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ABSTRACT
The overlap of computation and communication has long
been considered to be a significant performance benefit for
applications. Similarly, the ability of MPI to make inde-
pendent progress (that is, to make progress on outstanding
communication operations while not in the MPI library) is
also believed to yield performance benefits. Using an in-
telligent network interface to offload the work required to
support overlap and independent progress is thought to be
an ideal solution, but the benefits of this approach have been
poorly studied at the application level. This lack of analysis
is complicated by the fact that most MPI implementations
do not sufficiently support overlap or independent progress.
Recent work has demonstrated a quantifiable advantage for
an MPI implementation that uses offload to provide overlap
and independent progress. This paper extends this previous
work by further qualifying the source of the performance
advantage (offload, overlap, or independent progress).
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1. INTRODUCTION
The ability to efficiently overlap communication and com-

putation can be a critical performance requirement for many
applications. The emergence of OS-bypass communication
technologies, like Myrinet [1], Quadrics [11], and InfiniBand
[8], specifically address the desire to reduce the impact of
message passing on the host processor by allowing the net-
work interface adapter to perform communication functions
asynchronously, thus achieving low host CPU overhead as
well as low latency and high bandwidth. However, because
few of these technologies provide adequate support for im-
plementing MPI, the host processor overhead needed to sup-
port MPI semantics can potentially be significant.

Another area where most OS-bypass technologies fall
short is in the way in which progress is made on outstand-
ing non-blocking MPI communication requests. The MPI
Standard mandates a Progress Rule for completion of asyn-
chronous peer communication operations, but there is dis-
agreement (even among the members of the MPI Forum)
as to the exact semantics that this rule mandates. This
disagreement has led to implementations that support mak-
ing progress on outstanding non-blocking calls in different
ways. Some implementations adhere to a strict interpreta-
tion, where outstanding operations make progress indepen-
dent of subsequent calls to the MPI library. Others depend
on the application to periodically make calls into the library
so that outstanding requests can be progressed. This dif-
ference in how outstanding communication operations make
progress can also have a significant affect on performance.

A third related characteristic of interest is the ability to
offload MPI matching and protocol processing to an intel-
ligent or programmable network interface. While all OS-
bypass technologies support delivering data directly from
the network into an application’s address space, most net-
works require the host processor to perform MPI matching
and queue traversal functions. Others, such as Quadrics,
do not. Support for offloading MPI matching and protocol
processing on the network interface rather than on the host
can also significantly impact performance.

In this paper, we analyze overlap, progress, and offload in
an attempt to characterize the effect that they have on the
performance of an application. This analysis is performed on
data gathered using several different MPI implementations
that have nearly identical micro-benchmark performance,
but that differ in their support of progress, overlap, and
offload. We use application benchmarks to quantify and

298



isolate the performance impact of these features and also
identify application characteristics that influence their ef-
fectiveness.

The rest of this paper is organized as follows. In the fol-
lowing section, we provide more detail on the importance
of overlap, progress, and offload, as well as describe how
this paper complements other published research. In Section
3, we describe the approach used for our analysis and dis-
cuss the platforms, MPI implementations, and application
benchmarks that were evaluated. We continue in Section 4
with a presentation of our results, which are accompanied
by a detailed analysis. Section 5 summarizes the important
conclusions of this study, and Section 6 outlines possible
avenues of further investigation.

2. BACKGROUND
This paper seeks to quantify the impact of overlap, in-

dependent progress, and offload from an application per-
spective. Rather than focusing simply on whether or how a
network and its associated protocol stack can provide these
features, we wish to quantify their benefit. The following
discusses the importance of these features in detail, and
outlines the contribution of this analysis relative to other
approaches that have been taken.

Measuring the overlap potential of a network is straight-
forward, but measuring the impact of overlap on an ap-
plication is not. Most micro-benchmarks that attempt to
quantify overlap are written to measure the degree to which
a network can satisfy the potential to completely overlap
computation and communication. Few studies have been
done that actually quantify how much overlap potential ex-
ists within an application. For applications that provide
little opportunity to overlap, providing support for overlap
may actually decrease performance.

Implementations of MPI that employ independent
progress can potentially be more efficient than those that do
not. This is particularly important for large messages, since
they offer the greatest opportunity to overlap of computa-
tion and communication. Most implementations of MPI use
a rendezvous protocol for exchanging a large message. This
protocol involves the sender sending an initial message that
describes the message to be sent. For networks that support
RDMA read operations, the receiver can receive this request,
use an RDMA read operation to pull the data directly from
the sender’s buffer, and then send a message to the sender to
indicate that the transfer has been completed. For networks
that do not support RDMA read operations, the receiver
must send back information to the sender describing where
the data is to be placed.

Suppose the receiving process posts a non-blocking receive
before the send request arrives. When the send request even-
tually does arrive, all of the information needed to complete
the request is available. For some network interfaces, like
Quadrics, the RDMA read request (and subsequent comple-
tion message) can be issued without any further involvement
from the receiving process or the host CPU. For implemen-
tations that depend on MPI calls to be made, the RDMA
read operation cannot be issued until the application calls
an MPI library routine. In this case, performance is depen-
dent on how often MPI library calls are made when there
are outstanding requests. This interval is independent of the
network and is dependent on the structure of the application
and on the operating system.

Overlap and progress are usually thought to be inter-
twined, but it is possible to have one and not the other. OS-
bypass networks that do not provide independent progress
are still able to provide overlap for data transfers. It is
also possible to have independent progress without overlap.
An example of this is the implementation of MPI for ASCI
Red [6], where the interrupt-driven nature of the network
interface insures that progress is made, but the host pro-
cessor is dedicated to moving data to the network (at least
in the default mode of operation where the communication
co-processor is not used). As with overlap, quantifying the
ability of a network and MPI implementation to provide in-
dependent progress is straightforward, but quantifying the
potential of an application to take advantage of independent
progress is more complex.

This study is similar to previous work that characterizes
the message passing behavior of applications and application
benchmarks in an attempt to understand or predict perfor-
mance. Examples of this type of analysis can be found in
[16] and [17]. Rather than just reporting on observed behav-
ior, our work in this paper pinpoints specific characteristics
and their impact on performance. Our work is also simi-
lar to work such as [9] that compares micro-benchmark and
application benchmark performance for various networks.
However, we are interested in characterizing an application’s
ability to leverage network performance rather than simply
evaluating and comparing network performance.

3. ANALYSIS METHODOLOGY
The goal of this work is to quantitatively separate, as

much as possible, the respective advantages of overlap, in-
dependent progress, and offload for a network and for a given
MPI library. Doing so requires multiple MPI implementa-
tions having different capabilities with comparable micro-
benchmark performance on identical platforms. This sec-
tion first describes the platforms that were used for analysis
and then describes the MPI implementations that were eval-
uated and their contribution to the analysis.

3.1 Platforms
Results were gathered on two platforms: a Linux cluster

with a commodity high-performance network and a large-
scale massively parallel processing system with a proprietary
interconnect. The following describes the hardware and soft-
ware components of these systems.

The Linux cluster used for our experiments is a 32-node
cluster at Los Alamos National Laboratory. Each node in
the cluster contains two 1 GHz Intel Itanium-2 processors,
2 GB of main memory, and two Quadrics QsNet (ELAN-3)
network interface cards. The nodes were running a patched
version of the Linux 2.4.21 kernel. All applications were
compiled using Version 7.1 Build 20031106 of the Intel com-
piler suite.

Compared to a traditional Linux cluster, ASCI Red[14]
is a relatively unique system. It is a large-scale supercom-
puter comprised of more than 4500 dual-processor nodes
connected by a high-performance custom network fabric.
Each compute node has two 333 MHz Pentium II Xeon pro-
cessors. Each compute node has a network interface, called
a CNIC, that resides on the memory bus and allows for low-
latency access to all of physical memory on a node. This
interface is effectively a DMA engine that can be instructed
to transfer the contents of messages into memory in up to
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Table 1: MPI Implementation Characteristics

ASCI Red Quadrics
Eager Rendezvous

Tports SHMEM
P0 P1 P0 P1

Progress
√ √ √

Overlap
√ √ √ √

Offload
√ √ √

4 KB chunks. The CNIC interface connects each node to a
3-D mesh network that provides a 400 MB/s uni-directional
wormhole-routed connection between the nodes. The CNIC
interface is capable of sustaining the 400MB/s node-to-node
transfer rate to and from main memory across the entire ma-
chine.

The software environment on ASCI Red is also sig-
nificantly different from the standard commodity model.
The compute nodes run Cougar, a variant of the Puma
lightweight kernel that was designed and developed by San-
dia and the University of New Mexico for maximizing both
message passing throughput and application resource avail-
ability [13].

Cougar uses a simple network protocol built around the
Portals message passing interface [13]. Portals are data
structures in an application’s address space that determine
how the kernel should respond to message passing events.
Portals allow the kernel to deliver messages directly from
the network to the application’s memory.

Cougar is not a traditional symmetric multi-processing
operating system. Instead, it supports four different modes
that allow different distributions of application processes on
the processors. The following provides an overview of two of
these processor modes that are relevant to this paper. More
details can be found in [10].

The simplest processor usage mode is to run both the
kernel and application process on the system processor. This
mode (P0 mode) is commonly referred to as “heater mode”
since the second processor is not used and only generates
heat. In this mode, the kernel runs only when responding
to network events or in response to a system call from the
application process.

In the second mode, message co-processor mode (or P1
mode), the kernel runs on the system processor and the
application process runs on the user processor. When the
processors are configured in this mode, the kernel runs con-
tinuously waiting to process events from external devices or
service system call requests from the application process.
Because the time to transition from user mode to supervi-
sor mode and back can be significant, this mode offers the
advantage of reduced network latency and faster system call
response time.

3.2 MPI Libraries
Table 1 summarizes the characteristics of the MPI imple-

mentations used in our analysis. On the Quadrics cluster,
two versions of MPI software were used: the default MPICH
variant from Quadrics using the Tports API (version 1.24-
27) and a variant of MPICH 1.2.5 built at Sandia [2] using
the Cray SHMEM API [7] (using version 1.4.12-1 of the
QsNet libraries that contained the Cray SHMEM compat-
ibility library). The MPI version built using the SHMEM
API performs quite well as seen in Figure 1; thus the only

appreciable difference in the two libraries is their capabil-
ities. Tports provides MPI with the capability to overlap
computation and communication, the ability to achieve in-
dependent progress, and the ability to offload matching se-
mantics to the network interface. In previous work, it was
found that the combination of these factors had a significant
impact on the performance of applications [5].

Unfortunately, using only these two implementations on
the Quadrics network makes it quite difficult to distinguish
the actual source of this performance improvement. ASCI
Red offers a platform where finer distinctions can be made.
On ASCI Red, the default MPI (based on MPICH 1.0.12)
uses interrupt driven Portals processing in the Cougar kernel
to provide independent progress. MPI only needs to setup
the appropriate Portal for a receive operation and a match-
ing put will be placed directly into user memory without
application intervention. This is only possible because the
sender uses and eager protocol for all messages. Long mes-
sages that arrive without a matching posted receive place
MPI envelope information into a buffer and discard the data
(to be retrieved later when the matching receive is posted).
As part of the interrupt driven processing, the processor is
kept busy (in the kernel) for the entire message arrival time
because the kernel must continually service the CNIC until
the entire message has been received.

Using various processor modes, the default MPI library
can provide a variety of capabilities to the application. In
P0 mode, message reception occurs on the application pro-
cessor. Thus, the MPI library can provide independent
progress, but not overlap or offload. In P1 mode, message
reception happens on the message co-processor, so the MPI
library can provide overlap and offload as well as indepen-
dent progress.

The primary additional requirement for ASCI Red is a
baseline for comparison. An implementation of MPI using
a rendezvous protocol for long messages was developed as
part of previous work [3] for this purpose. When using a
rendezvous protocol in P0 mode, MPI is unable to provide
overlap, independent progress, or offload. This library can
also be used in P1 mode to test a design point without inde-
pendent progress, but with overlap and offload capabilities.

4. RESULTS
This section presents the performance of various MPI im-

plementations as a baseline for comparison. It then com-
pares the performance of MPI Alltoallv, which is the core
communication routine from the IS NAS parallel bench-
marks. Then, the performance of three of the NAS parallel
benchmarks when using these MPI implementations is ana-
lyzed. By comparing various MPI implementations on the
same platform, performance differences are attributable to
offload, overlap, or independent progress.

4.1 Microbenchmarks
Figure 1 is included to show the relative performance of

the various MPI implementations on standard microbench-
marks. In almost every case, the implementation that does
not provide overlap or independent progress appears to be of
approximately equal performance to the one that does. The
notable exceptions are the latency of the SHMEM interface
on ASCI Red and the latency of the rendezvous implemen-
tation immediately after it crosses over the “short message”
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Figure 1: Micro-benchmark comparisons of MPI implementations for ASCI Red ((a) and (b)) and Quadrics
Elan3((c) and (d))
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threshold. The erratic behavior of P1 mode on ASCI Red is
still being debugged.

4.2 Collective Benchmarks
The MPI Alltoallv collective is the only significant con-

tributors to communication time for the IS benchmark. As
such, the time to perform MPI Alltoallv is graphed in
Figure 2 for each of the MPI implementations evaluated.
On ASCI Red, there are effectively two classes of perfor-
mance on this collective: slower performance (longer time)
for the default MPI implementation and faster performance
(shorter time) for the MPI implementations that use a ren-
dezvous protocol. This is a logical result from previous work
that indicated that the naive MPICH implementation of this
collective caused a large number of unexpected messages[4]
and that the eager MPI implementation that enables in-
dependent progress on ASCI Red causes significant perfor-
mance degradation in the presence of a large number of un-
expected messages[3].

What is more surprising is the data from the Quadrics
network. At small message sizes (under 12 KB and not
visible on the graph), the SHMEM implementation of
MPI Alltoallv holds a slight performance advantage. This
is an impact of the slower processor on the Quadrics network
interface that must handle the matching semantics[15]. By
12 KB, this advantage has vanished as the overhead of match
list traversal is amortized over larger messages. When the
message size reaches 1 MB, the Tports implementation is
over 30% faster.

4.3 NAS Parallel Benchmarks
Measurements taken with the NAS Parallel Benchmarks

across a variety of MPI implementations on two platforms
offer an opportunity to attempt to separate the impacts
of overlap, independent progress, and MPI offload. Fig-
ure 3 shows data for the IS, , SP, and BT class B bench-
marks taken from a Quadrics cluster and the ASCI Red
platform. These three benchmarks are the only ones that
demonstrated a significant performance difference between
the SHMEM and Tports implementations of MPI[5]. Each
of the measurements presented here is the average of four
runs. The measurements from ASCI Red were extremely
stable (varying by less than 0.5%); thus, even small differ-
ences can be directly attributed to a cause.

Figure 3(a) indicates that Tports outperforms SHMEM
by a significant margin on the IS benchmark. This mea-
surement was taken without using the enhanced collectives
provided by the default Quadrics MPI (for fairness), but us-
ing the enhanced collectives provided virtually no benefit for
IS. This is somewhat (but not completely) explained by the
significant difference in the MPI Alltoallv performance dif-
ferences seen in Figure 2. Using Figure 3(b), this difference
can be explained by independent progress. Doing so requires
a bit of insight. First, the advantages of offload and over-
lap can be excluded by noticing that P0 performance and
P1 performance are virtually identical. Second, contrary
its appearance, Figure 3(b) does not contradict the conclu-
sion that the performance advantage Tports over SHMEM
is independent progress. This is because the independent
progress mechanism on ASCI Red is an eager protocol which
experiences a significant reduction in bandwidth in the pres-
ence of unexpected messages[3] (as seen in the IS bench-
mark[4]). This is further reinforced by the data from the

rendezvous library run in P1 mode. The addition of overlap
and offload to the rendezvous library (without independent
progress) adds no performance improvement.

The benefit of independent progress for IS are counter-
intuitive since the primary communications routine in the
IS benchmark is a collective operation; however, the Rogue
OS effect[12] is known to cause interference with collective
operations. Specifically, in this case, it is key that the inde-
pendent progress is independent of the application process
altogether. Although this is achieved with offload for the
Quadrics Tports interface, it can also be achieved with in-
terrupt driven progress, as it is on ASCI Red; thus, it is
independent progress, not offload, that affects the perfor-
mance of the IS benchmark.

The SP and BT benchmarks are more clear cut, espe-
cially as the applications scale in the number of nodes. The
SP and BT benchmarks using MPI over Tports consistently
outperforms MPI over SHMEM on the Quadrics network.
The advantage is 3-6% in overall execution time for SP and
2-4% in overall execution time for BT. Using the 64 node
runs1 from ASCI Red, SP sees a fractional gain from adding
independent progress (moving from rendezvous to an eager
implementation). It sees another 1.5% gain when moving
from P0 to P1 mode. This is the combined advantage of
adding protocol offload and adding overlap. Notably, when
the rendezvous implementation is run in P1 mode, overlap
and offload offer less than 1% gain. This is a clear indi-
cation that independent progress needs overlap and offload
to achieve maximal performance and vice versa. Similarly,
BT sees a fractional gain from independent progress but an
additional 2.5% gain from the combination of offload and
overlap. Again, overlap and offload alone offer only a por-
tion of the advantage.

Moving to 121 nodes changes the picture slightly. At 121
nodes, most of the messages use the short message protocol.
Thus, the rendezvous protocol reaps many of the advantages
of independent progress without truly providing it. Indeed,
when adding only independent progress, the BT benchmark
actually slows down; however, the combination of indepen-
dent progress, overlap, and offload still offers a 0.5% advan-
tage over overlap and offload alone.

The most important result here is that overlap must be
combined with independent progress to achieve the best re-
sults. Independent progress alone suffers from issues such as
cache pollution and context switch overheads. Offload and
overlap alone suffer because the must wait for the applica-
tion to return to the MPI library to progress communica-
tions. The combination of the three enables a measurable
impact on application performance.

5. CONCLUSIONS
This paper has quantitatively explored the advantages of

overlap, independent progress, and offload using the NAS
parallel benchmarks. Combined, they offer a 2-20% advan-
tage in overall execution time depending on the benchmark.
This is particularly significant in the context of $100 mil-
lion acquisitions such as those found in the ASCI program.
In such cases, a 2% improvement in overall execution time
justifies the expenditure of almost $2 million.

1These runs have more comparable execution times to those
on the Quadrics cluster and therefore more comparable bal-
ances of communication and computation.
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Figure 3: NAS parallel benchmark comparisons of MPI implementations for Quadrics Elan3: (a) IS, (c) SP,
and (e) BT, and ASCI Red: (b) IS, (d) SP, and (f) BT
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Taken independently, independent progress is a critical
contributor to application performance improvements. For
both BT and SP, independent progress improves perfor-
mance as seen on ASCI Red and the Quadrics network. The
striking result is that the combined performance improve-
ment from independent progress, overlap, and offload is sig-
nificantly more than simply the composition of the parts.
Another important observation comes from the IS bench-
mark. The results for IS are a dramatic improvement of 20%
on the Quadrics network, but an actual loss of performance
on the ASCI Red system. This highlights an important as-
pect for implementers of independent progress for MPI: the
implementation must be careful not to sacrifice too much
performance for non-optimal applications (such as those like
IS that have a significant number of unexpected messages).

6. FUTURE WORK
There are three avenues of research that follow from this

work. The first is to explore the reasons that overlap, inde-
pendent progress, and offload offer improved performance.
While the mechanism for overlap to offer improved perfor-
mance is obvious, the reasons for independent progress and
offload to offer realizable performance improvement is less
clear. The second avenue to follow is to develop measure-
ment techniques that help to further separate the benefits
of offload and overlap. The final step in this work is to ex-
tend this analysis to applications in the typical workload
at Sandia. Such applications are known for taking signifi-
cant effort to configure, build, and run; hence, their analysis
was contingent upon the justification provided by this initial
analysis using the NAS parallel benchmarks.
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