank k non-matching scores
{S(i, jk+1), ..., S(i, jN )}. Compared with the previ-
ously definedfi for rank 1 recognition, the non-matching
scores in Equation (5) are limited to the scores afterk-th
rank. The reason behind is that for rankk recognition, the
first k similarity scores are all matching scores, and the
maximum of matching scores isS(i, j1).

To estimate the parameters in the mixture of Gaussian
model, an EM learning algorithm is applied. It needs an ini-
tialization of mean and standard deviation at rank 1, which
can be learned from a small set of data. We assume that the
parameters of the mixture modelP (fk

i ) smoothly change
with increasing rankk, so the estimation results from rank
k can be used as the initialization of rankk+1. Also recog-
nition rate of rankk + 1 is not less than the recognition rate
of rank k, which can help smooth the prediction result of
CMC. The EM algorithm to predict CMC is summarized in
Table1.

4.2. Predicting Individual Recognition

To predict each individual recognition result as success
or failure recognition, the relationship of ARSS and PRSS
are further studied. If an actual recognition is closer to its
corresponding perfect recognition, it is more likely to get a
success recognition result. The difference between an actual
recognition and its corresponding perfect recognition can be
quantitatively represented by the difference between ARSS
and PRSS. Mathematically, the similarity score difference
vectorD1

x of rank 1 is defined as:

d1
k(x) = s(x, jk) − s(j1, jk)
D1

x = {d1
1(x)w1, ..., d

1
n(x)wn} (6)

wheres(x, jk) is k-th score of ARSS, ands(j1, jk) is thek-
th score of PRSS corresponding to rank 1 recognition result.

• Given a query set. Initialize model with parameters
learned from a small set of query data.C0 = 0;

• For k = 1...T , estimate the recognition rate of rankk
as the follows.

1. Initialize the mixture model P (fk
i ) =

πk
s N(fk

i ;µk
s , σk

s ) + πk
fN(fk

i ;µk
f , σk

f ) with
the parameters of rankk − 1, i.e. µk = µk−1,
σk = σk−1, andπk = πk−1.

2. For each dataxi in the query set, calculatefk
i as

Equation (5). The set offk
i is applied to learn

the parameters ofP (fk
i ) using the standard EM

algorithm.

3. The weight corresponding to the component with
larger mean in the mixture model isπs, andCk =
max(πs, Ck−1).

• Output CMC curve,Ck, k = 1, ..., T .

Table 1. Algorithm of predicting CMC curve

The difference ofk-th similarity scored1
k(x) is smoothed by

a weightwk to emphasize the scores of first several ranks
since they are more important for recognition. In this paper,

wk is defined aswk = exp{−(k−1)2

2σ2
r

} whereσr is set as 20.

Based on our experiments, the first differenced1
1(x)

can separate about 50% of success recognition results
from the failure recognition results. However, it is still
not enough to predict all the success and failure recogni-
tion cases. So the difference vectors of more ranks are
included as features. For rankm, the difference vec-
tor is Dm

x = {dm
1 (x)w1, ..., d

m
n (x)wn} wheredm

k (x) =
s(x, jk) − s(jm, jk). The extracted feature vectorsVx is
as:

Vx = { d1
1(x)w1, ..., d

1
K(x)wK ,

...,

dM
1 (x)w1, ..., d

M
K (x)wK}

where the difference between ARSS and FRSS of the first
M ranks are used. For each rank, only difference of the first
K scores are used. Totally there areM ∗K elements in the
feature vector (some elements may be redundant because
s(x, j1) = s(j1, j1) = 1 due to normalization).

A Support Vector Machine (SVM) [2] is trained with ex-
tracted features to predict face recognition results. Usually,
a SVM outputs a continuous valuedis(Vx), which repre-
sents a distance of input dataVx to the class boundary in a
high dimensional feature space. By thresholding the con-



tinuous outputdis(Vx) , the SVM gives the prediction re-
sultsR′(x) as failure recognition (R′(x) = −1) or success
recognition (R′(x) = 1), as in Equation (7).

R′(x) = 1 : dis(Vx) >= dish

= −1 : dis(Vx) < dish (7)

R′(x) is the predicted value ofR(x) in Equation (3). The
performance predictor also has misclassification error itself.
By adjusting the thresholddish, the predictor shows differ-
ent false alarm rate and positive error rate. The false alarm
of performance predictor means that the data causing fail-
ure recognition is predicted to cause successful recognition,
i.e., R′(x) = 1 andR(x) = −1. The positive error rate is
the case whereR′(x) = −1 andR(x) = 1.

5. Experiments

Two face databases, FERET [9] and FRGC V1.0 [8], are
used in our experiments. FERET provides a fixed gallery
set and some query sets to study recognition performance
under changes of facial expression (FB), illumination (FC)
and age (Dup1). In FRGC experiment 1, both gallery
and query images are taken under controlled environments
while query images in experiment 4 are taken under un-
controlled environments. We implement the PCA-based
recognition method, in which each face is normalized to
the size of 45 by 30, and the pixels at image corners are
removed with an ellipse mask. Pixel intensity is normal-
ized by histogram equalization. The following experiments
show the results of offline selection of system parameters,
recognition performance prediction, and online adjusting
face alignment for better recognition.

5.1. Offline Parameter Selection

In the previous sections, we have shown thatf =
P

i fi

n
can be used to offline select system parameters sincef
has near linear relationship with recognition accuracy with-
out using training data. In this experiment, we try to find
the optimal parameter out of all possible parameters based
on f of PRSS. The parameters include the dimension of
subspace, measurement method and measurement space,
as stated in Section3.3. The performance characteristic
curves for different measurement methods are unified into
one curve by linear correction, and the parameter corre-
sponding to the largest unifiedf is selected as the optimal
parameter. As a result, the selected parameter for FERET is
[200, Cosine, Mahalanobios], which means that the sys-
tem uses 200 PCA features, Cosine measurement methods,
and Mahalanobios space. The parameter selected for FRGC
V1.0 Experiment 1 and 4 is[120, Cosine, Mahalanobios].
We test the recognition rates of all the possible parameters,
and compare them with the recognition rate of selected pa-
rameter, as Table2. From the table, we can observe that

different query sets actually need different parameters to
achieve the maximal accuracy. However, the offline se-
lected parameters consistently achieve near-optimal accu-
racy under different environments even the accuracy range
is large for some sets, such as FERET FC.

Table 2. Summary of parameter selection and actual recognition
accuracy

Query Accuracy of Accuracy range Parameters of
Set selected maximal actual

parameter accuracy
FERET FB 80.0% [70.2% , 82.0%] [160, L1, Eucli.]
FERET FC 49.4% [5.2% , 50.7%] [180, Cos., Maha.]

FERET Dup1 34.7% [22.6% , 38.8%] [100, Cos., Maha.]
FRGC Exp. 1 75.1% [32.7% , 75.5%] [100, Cos., Maha.]
FRGC Exp. 4 23.4% [4.9% , 27.0%] [100, Cos., Maha.]

5.2. Recognition Performance Prediction

We apply the algorithm shown in Table1 to predict the
recognition accuracy of a query set. The prediction results
are summarized, and compared with actual recognition re-
sults in Table3. In this experiment, the initial parameters
of the Gaussian models are learned from a small set (20%
of the whole query set), and are used to predict the perfor-
mance on the remaining data. Due to model error, the algo-
rithm usually underestimates the recognition rate. However,
the method provides a rough estimation of the error range
in the case that only a small portion of ground truth is pro-
vided.

Table 3. Summary of predicting recognition rate (actual recogni-
tion rate vs. predicted recognition rate)

Data Set Rank=1 Rank=5 Rank=15
FERET FB 80% vs. 71% 90% vs. 76% 96% vs. 82%
FERET FC 49% vs. 42% 82% vs. 47% 90% vs. 57%

FERET Dup1 35% vs. 31% 46% vs. 36% 55% vs. 48%
FRGC Exp. 1 76% vs. 62% 90% vs. 75% 96% vs. 78%
FRGC Exp. 4 23% vs. 19% 45% vs. 32% 63% vs. 42%

To predict individual recognition results, the difference
values between ARSS and FRSS are extracted as features
to train a SVM to classify individual recognition results into
two cases: success and failure cases. In the following exper-
iments, we firstly validate the accuracy of trained predictor
on FERET and FRGC data sets, and then apply the predic-
tor to improve face recognition performance. The perfor-
mance predictor is validated using cross-validation meth-
ods, in which50% data is used for training, and the re-
maining50% data is used for validation. To validate the
generalization capability of trained predictor, two types of
cross-validation methods, intra-set and inter-set validation
methods, are applied. In the intra-set validation method, the
training data is uniformly sampled from all the data sets,
and then the predictor is validated on the remaining data



of each set. In the inter-set validation method, the predic-
tor is trained with data selected from only some of the sets,
and validated on the other sets. From example, when us-
ing FERET data sets, the predictor is trained with data from
FB (or FC and Dup1) set, and validated on FC and Dup1
(or FB) sets. When using FRGC V1.0 data sets, the predic-
tor is trained with experiment 1 (or experiment 4 ) set, and
validated on experiment 4 (or experiment 1). The intra-set
validation method assumes that we can obtain training data
from different environments while inter-set validate method
simulates the situation that we can only obtain training data
of limited environments.

Figure5 shows the intra-set validation results on FERET
data sets, and the false alarm rate and positive error rate are
further summarized in Table4 for both intra-set and inter-
set validation. The overall error rate of the performance pre-
dictor is between 15% and 25% for FERET sets and FRGC
experiment 1 while FRGC experiment 4 shows worse accu-
racy. From the table, we can see that the accuracy of inter-
set validation is only slightly worse than intra-set validation,
which demonstrates that the presented prediction method is
not constrained in a specific environment, but can be ap-
plied in various environments after the predictor has been
trained.

Figure 5. ROC curves of predictor on FERET (intra-set validation)

Table 4. Summary of performance prediction accuracy with intra-
set and inter-set cross-validation on FERET and FRGC

Data Set Prediction accuracy
([false alarm rate, positive error rate])

Intra-set validation Inter-set validation

FERET FB
[0.1063, 0.1563]
[0.1568, 0.1239]

[0.1174, 0.2079]
[0.1973, 0.1530]

FERET FC
[0.1079, 0.2121]
[0.1601, 0.1623]

[0.1218, 0.2096]
[0.1921, 0.1622]

FERET Dup1
[0.0961, 0.3106]
[0.1630, 0.2545]

[0.0843, 0.3629]
[0.1783, 0.2555]

FRGC Exp. 1
[0.0896, 0.2574]
[0.1642, 0.2025]

[0.1053, 0.3114]
[0.1447, 0.2500]

FRGC Exp. 4
[0.1295, 0.5625]
[0.2634, 0.3625]

[0.2366, 0.5000]
[0.3259, 0.3500]

The predictor is applied on validation sets to improve
the recognition results. To improve the recognition per-
formance, the data predicted to cause success recognition
will be preserved while the data predicted to cause failure

recognition will be discarded. The experiments compar-
ing the recognition results with or without applying perfor-
mance prediction are shown in Figure6. In the experiments,
the data can actually be successfully recognized is called
“good” data, and a threshold is adjusted to preserve a certain
percentage of good data for recognition. The percentage is
denoted asP , and the threshold corresponding to eachP is
obtained from training sets. The experiments results sum-
marized in Table5 show that performance are greatly im-
proved by applying performance prediction. For example,
the recognition rate of FERET FB set is increased to 96.2%
from 80.0% when only 10% good data is discarded. For
the query sets that usually have low recognition rate, such
as FERET FC, FERET Dup1, and FRGC experiment 4, the
performance improvement is also obvious. It is shown the
error rate is near zero when only 10% of good data are pre-
served. But, the price paid is that many useful data is also
discarded. It remains our future research to preserve all the
data while still improving face recognition performance.

Table 5. Summary of rank 1 recognition rate with and without per-
formance prediction

Data Set All P = 90% P = 60% P = 10%
FERET FB 80.0% 96.2% 99.7% 100.0%
FERET FC 49.3% 93.7% 96.4% 100.0%

FERET Dup1 34.7% 82.9% 93.1% 100.0%
FRGC Exp. 1 75.0% 91.8% 100.0% 100.0%
FRGC Exp. 4 23.9% 57.2% 64.3% 97.9%

5.3. Adjusting Face Alignment Online

All the above experiments use the manually marked eye
positions for face alignment. However, real world appli-
cations require automatic eye localization. Although some
eye localization methods have been developed, there still
exist localization errors, so the results of using automatic
eye localizations are consistently lower than those of using
manually marked eyes [9, 12]. In addition, the problem if
the manually marked eye positions can provide the optimal
face alignment for recognition has not been answered in the
face recognition community.

Our method automatically adjusts the eye position
around an initial eye position, which is automatically or
manually marked, for better recognition. In our experi-
ments, 9 candidates are searched around each initial eye.
The distance between neighbor candidates is 2 pixel. There
are totally81 eye-pair candidates to be evaluated. We calcu-
late thefi of each eye-pair candidate to represent its recog-
nition quality. The eye-pair candidate corresponding to the
maximalfi is selected as the adjusted eyes for alignment.
Table6 compares the recognition rates of using the origi-
nal eyes and adjusted eyes. In this experiment, the auto-
matic eye localization method in [12] is used. It is observed
that the adjusted eyes not only outperform the automatically



(a) (b) (c) (d)

Figure 6. CMC curves of face recognition with and without performance prediction: (a) FERET FB set; (b) FERET FC set; (c) FERET
Dup1 set; (d) FRGC V1.0 Experiment 1 set; (e) FRGC V1.0 Experiment 4 set

detected eyes, but also provide better recognition accuracy
than the manually marked eyes.

Table 6. Summary of rank 1 recognition rate with adjusted eyes

Data Manual Adjusted on Automatic Adjusted on
Set eyes manual eyes eyes automatic eyes

FERET FB 79.8% 85.1% 74.8% 84.8%
FERET FC 49.3% 59.8% 43.3% 57.2%

FERET Dup1 34.8% 44.6% 30.6% 42.9%

6. Conclusion

In this paper, we present our work on performance mod-
eling and prediction of face recognition systems based on
the analysis of similarity scores. We introduce a concept
of “perfect recognition,” and analyze the output from “per-
fect recognition” to model the intrinsic system performance
without training data. Based on the analysis of actual
recognition similarity scores, we present methods to pre-
dict recognition results of individual or a set of query data.
The presented methods provide various ways to improve the
performance of recognition systems. The future work will
apply our methods to other similarity measurement based
biometric systems.
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