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ABSTRACT

A new method for representing subgrid-scale cloud structure in which each model column is decomposed
into a set of subcolumns has been introduced into the Geophysical Fluid Dynamics Laboratory’s global
atmospheric model AM2. Each subcolumn in the decomposition is homogeneous, but the ensemble repro-
duces the initial profiles of cloud properties including cloud fraction, internal variability (if any) in cloud
condensate, and arbitrary overlap assumptions that describe vertical correlations. These subcolumns are
used in radiation and diagnostic calculations and have allowed the introduction of more realistic overlap
assumptions. This paper describes the impact of these new methods for representing cloud structure in
instantaneous calculations and long-term integrations. Shortwave radiation computed using subcolumns and
the random overlap assumption differs in the global annual average by more than 4 W m�2 from the
operational radiation scheme in instantaneous calculations; much of this difference is counteracted by a
change in the overlap assumption to one in which overlap varies continuously with the separation distance
between layers. Internal variability in cloud condensate, diagnosed from the mean condensate amount and
cloud fraction, has about the same effect on radiative fluxes as does the ad hoc tuning accounting for this
effect in the operational radiation scheme. Long simulations with the new model configuration show little
difference from the operational model configuration, while statistical tests indicate that the model does not
respond systematically to the sampling noise introduced by the approximate radiative transfer techniques
introduced to work with the subcolumns.

1. Cloud vertical structure in the global
atmospheric model AM2

Current global models of the atmosphere, such as
those used to predict short-term weather or long-term
climate change, have horizontal grid spacings of tens to
hundreds of kilometers. At these resolutions, many
processes, including the treatment of clouds and radia-
tion, must be treated statistically. In particular, calcu-

lations of radiation and precipitation fluxes require a
conceptual model of subgrid-scale cloud structure. This
model usually accounts for the possibility of horizontal
variations within each grid cell: some parts of the grid
may be cloudy and others clear, for example, and some
parts of the cloud may be thicker than others. The con-
ceptual model also describes the relationship between
the subgrid-scale structures in different vertical layers.

In the global atmospheric model developed by the
Geophysical Fluid Dynamics Laboratory (AM2; GFDL
Global Atmospheric Model Development Team 2004),
cloud structure is relatively simple. Within each grid
cell, the model predicts the areal fraction occupied by
clouds and the grid-mean mass concentrations of cloud
ice and liquid and uses the random overlap assumption
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to determine structure in the vertical. Clouds are as-
sumed to be uniform within the cloudy portion of each
cell. The overlap assumption is implemented in radia-
tion calculations by computing the transmittance (and
reflectance, in the shortwave) of each layer in the col-
umn as the cloud fraction-weighted sum of clear- and
cloudy-sky transmittance. Fluxes of stratiform precipi-
tation are computed separately for the clear and cloudy
portions of each layer beginning at the top of the model
atmosphere and using the fractional areas occupied by
cloud-over-cloud, cloud-over-clear, etc. transitions at
each layer interface (Jakob and Klein 2000).

We had several reasons to want to change this state
of affairs. One was the reliance on the random overlap
assumption, which is inconsistent with observations
(Hogan and Illingworth 2003; Mace and Benson-Troth
2002; Tian and Curry 1989) and produces vertically pro-
jected cloud fractions that depend on the number of
model layers spanning a given cloud layer. The imple-
mentation in AM2 was also inflexible, because neither
the random overlap assumption nor the assumption of
cloud homogeneity within the model grid cell could be
relaxed. The small- (subgrid-) scale variability in cloud
condensate that exists in nature was treated in AM2 by
tuning parameters in physical parameterizations. In ra-
diation calculations, for example, cloud ice and liquid
water concentrations are reduced by 15% before com-
puting radiative properties (Tiedtke 1996). We are con-
sidering a cloud scheme that takes a more physically
based approach to subgrid-scale variability by assuming
a probability distribution function (PDF) for the total
water specific humidity within each grid cell (Tompkins
2002). We hope that this approach will reduce or elimi-
nate the need for tuning, but it is not clear how we
would couple the potentially complicated distributions
of condensate predicted by the assumed PDF cloud
scheme to existing methods for computing radiation
and precipitation fluxes.

This paper describes the implementation in AM2 of a
general scheme to represent subgrid-scale cloud struc-
ture, including cloud overlap, as a set of subcolumns
within each grid column. We detail the ways subcol-
umns are generated in AM2 and how these subcolumns
are linked to radiation and precipitation calculations
and to model diagnostics. We then take advantage of
the flexible way cloud structure can be represented us-
ing subcolumns to calculate the impact that overlap and
subgrid-scale homogeneity assumptions have on the ra-
diative fluxes computed from the cloud fields produced
by AM2. The impact on multiyear interactive simula-
tions with specified sea surface temperature is then as-
sessed.

2. Representing cloud structure using an ensemble
of subcolumns

a. Creating ensembles of subcolumns

We represent cloud structure within each column of
the large-scale model as an ensemble of stochastically
generated subcolumns (Räisänen et al. 2004). Each
layer within each subcolumn is homogeneous, with a
cloud fraction of either zero or one and uniform cloud
liquid and ice concentration. The ensemble as a whole,
however, reproduces the probability distribution func-
tion of cloud ice and liquid, including the cloud fraction,
within each layer, and also obeys the overlap assump-
tions that specify the correlation of clouds and possibly
water vapor in the vertical. Arbitrarily complicated
PDFs and overlap assumptions can be represented, and
sampling errors for cloud properties (i.e., cloud fraction
or the cloud condensate PDF) within individual model
columns can be controlled by varying the number of
subcolumns used. The columns are constructed by
drawing random samples from the distribution of con-
densate (including the clear sky) while simultaneously
imposing vertical structure. Detailed discussion of how
ensembles of subcolumns are generated may be found
in Räisänen et al. (2004) and Pincus et al. (2005). An
example of one set of subcolumns produced from a
profile of cloud properties is shown in Fig. 1.

We include four possible overlap assumptions: ran-
dom, maximum, maximum random, and one in which
overlap changes inverse exponentially from maximum
to random as the distance between a pair of layers in-
creases (Bergman and Rasch 2002; Hogan and Illing-
worth 2000). The latter assumption, which we call “ex-
ponentially decaying overlap,” requires the specifica-
tion of a length scale but has the advantage that the
vertically projected cloud fraction in a given column
does not depend on the number of layers over which a
cloud extends. We also include an option to diagnose
the subgrid-scale distribution of condensate within each
grid cell in a way that is consistent with both the mod-
el’s current predictions of cloud fraction and mean con-
densate and with the PDF used in the cloud scheme
that we are developing. The method for estimating vari-
ability is detailed in the appendix. When internal vari-
ability is included, the overlap of cloud existence and
condensate concentration is specified by defining the
overlap assumption in terms of the rank correlation of
total water (Pincus et al. 2005).

The subcolumns are created using a pseudorandom
number generator. In our experience, incorporating a
random number generator into a deterministic forecast
model requires the careful balancing of two concerns.
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On the one hand, model forecasts should be completely
reproducible and depend only on the state of the atmo-
sphere. In particular, forecasts may not depend on the
number of processors on which the model is run or on
how long the model has been running. In our imple-
mentation, this is enforced by using a separate random
number stream for each large-scale model grid column
and initializing each sequence uniquely and determin-
istically at the beginning of each time step. On the other
hand, techniques that rely on Monte Carlo sampling
(like the decomposition of columns into subcolumns)
require samples, and hence random number sequences,
that are uncorrelated in space and time. Unfortunately,
some popular random number generators (e.g., RAN0
and RAN1 from Press et al. 1986), given similar seeds,
produce sequences whose first few values are corre-
lated. After extensive experimentation, we chose a
FORTRAN 90 implementation of the Mersenne Twis-
ter (Matsumoto and Nishimura 1998) initialized with a

vector of integers comprising the model date and time
and the latitude and longitude of the column center.

b. Computing process rates using subcolumns

Once a given model grid column has been divided
into subcolumns, all-sky radiation fluxes and heating
rates within the column may be computed using the
independent column approximation (ICA), that is, by
calculating the broadband flux in each subcolumn and
averaging. Each of these radiation calculations requires
integrating across the spectrum, typically by computing
fluxes in some number of spectral intervals and com-
posing a weighted average. Given J subcolumns sj and
K spectral intervals centered on wavelengths �k with
spectral weights w(�k), the column-mean ICA flux
�FICA� is defined as

�F ICA� �
1
J �

j

J

F �sj� �
1
J �

j

J

�
k

K

w��k�F��sj, �k�. �1�

FIG. 1. Example subcolumns created from model profiles of cloud fraction and liquid and ice water
concentrations. (top) Profiles of cloud fraction and liquid and ice water concentrations taken from a
single column of AM2 at a single time step. (middle), (bottom) Twenty-five subcolumns created sto-
chastically using an exponentially decaying overlap assumption with a scale length of 1 km and internal
variability in cloud water and ice concentrations diagnosed from the cloud fraction and mean condensate
amount. Gray shades indicate ice and liquid water concentrations. The columns are generated in random
order but are shown here in order of ascending ice-plus-liquid water paths.
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Radiative fluxes are computed every 3 h in AM2, as
compared with the 0.5 h time step for other physical
parameterizations, and yet radiation consumes about
30% of the model runtime. To avoid the large expense
that would be incurred by implementing (1) directly, we
use a simple all-sky implementation of the Monte Carlo
ICA (McICA; Pincus et al. 2003). The radiation scheme
used in AM2 has 18 spectral intervals in the shortwave
and 7 in the longwave. We generate a random sample of
18 	 7 � 25 subcolumns in each model grid column.
Radiative transfer in each spectral band is computed on
a different subcolumn and the column-mean all-sky ra-
diative fluxes and heating rates are determined by sum-
ming across the spectral intervals (equivalently, the
subcolumns), that is,

�F ICA� 
 �
k

K

w��k�F �sk, �k�. �2�

Generating the subcolumns and implementing (2) in-
creases the runtime of AM2 by 2%–3%.

Compared with other radiative transfer schemes
(e.g., Mlawer et al. 1997; Räisänen et al. 2005), AM2
uses relatively few spectral intervals, so we have been
able to include the option to use the ICA by applying
(1) directly. The model runs about 3 times slower using
ICA than McICA though, so this is not a viable alter-
native for routine integrations.

Calculations of stratiform precipitation could, in
principle, be treated using ICA, but this would be very
expensive because no time-saving algorithm like
McICA has yet emerged (though see Larson et al. 2005
for a promising candidate). In our implementation of
AM2, subgrid-scale inhomogeneity in condensate
amounts is neglected in precipitation calculations, and
we approximate the influence of the overlap assump-
tion by determining the likelihood of transitions be-
tween clear and cloudy skies (Jakob and Klein 2000).
This means that the overlap assumption affects both
radiation and precipitation calculations, while assump-
tions about in-cloud inhomogeneity affect only the ra-
diative fluxes.

c. Computing model diagnostics using subcolumns

The use of subcolumns to represent subgrid-scale
structure in large-scale models has a historical prece-
dent: the technique has been in use for more than a
decade as part of the International Satellite Cloud Cli-
matology Project (ISCCP) simulator (Klein and Jakob
1999; Webb et al. 2001; Yu et al. 1996). The ISCCP
(Rossow and Schiffer 1999) produces joint histograms
of cloud-top pressure and cloud optical thickness as a
function of location. These histograms provide a more

refined dataset for model evaluation than do top-of-
atmosphere (TOA) radiative fluxes but cannot be com-
pared directly with large-scale model profiles of cloud
fraction and condensate. The ISCCP simulator bridges
this gap by creating an ensemble of columns, roughly
mimicking the ISCCP retrieval process on each subcol-
umn, and aggregating the results.

The ISCCP simulator consists of two parts: one gen-
erates subgrid-scale structure according to overlap rules
(assuming no in-cloud variability) and the other simu-
lates retrievals made in those subcolumns. We recoded
the simulator to separate these functions. We also
added an option to produce the parameter � � 1 � �̂/�
(Rossow et al. 2002), where � is the (linear) mean op-
tical depth of the cloudy subcolumns and �̂ is the radia-
tive-mean optical thickness, that is, the optical thick-
ness that produces the mean albedo of the cloudy sub-
columns. The quantity � describes the variability of
optical depth � within each grid column. It is equal to 0
when optical depth is uniform in the column and grows
as the variability increases. In AM2, retrieval simula-
tions now use the subcolumns generated for radiation
calculations so that the ISCCP diagnostics reported by
the model are consistent with the cloud structure used
in the process rate calculations.

3. How radiative fluxes depend on cloud structure
assumptions and implementation details

In this section, we use the flexibility of stochastically
generated subcolumns to assess the impact of assump-
tions regarding overlap and subgrid-scale inhomogene-
ity on the instantaneous radiation and precipitation
fluxes in AM2. These impacts depend on the profiles of
cloud fraction and cloud condensate produced by the
model, so results from other models (e.g., Morcrette
and Jakob 2000) provide only loose guidance. To
sample the diurnal and seasonal cycles of cloud prop-
erties, we select profiles produced by AM2 on a 2° 
2.5° latitude–longitude grid every 3 h beginning at 0000
UTC on the first day of every month for 1 yr (1983),
taken from a run in which sea surface temperatures are
specified. Results below are the average of these 96
time steps and, in most cases, a global average weighted
by the area of each model grid column. The same pro-
files of cloud properties are used in all radiation calcu-
lations in this section (i.e., the calculations are diagnos-
tic).

Figure 2 shows the mean difference between TOA
radiative fluxes as computed (i) using the standard
implementation of overlap and (ii) using the stochastic
subcolumns to represent random overlap of uniform
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clouds. The difference in the two calculations of long-
wave fluxes (left panel) is spatially uncorrelated and
almost exactly 0, while the difference between the
shortwave flux calculations (right panel) has substantial
spatial autocorrelation. Furthermore, the global mean
reflected flux computed using subcolumns is 4.1 W m�2

larger than the operational implementation. (The cal-
culations in this section include all columns, including
those with no clouds or those with no incoming solar
radiation, because it is the global average bias that af-
fects model evolution.) The bias in reflected solar ra-
diation between the two implementations of the same
overlap, though discouraging, is not surprising. Bulk
treatments of overlap (i.e., treating the transmittance of
the layer as a weight sum of clear- and cloudy-sky trans-
mittance) are known to disagree in general with col-
umn-by-column radiative transfer calculations, espe-
cially in the shortwave where multiple scattering is
common (Barker et al. 2003). The difference increases
as the overlap assumption becomes more important in
determining radiative fluxes, that is, as the number of

partially cloudy layers increases (as in regions of deep
convection like the Tropics). In large samples, the dif-
ference does not depend on whether ICA or McICA is
used to compute the radiative fluxes in the subcolumns.

One advantage of using subcolumns is that it be-
comes relatively easy to test the impact of particular
assumptions about cloud structure (Pincus et al. 2003).
Table 1, for example, shows the change in globally av-
eraged TOA fluxes and vertically projected cloud frac-
tion as the overlap assumption applied to AM2’s cloud
fields is changed and clouds are assumed to be uniform,
while Table 2 shows the impact of introducing diagnos-
tic in-cloud inhomogeneity while the overlap assump-
tion is fixed. Table 2 indicates that diagnostic inhomo-
geneity (based on the model’s cloud fraction and mean
condensate amount and on two assumptions about the
shape of the distribution of total water) has about the
same effect on TOA fluxes as does the tuning of cloud
optical properties (based on a linear scaling of cloud
condensate amounts intended to account for subgrid-
scale variability). That these two treatments agree so

TABLE 1. The impact on vertically projected cloud fraction, OLR, and reflected solar radiation at the TOA due to changes in the
overlap assumption in GFDL’s global model AM2. Changes are averaged over the globe and the seasonal and diurnal cycles and are
relative to the default random overlap assumption. AM2 produces partially cloudy layers relatively frequently compared with other
global models, so overlap assumptions can play a large role in determining the total cloud fraction and radiative fluxes.

Exponentially
decaying 1-km scale

Exponentially
decaying 2-km scale Max random Max

Cloud fraction (%) �4.1 �6.0 �8.6 �12.3
OLR (W m�2) 0.8 1.2 2.1 2.5
Reflected solar (W m�2) �5.4 �7.4 �9.1 �11.9
Net radiation (W m�2) 4.6 6.2 7.0 9.4

FIG. 2. The difference in TOA radiative fluxes due to two treatments of cloud overlap. The operational version of AM2 implements
random overlap by averaging clear- and cloudy-sky reflectance and transmittance according to cloud fraction and then computing
radiative transfer in a single column. An alternative is to construct an ensemble of subcolumns (as described in the text), compute
radiative transfer in each subcolumn, and average the results (ICA). This figure shows the difference between these two calculations
(ICA minus the original implementation) using the same cloud fields. (left) Longwave fluxes show some sampling noise from the
subcolumn generation, but this noise is spatially uncorrelated and has a global mean difference of less than 0.01 W m�2. (right)
Reflected shortwave fluxes, however, are greater in almost all locations when ICA is used, and the subcolumns reflect more sunlight
by about 4.1 W m�2 in the global mean.
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closely is no doubt lucky, but it also suggests that cloud
schemes that predict (or even diagnose) the PDF of
condensate may well require less arbitrary tuning than
schemes that assume that clouds are homogeneous.

McICA sampling noise depends in part on the struc-
ture of the clouds in which radiative transfer is being
computed, with zero bias in cloud-free columns and
smaller biases when fewer layers are partially cloudy
and/or if clouds are known (or assumed) to be homo-
geneous. Figure 3 shows the central portions of histo-
grams of McICA sampling noise for the global cloud
field produced by AM2 at a single time step. The noise
is computed as the difference of McICA and full ICA
calculations on the set of 25 subcolumns using the ex-
ponentially decaying overlap assumption for the rank
correlation of total water with a length scale of 1 km.
The standard deviation of instantaneous column-by-
column sampling noise in TOA fluxes in AM2 is about
2.5 W m�2 for longwave radiation and 17.8 W m�2 for
shortwave radiation—substantially smaller than esti-
mates made from offline calculations in more compli-
cated clouds fields (e.g., Pincus et al. 2003) even after
accounting for the diurnal variation in incoming sun-
light. Sampling errors in the shortwave can be much
larger (up to 225 W m�2) than in the longwave (up to 25
W m�2) because reflected shortwave radiation depends
on cloud optical thickness at all values of optical thick-
ness, while outgoing longwave radiation (OLR) de-
pends only on cloud-top temperature in all but the thin-
nest clouds (Fig. 3 does not show the largest errors).
Because McICA noise is purely random, the mean er-
ror decreases as the inverse square root of the number
of calculations; instantaneous global mean errors for
both reflected solar and OLR are less than 0.1 W m�2.

4. Changes in climate simulations when
subcolumns are used to describe subgrid-scale
cloud structure

We made three simultaneous modifications to AM2:
shifting the implementation of overlap from a single

TABLE 2. The impact on radiative fluxes caused by introducing
subgrid-scale inhomogeneity in cloud optical thickness. The
change is relative to clouds using the same overlap assumption
(including the specification of length scale in the exponentially
varying overlap assumption), so total cloud fraction is not af-
fected. The variability in each grid cell is estimated from the cloud
fraction and condensate amounts. Clouds in the standard model
are tuned by reducing the condensate amount by 15% before
radiative properties are computed; accounting for realistic
amounts of inhomogeneity allows this tuning to be removed. Fig-
ures are rounded, so the total changes may differ from the sum of
the components.

Relative to
uniform clouds

Inhomogeneous,
tuned

Inhomogeneous,
untuned

1 km 2 km 1 km 2 km

OLR 1.3 1.4 0 0.2
Reflected solar �3.0 �3.1 �0.5 �0.8
Net radiation (W m�2) 1.7 1.7 0.5 0.5

FIG. 3. Sampling noise in TOA radiative fluxes introduced by
McICA in cloud fields produced by AM2. The noise is computed
for a single time step using the cloud fields predicted at 0300 UTC
1 May 1983. We use an overlap assumption that changes from
maximum to random exponentially with a scale length of 1 km
and diagnose internal variability in cloud water and ice concen-
trations based on cloud fraction and mean condensate amount in
each layer. McICA sampling noise is computed as the difference
between McICA and ICA in each grid column. The abscissa is the
same on both plots, and only the central part of both histograms
is displayed. The distribution of errors in the shortwave is much
broader than in the longwave, with single gridpoint errors as large
as 225 W m�2 in the shortwave compared with 25 W m�2 in the
longwave. Global mean errors for both sets of fluxes, though, are
less than 0.1 W m�2.
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computation in each column using mean reflectance
and transmittance to a set of calculations on stochasti-
cally generated subcolumns, changing the subgrid-scale
assumptions from randomly overlapped homogenous
clouds to inhomogeneous clouds following exponen-
tially decaying overlap, and using McICA in lieu of a
deterministic scheme (e.g., ICA) to compute the radia-
tive fluxes. The net impact of the first two changes on
radiative fluxes is fairly small in offline calculations (see
section 3), so we expect a negligible impact on the mod-
el’s simulated climate. The impact of the sampling noise
introduced by McICA on free-running simulations,
however, is less clear, because it is possible that even
small amounts of sampling noise might be amplified by
the many nonlinear feedbacks among clouds, radiation,
and atmospheric temperature and moisture in the
model. Before we can routinely incorporate our
changes into AM2, we must answer two related ques-
tions. First, are climate simulations with AM2 running
McICA better, worse, or about the same as those using
the operational scheme? Second, are simulations with
McICA different (in the sense of statistical significance)
from those using the standard radiation scheme? Sam-
pling noise from both the subcolumn generation and
McICA is known to be unbiased, so different results
would indicate that the sampling noise itself was pro-
cessed by the model nonsymmetrically. Because sam-
pling noise depends on the model state itself, a model
that changed systematically when small random noise
was introduced would be difficult to tune, as changes to
the tuning would affect the mean state, which would
then affect the bias produced by the sampling noise,
requiring further retuning, and so on. As a point of
comparison, in the National Center for Atmospheric
Research (NCAR) Community Atmosphere Model
(CAM), version 1.8, McICA sampling noise alone in-
troduces statistically significant but physically unimpor-
tant changes in low cloud cover and related quantities
(Räisänen et al. 2005). Because the sensitivity of any
given model’s simulation to sampling noise depends on
both the details of the implementation (i.e., the number
of subcolumns and bands used and any methods used to
refine McICA, e.g., Räisänen and Barker 2004) and on
the sensitivity of other parameterizations to noise in
radiative fluxes, our implementation in AM2 must be
tested independently of other models.

In the simulations described below, we use 25 sub-
columns within each column of AM2 to represent cloud
structure. Overlap changes from maximum to random
inverse exponentially with a length scale of 1 km, and
internal variability in cloud condensate is diagnosed
from model values of grid-mean condensate and cloud
fraction as described in the appendix.

a. Evaluating the climate produced by the modified
global model

To assess the climate simulated by the modified
model, we perform a 17-yr integration beginning 1
January 1982 using observed monthly-mean sea surface
temperatures. As noted above, the model differs from
the standard implementation of AM2 in three ways: it
uses subcolumns to represent subgrid-scale cloud struc-
ture, incorporates new overlap assumptions, and uses
McICA to compute radiative fluxes. We discard the
first year of results to allow the model to “spin up.”

Changes to globally averaged cloud and radiation
fields between the modified and operational versions of
the model are only slightly different than in the diag-
nostic calculations. During the last 16 yr of the 17-yr
run, total cloud cover in the modified model decreases
by 4.8%, with OLR increasing by 1.2 W m�2 and re-
flected shortwave radiation decreasing by 3.4 W m�2.
The changes to cloud cover and OLR are just slightly
larger than the diagnostic calculations in which the
cloud fields are held constant (see the first column of
Table 1), indicating that feedbacks to the clouds and
radiation fields are amplified only slightly.

Many standard diagnostics of the climate model (e.g.,
latitude–height plots of the zonal mean temperature or
zonal wind) are nearly identical in the original and
modified models. The largest changes involve the ver-
tically projected low cloud amount, which exhibits siz-
able reductions over the world’s oceans in the Tropics,
subtropics, and at midlatitudes (Fig. 4a). Most of this
change is the direct result of the change in overlap as-
sumption, although there is a small reinforcing compo-
nent from a reduction in the vertically resolved cloud
amount. Vertically integrated liquid water also de-
creases by 10% globally (from 72 to 65 g m�2), indicat-
ing that the clouds are responding slightly to the change
in radiation. Changes to the reflected shortwave radia-
tion are well correlated in space with the changes in low
cloud (Fig. 4b). All changes in reflected solar radiation
are accompanied by compensating changes in radiation
at the surface (not shown), so there is no difference in
absorption between the two runs.

Low clouds differ most strongly between the opera-
tional and modified models because the vertical reso-
lution in both models is highest near the surface, so that
near-surface layers are most strongly affected by
changes in the overlap assumption. If a given (physical)
layer in the atmosphere is partially cloudy, the verti-
cally projected cloud fraction increases uniformly with
the number of layers when random overlap is used but
stays constant under exponentially decaying overlap.
(This spurious dependence of cloud fraction on vertical
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resolution is one of the reasons we would like to replace
the random overlap assumption.) AM2 has nine levels
in the lowest 1500 m of the atmosphere, while in the
upper troposphere, the vertical resolution is about 2000
m. That the change in overlap determines most of the
differences between the operational and modified mod-
els suggests that the implementation of stochastic sub-
columns itself does not greatly affect AM2.

The effect of the overlap assumption on simulated
climate is somewhat model dependent. Using the
model developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF), for example,
Morcrette and Jakob (2000) report a change in tem-
perature in the middle and upper troposphere in excess
of 1 K when the overlap assumption changed from ran-
dom to maximum random. In AM2, this change is
about an order of magnitude smaller, and it seems un-
likely that our use of exponentially decaying overlap is
the explanation. Vertical resolution, which is more uni-
form throughout the troposphere in the ECMWF
model than in AM2, is another factor, but runs of AM2
(not shown) with substantially higher vertical resolu-
tion show only modest changes in tropospheric tem-
perature due to our modifications.

The direct impacts of the reduction in low cloud and
reflected shortwave exacerbate biases relative to stan-
dard observations of the atmosphere (GFDL Global
Atmospheric Model Development Team 2004). This
reflects the fact that an assumption known to contradict
observations (i.e., the use of the random overlap as-
sumption in the many shallow layers near the surface)
inadvertently masked problems resulting from other
parts of the model. The change in globally, annually
averaged radiation between the operational and modi-

fied models is modest (2.2 W m�2) but large enough to
warrant a small “retuning” to bring it back into radia-
tive balance before coupling with an ocean model. In a
retuning process, some of these changes in low cloud
could be counteracted.

b. Evaluating predictions of subgrid-scale
variability

In addition to changing the model physics, we have
added a new diagnostic, namely the parameter �, which
quantifies the subgrid-scale variability of cloud optical
thickness. Figure 5 compares the predictions of our
modified version of AM2 with the mean of this quantity
as provided by ISCCP (available online at http://
isccp.giss.nasa.gov/). The grid sizes for the two datasets
are comparable near the equator, which in turn makes
the estimate of � comparable, because cloud variability
depends on spatial scale.

Although the model shares some features with the
observations, the comparison is not very encouraging.
AM2 agrees with ISCCP in that tropical convective re-
gions are more inhomogeneous than regions in which
only shallow clouds are prevalent, such as the stratocu-
mulus regions to the west of major continents, but the
model greatly overestimates the amount of variability
in the deep convective regions relative to observations.
At higher latitudes, and over land in particular, AM2
underestimates inhomogeneity, perhaps consistent with
AM2’s relatively poor representation of the subgrid
variability of column cloud optical depth in frontal
cloud environments (Gordon et al. 2005).

The poor agreement in Fig. 5 appears to be due to the
model’s cloud optical properties (including the vertical

FIG. 4. The differences in (a) low cloud amount and (b) reflected shortwave radiation between the modified and operational versions
of AM2. The grayscale applies to both (a) and (b), though with different units. The modified version of AM2 uses exponentially
decaying overlap, diagnostic internal inhomogeneity in cloud condensate concentrations, and the McICA algorithm for computing
radiative fluxes. Differences are computed over the last 16 yr of a 17-yr run with prescribed sea surface temperatures.
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distribution of those properties) rather than to assump-
tions about subgrid-scale inhomogeneity (including the
overlap assumption). Model predictions of subgrid-
scale variability in the variability of cloud optical depth
depend, in particular, only slightly on the subgrid-scale
variability of cloud water content that we diagnose
from the cloud fraction and mean condensate amount;
� decreases, on average, by less than 0.05 when clouds
are assumed to be uniform. On the other hand, AM2
(like many global models) produces more clouds with
large optical thicknesses than are observed by ISCCP
(Zhang et al. 2005), and it is hard to imagine that esti-
mates of higher-order moments of the optical depth
distribution (e.g., �, which is roughly related to both the
mean and the variance of cloud optical depth) would
agree with observations when the agreement of the
mean is poor.

c. Do simulations made using McICA differ from
those using more accurate radiation calculations?

The climate simulated by AM2 in its new configura-
tion does not differ in dramatic ways from the default
configuration, but there remains the question as to
whether sampling noise can cause discernible system-
atic shifts in the model’s climate. To answer this ques-
tion, we must compare any systematic changes that oc-
cur when McICA is used to the internal variability of
the model in both its approximate (McICA) and deter-
ministic (ICA) modes. To this end, we construct two
10-member ensembles by selecting the state of the
simulation described in the previous section on the first
10 days of model year 1990 as initial conditions for a
1-yr integration. The simulations are identical except
that, in one ensemble, a full broadband radiation calcu-

lation is performed on each of the 25 subcolumns in
each model column (i.e., the ICA is used), while the
other ensemble uses McICA.

The variability in cloud and radiation-related fields
within each of these ensembles is substantially larger
than the mean difference between them. The top two
panels of Fig. 6 show the variability in annually aver-
aged reflected shortwave radiation within the ICA and
McICA ensembles, respectively, computed as the set of
differences between the ensemble mean and the value
at each grid point in each ensemble member. (Histo-
grams for the operational version of AM2, not shown,
are indistinguishable from the ICA and McICA en-
sembles.) The lowest panel shows the gridpoint differ-
ences between the ensemble-mean ICA and McICA
calculations, which has a much narrower distribution
than is obtained within either ensemble. As a quanti-
tative test of statistical significance, we use a Student’s
t test applied at each grid point. The null hypothesis for
this test is that the mean of the two samples being
tested (in this case, 10 pairs of a given cloud or radiation
quantity at a given location) is the same; the signifi-
cance level (p value) for the test indicates the likeli-
hood that the means of two samples drawn from a
single distribution might be expected to differ by a
given amount by chance alone. Figure 7 shows the sig-
nificance levels for annually averaged reflected solar
radiation. These values are distributed approximately
uniformly between 0 and 1, consistent with the hypoth-
esis that the ICA and McICA runs are statistically in-
distinguishable. These results are similar to those for
longwave and shortwave radiation fields at the surface
and TOA, as well as low, middle, and high cloud
amounts.

FIG. 5. Inhomogeneity factor �, defined as one minus the ratio of the radiative-mean and linear-mean cloud optical thicknesses, as
(left) observed by ISCCP and (right) predicted by the modified version of AM2. The model reproduces some basic features (e.g., the
enhanced variability in the Tropics), but overall agreement is poor, mostly because of known model deficiencies in simulating the
distribution of cloud optical thicknesses.
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5. Conclusions

We have described changes to the way subgrid-scale
cloud structure is represented in AM2, and have used
the new technique’s flexibility to implement new as-
sumptions regarding horizontal and vertical variability.
As it turns out, the net effect of these impacts on ra-
diative fluxes is small because the changes caused by
the new overlap assumption act, by chance, to oppose
the change incurred when the operational implementa-
tion is replaced with subcolumns. The new schemes
have not produced immediate improvements in the cli-
mate simulated by AM2 but the model is now com-
pletely flexible with respect to assumptions about sub-
grid-scale structure in clouds (and potentially water va-
por). The diagnostic variability in cloud condensate
used here may be replaced with a distribution drawn
from an assumed-PDF cloud scheme (Tompkins 2002),
for example, with no further modifications, and the ra-
diative effects of convective clouds [e.g., those treated
by the Donner (1993) convection scheme under devel-
opment at GFDL] included in a consistent way. One
might also simply specify relationships between cloud
horizontal variability, vertical structure, and cloud
amount and concentration (e.g., Räisänen et al. 2004)
based on observations, although this is more attractive
in models without an internal representation of small-
scale variability.

FIG. 6. Distribution of differences of mean annually averaged
reflected shortwave radiation within and between two ensembles
of year-long simulations. (top) The distribution of gridpoint dif-
ferences of each ensemble member from the ensemble mean
when a complete radiation calculation is performed in each sub-
column (ICA), (middle) same result for the ensemble using
McICA, and (bottom) the distribution of differences between the
two ensemble means at each grid point. There is substantially
more variability within the ensembles than between them, indi-
cating that the use of McICA does not change the climate simu-
lated by AM2.

FIG. 7. Significance values ( p values) for a Student’s t test ap-
plied to the difference in ensemble-mean annually averaged re-
flected solar radiation at each grid point between ensembles of
simulations using ICA and McICA. This value indicates the like-
lihood that the means of two samples drawn from a single distri-
bution would be expected to differ by a given amount by chance
alone. The uniform distribution of these values confirms that the
ICA and McICA simulations are statistically indistinguishable.
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Subcolumns might be used to account for the effects
of subgrid-scale variability on other processes. Cloud
microphysical processes, for example, could be com-
puted in each subcolumn (Jakob and Klein 2000) to
account for both arbitrary overlap assumptions and ar-
bitrary distributions of condensate amount in each
level, though this will be prohibitively time-consuming
until methods for speeding up the calculation can be
developed. Subcolumns could also be used to represent
the subgrid-scale variability of water vapor, particularly
when using assumed-PDF schemes in which this distri-
bution is explicitly available; variable relative humidity
might then be used to help predict aerosol size distri-
butions for clear-sky radiation calculations or used in
lieu of the mean sounding to link convection to the
large-scale environment.

The process of replacing profiles of continuously
variable cloud properties with finite sets of discrete,
locally uniform subcolumns introduces sampling noise,
and the use of the McICA to compute radiative transfer
adds another layer of noise. We demonstrated in sec-
tion 4 that McICA noise does not systematically af-
fect the evolution of clouds and radiation in AM2 as it
does the NCAR Community Atmosphere Model. This
is likely related to the very different ways the two mod-
els determine cloud fraction, because the NCAR mod-
el’s diagnostic cloud fraction scheme is more easily af-
fected by instantaneous anomalies in local heating and
cooling rates than the prognostic scheme used by AM2.
The initial discretization of model columns also intro-
duces sampling noise, but this is relatively small (e.g.,
an RMSE of 10% or less in cloud fraction when 25
columns are used), especially compared with the accu-
racy of the underlying cloud scheme. In neither CAM
nor AM2 does the climate degrade when sampling
noise is introduced, consistent with the results from
short-term forecasts (Pincus et al. 2003). This suggests
that global models are forgiving enough to admit radia-
tion parameterizations that are unbiased but approxi-
mate.
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APPENDIX

Diagnosing Subgrid-Scale Inhomogeneity in Cloud
Condensate

AM2 predicts three cloud properties—cloud area
fraction qa, cloud liquid water specific humidity ql, and
cloud ice specific humidity qi—within each grid cell. We
are considering replacing this parameterization with
one that predicts the distribution of total water mixing
ratio qt � q� 	 ql 	 qi (where q� is the water vapor
specific humidity), from which the PDF of cloud liquid
and ice can be inferred (Tompkins 2002). Here, we de-
scribe a method for diagnosing a PDF of total water
that is consistent both with the current cloud scheme
(i.e., the values of cloud fraction and condensate qc �
ql 	 qi predicted in AM2) and the scheme under de-
velopment (i.e., the distribution of total water). This
placeholder allows us to get a rough idea of how much
subgrid-scale variability might affect radiation and pre-
cipitation fluxes before devoting the considerable time
and effort needed to build a full assumed-PDF cloud
scheme.

The PDF scheme assumes that the total water spe-
cific humidity within each model grid cell follows a beta
distribution. This distribution is specified by four pa-
rameters: the exponents p and q (which determine the
shape of the distribution) and the minimum and maxi-
mum values a and b. The cloud fraction and grid-mean
condensate amounts are then given by Tompkins
(2002) as

qa � 1 � Iq̃s
�p, q� and �A1�

qc � ���b � a�
p

p 	 q
�1 � Iq̃s

�p 	 1, q�� � �qs � a�qa�,

�A2�

where we use the incomplete gamma function Ix(p, q)
and the normalized saturation (equilibrium) specific
humidity

q̃s �
qs � a

b � a
. �A3�

Equation (A2) differs from (14) in Tompkins (2002) in
that we have included the thermodynamic factor

� � 1��1 	
L

cp

�qs

�T�
Tf

�, �A4�

where Tf is the “frozen temperature,” including
the latent heats of vaporization and sublimation
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Tf � T � L�ql � Lsqi. This is equivalent to assuming
that energy is constant within the grid cell, while Tomp-
kins assumes constant temperature; this choice does not
strongly affect the distribution we obtain because the
total condensate in (A2) is predicted by a separate
scheme.

The beta distribution is described by four param-
eters, but we have, at most, two pieces of information
(cloud fraction and mean condensate concentration).
To completely determine the distribution, we specify q
and assume p � q (i.e., that the distribution of total
water is symmetric). We use a lookup table of incom-
plete beta distribution deviates to find the value of q̃s

that solves (A1), then solve (A2) for the distribution
width b � a. When cloud fraction is unity, we assume
that the minimum value of qt in the grid cell is just
saturated; because the distribution is assumed symmet-
ric, this is equivalent to specifying b � a � 2qc /�. Note
that the distribution of condensate (as opposed to total
water) is symmetric only when the cloud fraction is 1
and is quite skewed toward small values when the cloud
fraction is less than 0.5.

To create sample i from the distribution, we choose a
random number from a uniform distribution between
zero and one, then use the beta distribution deviate
table to determine the scaled value of total water q̃t,i �
(qt,i � a)/(b � a), from which we determine the con-
densate specific humidity in those subcolumns contain-
ing cloud as qc,i � �(b � a)(q̃t,i � q̃s). This condensate
is then partitioned into ice and liquid in each subcol-
umn according to the ratio from the global model grid
cell.

The distribution we determine through this proce-
dure also implies a mean vapor specific humidity that
may differ from the value predicted by AM2. Con-
straining the PDF to simultaneously have the same
mean vapor, cloud fraction, and cloud condensate as
the model adds considerable complication to the diag-
nostic calculation. As vapor is not used in our calcula-
tions, allowing the vapor to be inconsistent with the
PDF seems acceptable.
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