
103OVERLAP, OFFLOAD, AND PROGRESS

ANALYZING THE IMPACT OF OVERLAP,
OFFLOAD, AND INDEPENDENT
PROGRESS FOR MESSAGE PASSING
INTERFACE APPLICATIONS

Ron Brightwell
Rolf Riesen
Keith D. Underwood

Abstract

The overlap of computation and communication has long
been considered to be a significant performance benefit
for applications. Similarly, the ability of the Message
Passing Interface (MPI) to make independent progress
(that is, to make progress on outstanding communication
operations while not in the MPI library) is also believed to
yield performance benefits. Using an intelligent network
interface to offload the work required to support overlap
and independent progress is thought to be an ideal solu-
tion, but the benefits of this approach have not been stud-
ied in depth at the application level. This lack of analysis
is complicated by the fact that most MPI implementations
do not sufficiently support overlap or independent
progress. Recent work has demonstrated a quantifiable
advantage for an MPI implementation that uses offload to
provide overlap and independent progress. The study is
conducted on two different platforms with each having two
MPI implementations (one with and one without inde-
pendent progress). Thus, identical network hardware and
virtually identical software stacks are used. Furthermore,
one platform, ASCI Red, allows further separation of fea-
tures such as overlap and offload. Thus, this paper
extends previous work by further qualifying the source of
the performance advantage: offload, overlap, or inde-
pendent progress.

Key words: Message passing interface, overlap, offload,
progress

1 Introduction

The ability to efficiently overlap communication and
computation can be a critical performance requirement for
many applications. The emergence of operating system
(OS) bypass communication technologies, such as Myri-
net (Boden et al. 1995), Quadrics (Petrini et al. 2002),
InfiniBand (http://www.infinibandta.org), and Portals
(Brightwell et al. 1999, 2002), specifically address the
desire to reduce the impact of message passing on the host
processor by allowing the network interface adapter to
perform communication functions asynchronously, thus
achieving low host processor overhead as well as low
latency and high bandwidth. However, the network pro-
gramming interface can limit the ability to leverage over-
lap in two critical ways.

The first area where many OS-bypass technologies fall
short is in the way in which progress is made on outstand-
ing non-blocking Message Passing Interface (MPI) com-
munication requests. The MPI Standard mandates a
Progress Rule for completion of asynchronous peer com-
munication operations, but there is disagreement (even
among the members of the MPI Forum) as to the exact
semantics that this rule mandates. This disagreement has
led to implementations that support making progress on
outstanding non-blocking calls in different ways. Some
implementations adhere to a strict interpretation, where
outstanding operations make progress independent of
subsequent calls to the MPI library. Others depend on the
application to periodically make calls into the library so
that outstanding requests can be progressed. This differ-
ence in how outstanding communication operations make
progress can also have a significant affect on performance.

A second key to fully leverage overlap is the ability to
offload MPI matching and protocol processing to an
intelligent or programmable network interface. While all
OS-bypass technologies support delivering data directly
from the network into an application’s address space,
most networks require the host processor to perform MPI
matching and queue traversal functions. Others, such as
Quadrics and the co-processor implementation of Portals
on ASCI Red, do not. Support for offloading MPI match-
ing and protocol processing on the network interface
rather than on the host can significantly impact processor
overhead and thus impact performance.

Implementations of MPI typically strive to utilize the
capabilities of the underlying network to the fullest and
exploit as many features as possible. This research takes
the opposite approach. The capabilities of an MPI imple-
mentation are purposefully limited to try to better under-
stand how those specific capabilities impact application
performance. Rather than simply using identical compute
hardware, we use identical networking hardware and a
significant portion of the same network software stack.
This approach allows us to compare two different MPI

The International Journal of High Performance Computing Applications,
Volume 19, No. 2, Summer 2005, pp. 103–117
DOI: 10.1177/1094342005054257
© 2005 Sage Publications

104 COMPUTING APPLICATIONS

implementations that have nearly identical microbench-
mark performance only on the basis of the features (inde-
pendent progress, overlap, and offload) that differ. This
overcomes the primary limitation of numerous previous
studies that compare different network hardware, and thus
different software stacks, on identical compute hardware.

The rest of this paper is organized as follows. The fol-
lowing section provides background on the features that
we have isolated in this experiment. In Section 3 we pro-
vide an overview of research that motivated this effort,
the platforms studied, and the software approaches used.
In Section 4 we then discuss how this work complements
other previous and ongoing projects in this area. In
Section 5 we present an analysis of the data followed by
the conclusions presented in Section 6.

2 Background

In this paper we seek to quantify the impact of independ-
ent progress, overlap, and offload from an application
perspective. Rather than focusing simply on whether or
how a network and its associated protocol stack can pro-
vide these features, we wish to quantify their benefit. In
the following we discuss the importance of these features
in detail.

2.1 PROGRESS

The MPI Standard (MPI Forum 1994) defines a Progress
Rule for asynchronous communication operations. Unfor-
tunately, the wording in the Standard is imprecise, which
has led to differing views of the how non-blocking com-
munication operations are completed. This ambiguity
was addressed by the MPI-2 Forum, but consensus on a
clarification could not be reached. The following appears
in the MPI-2 Standard:

[The] issue is whether such progress must occur while
a process is busy computing, or blocked in a non-MPI
call. Suppose that [a] send–receive pair is replaced by a
write-to-socket/read-from-socket pair. Then MPI does
not specify whether deadlock is avoided. Suppose that
the blocking receive of process 1 is replaced by a very
long compute loop. Then, according to one interpreta-
tion of the MPI standard, process 0 must return from
the complete call after a bounded delay, even if process
1 does not reach any MPI call in this period of time.
According to another interpretation, the complete call
may block until process 1 reaches the wait call, or
reaches another MPI call. The qualitative behavior is
the same, under both interpretations, unless a process is
caught in an infinite compute loop, in which case the
difference may not matter. However, the quantitative
expectations are different. Different MPI implementa-

tions reflect these different interpretations. While this
ambiguity is unfortunate, it does not seem to affect
many real codes. The MPI forum decided not to decide
which interpretation of the standard is the correct one,
since the issue is very contentious, and a decision
would have much impact on implementors but less
impact on users (MPI Forum 1997).

The strict interpretation is that once a non-blocking com-
munication operation has been posted, a matching opera-
tion will allow the operation to make progress regardless
of whether the application makes further library calls.
For example, if rank 0 posts a non-blocking receive and
performs an infinite loop (or a significantly long compu-
tation) and rank 1 performs a matching blocking send
operation, this operation will complete successfully on
rank 1 regardless of whether or not rank 0 makes another
MPI call. In short, this rule mandates non-local progress
semantics for all non-blocking communication opera-
tions once they have been enabled.

The weak interpretation allows a compliant implemen-
tation to require the application to make library calls in
order to make progress on outstanding communication
operations. Independent of compliance, it can be easily
observed that an implementation that adheres to the strict
interpretation offers an opportunity for a performance
advantage over one that supports the weak interpretation.
This is the quantitative advantage to which the above
passage refers. One of the goals of this work is to better
understand the impact of independent progress, where an
intelligent and/or programmable network interface is
responsible for making progress on outstanding commu-
nications independent of making MPI library calls.

Independent progress is particularly important for
large messages, since they offer the greatest opportunity
for overlap of computation and communication. Most
implementations of MPI use a rendezvous protocol for
exchanging a large message. This protocol involves the
sender sending an initial message that describes the mes-
sage to be sent. For networks that support remote DMA
(RDMA) read operations, the receiver can receive this
request, use an RDMA read operation to pull the data
directly from the sender’s buffer, and then send a mes-
sage to the sender to indicate that the transfer has been
completed. For networks that do not support RDMA read
operations, the receiver must send back information to
the sender describing where the data are to be placed.

Suppose the receiving process posts a non-blocking
receive before the send request arrives. When the send
request eventually does arrive, all of the information
needed to complete the request is available. For some
network interfaces, such as Quadrics, the RDMA read
request (and subsequent completion message) can be
issued without any further involvement from the receiv-

105OVERLAP, OFFLOAD, AND PROGRESS

ing process or the host CPU. For implementations that
depend on MPI calls to be made, the RDMA read opera-
tion cannot be issued until the application calls an MPI
library routine. In this case, performance is dependent on
how often MPI library calls are made when there are out-
standing requests. This interval is independent of the net-
work and is dependent on the structure of the application
and, to some extent, on the operating system.

2.2 OVERLAP

The benefit of overlapping communication with compu-
tation is well understood in parallel computing. Indeed,
message passing interfaces such as MPI have used the
concept of asynchronous communication operations for
the performance opportunity that they offer. (They are
also needed to support semantic correctness required for
buffering.) The benefit of overlap is that the host proces-
sor need not directly be involved in the transfer of data to
its final destination, allowing the CPU to be dedicated to
computation.

Measuring the overlap potential of a network is
straightforward, but measuring the impact of overlap on
an application is not. Most microbenchmarks that attempt
to quantify overlap are written to measure the degree to
which a network can satisfy the potential to completely
overlap computation and communication. Few studies have
been performed that actually quantify how much overlap
potential exists within an application. For applications
that provide little opportunity to overlap, providing sup-
port for overlap may actually decrease performance.

It is possible to support overlap without supporting
independent MPI progress. Networks capable of per-
forming RDMA read and write operations can fully over-
lap communication with computation. However, the
target address of these operations must be known. If the
transfer of the target address depends on the user making
an MPI library call (after the initial operation has begun),
then progress is not independent. If the transfer of the tar-
get address is handled directly by the network interface,
or by a user-level thread, then independent progress can
be made. Conversely, it is possible to have independent
progress without overlap. An example of this is the
implementation of MPI for ASCI Red (Brightwell and
Shuler 1996), where the interrupt-driven nature of the
network interface ensures that progress is made, but the
host processor is dedicated to moving data to the network
(at least, in the default mode of operation where the com-
munication co-processor is not used).

2.3 OFFLOAD

The third network feature of interest is offload. Offload
involves moving functions of an MPI implementation

onto the network interface. Most commonly, these
include the send semantics (to enable progress on a non-
blocking send without host processor involvement) and
receive-side matching semantics, so that a message can
be delivered to the correct user buffer without host proc-
essor involvement. An implementation that offloads ena-
bles both overlap and independent progress to occur with
minimal (or no) host processor overhead. As previous
studies have indicated that overhead is a key perform-
ance limiting factor (Martin et al. 1997), this can be a key
network feature.

3 Motivation and Approach

Previous work (Brightwell and Underwood 2004a) has
indicated that a number of the NAS parallel benchmarks
require excessively long posted receive and unexpected
message queues in the MPI library. We have hypothe-
sized that this could degrade performance on platforms
that offload the traversal of these queues onto much
slower network interface hardware. The Quadrics envi-
ronment provides the ideal opportunity to evaluate this
hypothesis as it offers a native MPI implementation,
using a programming interface called Tports, which
offloads the traversal of these queues onto a 100-MHz
processor (in the case of the ELAN-3 hardware). Quad-
rics also offers a Cray SHMEM (Cray Research 1994)
compatibility interface, which can be used as a light-
weight layer for building an MPI library without offload-
ing any of the traditional MPI queue management onto
the NIC (Brightwell 2004). Microbenchmarks (Under-
wood and Brightwell 2004) indicate that, indeed, mes-
sage latency is dramatically smaller on an MPI built over
SHMEM when queue lengths grow. This work seeks to
determine if application performance correlates to that
finding.

A second motivation for comparing MPI libraries built
on SHMEM and Tports is that it allows the comparison
of a library that provides capabilities for computation and
communication overlap as well as independent progress
in MPI to a library that does not. The MPI implementa-
tion using Quadrics Tports provides independent
progress and overlap, since a thread running on the NIC
is able to respond to incoming MPI requests without host
processor intervention. In contrast, the SHMEM inter-
face still allows messages to be deposited directly into
user memory without intervention by the host, but a host
CPU must still be used to handle MPI queue manage-
ment and protocol messages. Using the host processor
removes the opportunity for significant overlap and does
not allow for independent progress of outstanding com-
munication requests. Thus, a single platform (compute
and network hardware) with a similar network software
stack can be used to evaluate both approaches.

106 COMPUTING APPLICATIONS

Overlap and independent progress are believed to be
important performance enhancements, but it is seldom
possible to evaluate the relative merits of each on identi-
cal hardware. By reducing the differences in the system
to the MPI implementation, this work is able to evaluate
these more independently. This has important implica-
tions for newer parallel computer networks, such as
InfiniBand (http://www.infinibandta.org), which use
RDMA for MPI implementations. Most implementations
of MPI for InfiniBand (Liu et al. 2003a, 2004; Rehm et
al. 2004) do not efficiently support overlap or independ-
ent progress (Liu et al. 2003b).

Finding that the detrimental impact of long posted
receive queues are significantly outweighed by the differ-
ences in network features (Brightwell and Underwood
2004b), this work extends to a second platform (ASCI
Red) where the impact of individual network features can
be further studied. Furthermore, two applications have
been added to the study to investigate whether the trends
observed in the NAS parallel benchmarks also occur in
real applications.

3.1 PLATFORMS

Results were gathered on two platforms: a Linux cluster
with a commodity high performance network and a
large-scale massively parallel processing system with a
proprietary interconnect. The following describes the
hardware and software components of these systems.

The Linux cluster used for our experiments is a 32-
node cluster at Los Alamos National Laboratory. Each
node in the cluster contains two 1-GHz Intel Itanium-2
processors, 2 GB of main memory, and two Quadrics
QsNet (ELAN-3) network interface cards. The nodes
were running a patched version of the Linux 2.4.21 ker-
nel. All applications were compiled using Version 7.1
Build 20031106 of the Intel compiler suite.

Compared to a traditional Linux cluster, ASCI Red
(Wheat et al. 1996) is a relatively unique system. It is a
large-scale supercomputer comprised of more than 4500
dual-processor nodes connected by a high performance
custom network fabric. Each compute node has two 333-
MHz Pentium II Xeon processors. Each compute node
has a network interface, called a CNIC, that resides on
the memory bus and allows for low-latency access to all
of physical memory on a node. This interface is effec-
tively a DMA engine that can be instructed to transfer the
contents of messages into memory in up to 4 KB chunks.
The CNIC interface connects each node to a three-
dimensional mesh network that provides a 400 MB/s uni-
directional wormhole-routed connection between the
nodes. The CNIC interface is capable of sustaining the
400MB/s node-to-node transfer rate to and from main
memory across the entire machine.

The software environment on ASCI Red is also signif-
icantly different from the standard commodity model.
The compute nodes run Cougar, a variant of the Puma
lightweight kernel that was designed and developed by
Sandia and the University of New Mexico for maximiz-
ing both message passing throughput and application
resource availability (Shuler et al. 1995).

Cougar uses a simple network protocol built around
the Portals message passing interface (Shuler et al.
1995). Portals are data structures in an application’s
address space that determine how the kernel should
respond to message passing events. Portals allow the ker-
nel to deliver messages directly from the network to the
application’s memory.

Cougar is not a traditional symmetric multiprocessing
operating system. Instead, it supports four different
modes that allow different distributions of application
processes on the processors. The following provides an
overview of two of these processor modes that are rele-
vant to this paper. More details can be found in Maccabe
et al. (1996).

The simplest processor usage mode is to run both the
kernel and application process on the system processor.
This mode (P0 mode) is commonly referred to as the
“heater mode” since the second processor is not used and
only generates heat. In this mode, the kernel runs only
when responding to network events or in response to a
system call from the application process.

In the second mode, message co-processor mode (or
P1 mode), the kernel runs on the system processor and
the application process runs on the user processor. When
the processors are configured in this mode, the kernel
runs continuously waiting to process events from exter-
nal devices or service system call requests from the
application process. Because the time to transition from
user mode to supervisor mode and back can be signifi-
cant, this mode offers the advantage of reduced network
latency and faster system call response time.

3.2 MPI LIBRARIES

Table 1 summarizes the characteristics of the MPI imple-
mentations used in our analysis. On the Quadrics cluster,
two versions of MPI software were used: the default
MPICH variant from Quadrics using the Tports API (ver-
sion 1.24-27) and a variant of MPICH 1.2.5 built at San-
dia (Brightwell 2004) using the Cray SHMEM API (Cray
Research 1994; using version 1.4.12-1 of the QsNet
libraries that contained the Cray SHMEM compatibility
library). The MPI version built using the SHMEM API
performs quite well as seen in Figures 2 and 3; thus, the
only appreciable difference in the two libraries is their
capabilities. Tports provides MPI with the capability to
overlap computation and communication, the ability to

107OVERLAP, OFFLOAD, AND PROGRESS

achieve independent progress, and the ability to offload
matching semantics to the network interface. In previous
work, it was found that the combination of these factors
had a significant impact on the performance of applica-
tions (Brightwell and Underwood 2004b).

Unfortunately, using only these two implementations
on the Quadrics network makes it quite difficult to distin-
guish the actual source of this performance improvement.
ASCI Red offers a platform where finer distinctions can
be made. On ASCI Red, the default MPI (based on
MPICH 1.0.12) uses interrupt-driven Portals processing
in the Cougar kernel to provide independent progress.
MPI only needs to set up the appropriate Portal for a
receive operation and a matching put will be placed
directly into user memory without application interven-
tion. This is only possible because the sender uses an
eager protocol for all messages. Long messages that
arrive without a matching posted receive place MPI enve-
lope information into a buffer and discard the data (to be
retrieved later when the matching receive is posted). As
part of the interrupt-driven processing, the processor is
kept busy (in the kernel) for the entire message arrival
time because the kernel must continually service the net-
work interface until the entire message has been received.

Using various processor modes, the default MPI
library can provide a variety of capabilities to the appli-
cation. In P0 mode, message reception occurs on the
application processor. Thus, the MPI library can provide
independent progress, but not overlap or offload. In P1
mode, message reception happens on the message co-
processor, so the MPI library can provide overlap and
offload as well as independent progress.

The primary additional requirement for ASCI Red is a
baseline for comparison. An implementation of MPI
using a rendezvous protocol for long messages was
developed as part of previous work (Brightwell and
Underwood 2003) for this purpose. When using a rendez-
vous protocol in P0 mode, MPI is unable to provide over-
lap, independent progress, or offload. This library can
also be used in P1 mode to test a design point without
independent progress, but with overlap and offload capa-
bilities.

4 Related Work

The work in this paper spans the areas of performance
analysis, network-based protocol offload, and character-
izing the behavior of parallel applications. As such, this
study is similar to previous work that characterizes the
message passing behavior of applications and application
benchmarks in an attempt to understand or predict per-
formance. Examples of this type of analysis can be found in
Vetter and Mueller (2002) and Wong et al. (1999). Rather
than just reporting on observed behavior, our work in this
paper pinpoints specific characteristics and their impact
on performance. However, we know of no work that char-
acterizes the benefits and drawbacks of offload using
identical hardware and nearly identical software stacks.

There is an abundant amount of work that compares
different network technology using identical compute
hardware in order to evaluate networks as a whole. The
most recent and comprehensive study for MPI and com-
modity high performance networks is Liu et al. (2003b).
However, we are interested in characterizing an applica-
tion’s ability to leverage network performance rather
than simply evaluating and comparing network perform-
ance. Thus, the work we present here attempts to isolate
specific properties of a network—host processing versus
network interface offload—in order to evaluate the
impacts of the different strategies.

It is typical for papers that describe MPI implementa-
tions to explore different strategies within the implemen-
tation. An example of this is Dimitrov and Skjellum
(2000), where polling versus blocking message comple-
tion notification is explored. This kind of MPI implemen-
tation strategy work explores different methods of using
the capabilities offered by a network, but limiting net-
work capabilities in order to characterize specific net-
work functionality has not been explored.

A description of the MPI implementation for Cray
SHMEM as well as communication microbenchmark
performance can be found in Brightwell (2004).

5 Results

The first step in determining the impact of overlap,
offload, and independent progress is to ensure that the
MPI implementations being compared are sufficiently
similar in performance. In the next section we evaluate
MPI implementations that provide various combinations
of overlap, offload, and independent progress in terms of
microbenchmark characteristics including latency, band-
width, and collective performance. Following that, the
widely studied NAS parallel benchmarks are analyzed on
each of the MPI implementations. Finally, two applica-
tions are evaluated on a subset of the MPI implementa-
tions to examine the impact of these characteristics.

Table 1
MPI implementation characteristics

ASCI Red Quadrics

Eager Rendezvous
Tports SHMEM

P0 P1 P0 P1

Progress ✓ ✓ ✓

Overlap ✓ ✓ ✓ ✓

Offload ✓ ✓ ✓

108 COMPUTING APPLICATIONS

5.1 MICROBENCHMARKS

The first step in comparing MPI implementations built
over SHMEM and Tports was to compare their charac-
teristics using microbenchmarks. Figure 1 compares the
standard latency metrics for SHMEM MPI and Tports
MPI. For small messages (one Elan3 packet), the Tports
implementation is slightly faster. As the message size
crosses one packet, the Tports implementation becomes
slower because it uses a rendezvous protocol on the NIC.
The SHMEM implementation uses a larger small mes-
sage size and does not pay this penalty yet. When mes-
sage size increases further, the latencies incurred by the

two implementations converge as the overheads are
amortized over larger data transfers. Thus, in terms of
traditional ping-pong latency, the SHMEM MPI and the
Tports MPI are roughly equivalent.

For larger message sizes, bandwidth, not latency,
becomes the dominant factor. Thus, Figure 2 compares
the bandwidth achieved by the two MPI implementa-
tions. Figure 2(a) specifically targets medium sized mes-
sages and indicates that the two bandwidth curves are
virtually identical. Figure 2(b) portrays a similar picture
for long message bandwidth. Between Figures 1 and 2,
microbenchmarks indicate that the two implementations
perform almost identically.

Figure 3 shows the relative performance of the various
MPI implementations for ASCI Red on standard
microbenchmarks. In almost every case, the implementa-
tion that does not provide overlap or independent
progress appears to be of approximately equal perform-
ance to the one that does. The notable exception is the
latency of the rendezvous implementation immediately
after it crosses over the short message threshold. The
erratic behavior of P1 mode on ASCI Red is still being
debugged.

For the FT benchmark, all of the communication time
is concentrated in the MPI_Alltoall collective. The
performance of this collective is shown on the left-hand
side of Figures 4(a), (c), and (e) for each of the MPI
implementations evaluated. The performance of the col-
lective is very close for the various sizes of the collective
for both the Tports and SHMEM implementations of
MPI on Elan3. On ASCI Red, P0 and P1 modes perform
very similarly, but the rendezvous implementation (with
no independent progress) has a significant advantage

Fig. 1 Message latency for SHMEM and Tports based
MPI implementations.

Fig. 2 A comparison of (a) medium message bandwidth, and (b) long message bandwidth for MPI implementations
on Elan3.

109OVERLAP, OFFLOAD, AND PROGRESS

over the eager implementation (with independent
progress). This is a logical result from previous work that
indicated that the naive MPICH implementation of this
collective caused a large number of unexpected messages
(Brightwell and Underwood 2004a) and that the eager
MPI implementation that enables independent progress
on ASCI Red causes significant performance degradation
in the presence of a large number of unexpected mes-
sages (Brightwell and Underwood 2003). Furthermore,
when benchmarking collectives, there is no computation
to overlap with the communication.

The MPI_Alltoallv collective is the only signifi-
cant contributor to communication time for the IS bench-
mark. As such, the time to perform MPI_Alltoallv is
shown in the right-hand side of Figures 4(b), (d), and (f)
for each of the MPI implementations evaluated. On ASCI
Red, there are effectively two classes of performance on
this collective: slower performance (longer time) for the
default MPI implementation and faster performance
(shorter time) for the MPI implementations that use a
rendezvous protocol. The same properties and analysis
from MPI_Alltoll apply here as well.

What is more surprising is the data from the Quadrics
network. At small message sizes (under 12 KB and not
visible on the graph), the SHMEM implementation of
MPI_Alltoallv holds a slight performance advan-
tage. This is an impact of the slower processor on the
Quadrics network interface that must handle the match-
ing semantics (Underwood and Brightwell 2004). By 12
KB, this advantage has vanished as the overhead of

match list traversal is amortized over larger messages.
When the message size reaches 1 MB, the Tports imple-
mentation is over 30% faster.

5.2 NAS PARALLEL BENCHMARKS

The next phase of the evaluation compared the perform-
ance of the class B NAS parallel benchmarks on each of
the MPI implementations. EP (the embarrassingly paral-
lel benchmark) was excluded since it does not do any sig-
nificant communication. Each benchmark was run four
times for each number of processors per job. The average
of the four runs is reported in Figures 5, 6, and 7. The
measurements from ASCI Red were extremely stable
(varying by less than 0.5%); thus, even small differences
can be directly attributed to a cause. These measurements
offer an opportunity to attempt to separate the impacts of
overlap, independent progress, and MPI offload.

Figures 5 and 6 show data for the BT, IS, MP, and SP
class B benchmarks taken from a Quadrics cluster and
the ASCI Red platform. These are the only benchmarks
that show measurable advantage from the introduction of
overlap, offload, or independent progress on Elan3.

The data for the MG benchmark are shown in Fig-
ures 5(a) and (b). Independent progress provides a slight
but consistent advantage. The Tports implementation out-
performs the SHMEM implementation by a slight, but
consistent, margin. For ASCI Red, the eager implementa-
tion on P0 mode provides independent progress and out-
performs the rendezvous implementation on P0 mode.

Fig. 3 A comparison of (a) bandwidth and (b) latency for the two implementations on ASCI Red.

110 COMPUTING APPLICATIONS

Fig. 4 A comparison of (a) Alltoall and (b) Alltoallv performance for two implementations on Elan 3 and (c), (e) All-
toall and (d), (f) Alltoallv performance for two implementations on ASCI Red.

111OVERLAP, OFFLOAD, AND PROGRESS

Moving from P0 mode to P1 mode gives an advantage to
both the eager and the rendezvous implementations. This
demonstrates that the additions of overlap and offload are
also an advantage to the MG benchmark, but independent
progress still contributes to the performance advantage as
the P1 mode runs with the eager MPI implementation out-
perform the proc1 mode runs with the rendezvous MPI
implementation.

Figure 5(c) indicates that Tports outperforms SHMEM
by a significant margin on the IS benchmark. This meas-
urement was taken without using the enhanced collectives
provided by the default Quadrics MPI (for fairness), but
using the enhanced collectives provided virtually no ben-

efit for IS. This is somewhat (but not completely)
explained by the significant difference in the MPI_
Alltoallv performance differences seen in Figure 4.
Using Figure 5(d), this difference can be explained by
independent progress. Doing so requires some insight.
First, the advantages of offload and overlap can be excluded
by noticing that P0 performance and P1 performance are
virtually identical. Secondly, contrary its appearance, Fig-
ure 5(d) does not contradict the conclusion that the per-
formance advantage Tports over SHMEM is independent
progress. This is because the independent progress mech-
anism on ASCI Red is an eager protocol which experi-
ences a significant reduction in bandwidth in the presence

Fig. 5 Comparison for (a) MG on Elan3, (b) MG on ASCI Red, (c) IS on Elan3, and (d) IS on ASCI Red.

5.80

2.78

1.63

5.62

2.71

1.55

0

1

2

3

4

5

6

7

4 8 16

Number of Processes

R
un

tim
e

(s
ec

on
ds

)

SHMEM
Tports

16
3.

87

73
.6

3

38
.8

7

19
.4

9

8.
73

4.
75

16
3.

74

73
.1

9

38
.5

3

19
.0

8

8.
64

4.
68

16
4.

61

74
.1

3

39
.3

7

19
.8

2

8.
83

4.
82

16
4.

40

73
.4

4

38
.8

6

19
.4

0

8.
76

4.
76

0

20

40

60

80

100

120

140

160

180

4 8 16 32 64 128

Number of Processors
R

un
tim

e
(s

ec
on

ds
)

Eager - Proc0
Eager - Proc1
Rendezvous - Proc0
Rendezvous - Proc1

7.18

4.09

2.07

5.87

3.29

1.73

0

1

2

3

4

5

6

7

8

4 8 16

Number of Processes

R
un

tim
e

(s
ec

on
ds

)

SHMEM
Tports

21
.4

5

12
.3

5

7.
96

5.
39

2.
99

21
.5

8

12
.4

7

7.
97

5.
36

3.
07

20
.0

5

11
.6

1

7.
37

4.
75

2.
82

20
.1

0

11
.4

7

7.
37

4.
80

3.
05

0

5

10

15

20

25

4 8 16 32 64

Number of Nodes

R
un

tim
e

(s
ec

on
ds

)

Eager (P0)
Eager (P1)
Rendezvous (P0)
Rendezvous (P1)

(a) (b)

(c) (d)

112 COMPUTING APPLICATIONS

of unexpected messages (Brightwell and Underwood 2003)
(as seen in the IS benchmark; Brightwell and Underwood
2004a). This is further reinforced by the data from the ren-
dezvous library run in P1 mode. The addition of overlap
and offload to the rendezvous library (without independ-
ent progress) adds no performance improvement.

The benefits of independent progress for IS are coun-
terintuitive since the primary communications routine in
the IS benchmark is a collective operation; however, the
Rogue OS effect (Petrini et al. 2003) is known to cause
interference with collective operations. Specifically, in
this case, it is key that the independent progress is inde-

pendent of the application process altogether. Although
this is achieved with offload for the Quadrics Tports
interface, it can also be achieved with interrupt-driven
progress, as it is on ASCI Red; thus, it is independent
progress, not offload, that affects the performance of the
IS benchmark.

The SP and BT benchmarks are more clear cut, espe-
cially as the applications scale in the number of nodes.
The SP and BT benchmarks using MPI over Tports con-
sistently outperform MPI over SHMEM on the Quadrics
network. The advantage is 3–6% in overall execution
time for SP and 2–4% in overall execution time for BT.

Fig. 6 Comparison for (a) BT on Elan3, (b) BT on ASCI Red, (c) SP on Elan3, and (d) SP on ASCI Red.

448.26

185.99

143.67

73.45

444.91

182.05

140.84

70.64

0

50

100

150

200

250

300

350

400

450

500

4 9 16 25

Number of Processes

R
un

tim
e

(s
ec

on
ds

)

SHMEM
Tports

21
19

.0
4

11
95

.4
9

51
9.

48

29
0.

03

14
8.

26

21
16

.6
8

11
95

.4
9

51
7.

82

28
8.

23

14
6.

29

21
18

.7
6

11
94

.5
2

52
0.

31

29
0.

65

14
8.

46

21
17

.3
9

11
94

.2
4

51
9.

32

28
9.

51

14
6.

96

0

500

1000

1500

2000

2500

9 16 36 64 121

Number of Nodes

R
un

tim
e

(s
ec

on
ds

)

Eager (P0)
Eager (P1)
Rendezvous (P0)
Rendezvous (P1)

226.95

106.06

56.63

39.56

219.86

100.21

51.39

34.58

0

50

100

150

200

250

4 9 16 25

Number of Processes

R
un

tim
e

(s
ec

on
ds

)

SHMEM
Tports

39
33

.5
2

15
50

.2
1

86
4.

42

35
8.

38

18
3.

48

10
5.

31

39
29

.3
7

15
46

.1
9

86
0.

41

35
4.

22

18
0.

21

10
2.

73

39
33

.5
0

15
49

.0
9

86
1.

84

35
7.

86

18
3.

64

10
5.

12

39
28

.0
4

15
45

.2
0

86
0.

25

35
5.

27

18
1.

23

10
3.

22

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4 9 16 36 64 121

Number of Nodes

R
un

tim
e

(s
ec

on
ds

)

Eager (P0)
Eager (P1)
Rendezvous (P0)
Rendezvous (P1)

(a) (b)

(c) (d)

113OVERLAP, OFFLOAD, AND PROGRESS

Fig. 7 Comparison for (a) CG on Elan3, (b) CG on ASCI Red, (c) FT on Elan3, (d) FT on ASCI Red, (e) LU on Elan3,
and (f) LU on ASCI Red.

47.35

27.31

19.49

48.87

28.17

19.57

0

10

20

30

40

50

60

4 8 16

Number of Processes

R
un

tim
e

(s
ec

on
ds

)

SHMEM
Tports

91
0.

72

40
5.

11

22
6.

49

12
7.

63

79
.1

1

46
.0

1

90
6.

07

40
2.

44

22
4.

57

12
6.

57

77
.8

6

45
.3

4

85
4.

19

40
2.

39

22
4.

67

12
5.

67

77
.7

6

44
.8

6

85
3.

20

40
1.

65

22
3.

96

12
5.

85

77
.5

9

44
.5

9

0

100

200

300

400

500

600

700

800

900

1000

4 8 16 32 64 128

Number of Processors
R

un
tim

e
(s

ec
on

ds
)

Eager - Proc0
Eager - Proc1
Rendezvous - Proc0
Rendezvous - Proc1

73.52

40.28

19.44

73.88

39.94

19.16

0

10

20

30

40

50

60

70

80

4 8 16

Number of Processes

R
un

tim
e

(s
ec

on
ds

)

SHMEM
Tports

54
5.

65

27
5.

75

13
9.

26

70
.4

5

36
.3

6

54
5.

07

27
5.

75

13
9.

24

70
.5

1

36
.3

2

54
2.

93

27
5.

25

13
9.

05

70
.8

1

38
.7

3

54
2.

99

27
5.

15

13
9.

04

71
.0

2

39
.7

4

0

100

200

300

400

500

600

8 16 32 64 128

Number of Processors

R
un

tim
e

(s
ec

on
ds

)

Eager - Proc0
Eager - Proc1
Rendezvous - Proc0
Rendezvous - Proc1

150.07

76.74

41.43

145.49

77.26

42.08

0

20

40

60

80

100

120

140

160

4 8 16

Number of Processes

R
un

tim
e

(s
ec

on
ds

)

SHMEM
Tports

28
20

.7
4

14
40

.0
9

61
2.

48

26
5.

69

13
6.

48

80
.1

3

28
12

.9
0

14
28

.3
2

59
3.

62

26
0.

59

13
3.

64

77
.7

2

28
21

.5
8

14
40

.4
4

61
2.

12

26
6.

87

13
6.

61

79
.6

0

28
13

.3
5

14
28

.5
0

59
3.

32

26
1.

86

13
4.

01

77
.0

3

0

500

1000

1500

2000

2500

3000

4 8 16 32 64 128

Number of Processors

R
un

tim
e

(s
ec

on
ds

)

Eager - Proc0
Eager - Proc1
Rendezvous - Proc0
Rendezvous - Proc1

(a) (b)

(c) (d)

(e) (f)

114 COMPUTING APPLICATIONS

Using the 64 node runs1 from ASCI Red, SP sees a frac-
tional gain from adding independent progress (moving
from rendezvous to an eager implementation). It sees
another 1.5% gain when moving from P0 to P1 mode.
This is the combined advantage of adding protocol
offload and adding overlap. Notably, when the rendez-
vous implementation is run in P1 mode, overlap and
offload offer less than 1% gain. This is a clear indication
that independent progress needs overlap and offload to
achieve maximal performance, and vice versa. Similarly,
BT sees a fractional gain from independent progress but
an additional 2.5% gain from the combination of offload
and overlap. Again, overlap and offload alone offer only
a portion of the advantage.

Moving to 121 nodes changes the picture slightly. At
121 nodes, most of the messages use the short message
protocol. Thus, the rendezvous protocol reaps many of the
advantages of independent progress without truly provid-
ing it. Indeed, when adding only independent progress, the
BT benchmark actually slows down; however, the combi-
nation of independent progress, overlap, and offload still
offers a 0.5% advantage over overlap and offload alone.

The most important result here is that overlap must be
combined with independent progress to achieve the best
results. Independent progress alone suffers from issues
such as cache pollution and context switch overheads.
Offload and overlap alone suffer because they must wait
for the application to return to the MPI library to progress
communications. The combination of the three enables a
measurable impact on application performance.

Figure 7(a) shows the performance of CG on Elan3.
CG is one of the few benchmarks where SHMEM MPI
appears to have advantages. For small numbers of nodes,
SHMEM MPI has up to a 3% performance advantage
over Tports MPI with measurements that vary by less
than 0.5%. This performance advantage is surprising
since since CG was found to be a well-behaved applica-
tion in terms of MPI queue usage (Brightwell and Under-
wood 2004a). The cause is likely to be the use of
messages that are predominantly smaller than 2 KB as
discussed in Liu et al. (2003b). However, this advantage
evaporates at 16 nodes.

Considering the same analysis from ASCI Red that is
shown in Figure 7(b) illustrates that independent progress
still offers no advantage. Since CG has a significant
number of unexpected messages (Brightwell and Under-
wood 2004a), and unexpected messages significantly
decrease bandwidth with the eager protocol (Brightwell
and Underwood 2003), this is not surprising. It would
also tend to indicate that CG is not able to overlap signif-
icant computation with communication. Looking at the
minor improvements achieved by moving from P0 mode
to P1 mode would indicate that CG is able to derive some
benefit from offloading the network processing.

The FT benchmark would not be expected to see a par-
ticular advantage from independent progress because all
of the communications occur in the MPI_Alltoall
collective. For smaller configurations, we find that FT
runs at the same speed (or slower) when using the MPI
implementation that delivers independent progress rather
than the MPI implementation that does not. This follows
from the data seen in Figure 4 for the collective bench-
marks. What is interesting, however, is that FT receives
an 6% advantage at 128 nodes from independent
progress. Timings for these runs varied by less than
0.2%, so this was not experimental error. Furthermore,
since the code was run on a 128-node version of ASCI
Red, only one allocation was possible. All of the advan-
tage appears to arise from independent progress, since P0
and P1 mode runs performed the same.

Tports showed no advantage over the SHMEM imple-
mentation for the LU implementation; however, on ASCI
Red, the results were somewhat different. P1 mode
shows a distinct advantage over P0 mode for both the
eager and rendezvous MPI implementations. The varia-
bility in the runs was only 0.07% and the difference in
the run time between the different implementations was
2–3%. Since P1 mode showed advantage over P0 mode
in both cases, we can isolate the advantage to either over-
lap or offload. Since SHMEM and Tports have the same
performance, we can determine that overlap is the source
of the performance advantage.

An interesting side note is that the FT and IS bench-
marks were expected to pose a significant performance
issue for an MPI implementation that offloads queue
handling to a slower processor on the NIC (e.g. MPI over
Tports). Both of these benchmarks have long unexpected
queues, long posted receive queues, and long average
traversals of each (Brightwell and Underwood 2004a).
Traversing these queues on an embedded processor
should have proved costly; however, Figures 5(c) and
7(c) clearly indicate otherwise. Performance for FT is
effectively equivalent between the two implementations
and Tports MPI has a significant advantage (20%) for IS.
Similarly, despite the high number of long unexpected
messages for FT, it breaks even on ASCI Red and begins
to win at larger numbers of nodes.

5.3 APPLICATIONS

The final portion of the analysis places a focus on real
applications. Two different applications were evaluated
with two input sets being evaluated on one of the imple-
mentations. Further data about the applications and input
sets can be found in previous work (Rodrigues et al.
2004). The results for each application from ASCI Red
are shown in Figure 8. The two input sets for LAMMPS
were required to be run on a cubed number of processors.

115OVERLAP, OFFLOAD, AND PROGRESS

The Lennard–Jones system input to the LAMMPS
application provides the most dramatic and consistent of
the three results. Independent progress provides a 2%
benefit when overlap and offload are not available. The
combination of overlap and offload provide a 10%
improvement in performance, and in the presence of
overlap and offload, independent progress provides no
advantage for this application.

The bead spring polymer chain input to LAMMPS is
much more difficult to interpret. In all cases, the addition
of overlap and offload by shifting from P0 mode to P1 mode
is significant. The advantage ranges from as little as 2% when
independent progress is already available and the compute
time is long to as much as 8% when independent progress
is not available and the compute time is shorter. Independent
progress alone has an advantage of 2–3% when overlap
and offload are not available. What is harder to interpret is
the advantages of independent progress when overlap and
offload are both present. In 8 and 128 node runs, the added
advantage of independent progress in the presence of
overlap and offload is minimal. In 27- and 64-node runs,
it is 2–3%. We believe that the discrepancy arises from the
ratio of the computation to communication. In the eight-
node runs, computation time swamps communication
time and hides many of the differences in the MPI imple-
mentations. In the 128-node runs, this fixed-size problem
has begun to experience decreased scaling efficiency. This
occurs when communication time begins to outweigh
computation time; thus, the application is spending more
time in MPI. Applications that spend much of their time in
MPI tend to see little benefit from independent progress.

The EFP3D input to the CTH application show rela-
tively consistent behavior across the various sizes of runs.
Independent progress consistently improves performance
by 1%. Overlap and offload alone (rendezvous P0 to ren-
dezvous P1) consistently shows a slight decrease in per-
formance. Adding overlap and offload to the independent
progress enabled MPI implementation shows up to a 1%
gain, but this is a less consistent advantage.

6 Conclusions

In this paper we have quantitatively explored the advan-
tages of overlap, independent progress, and offload using
the NAS parallel benchmarks and two applications. Com-
bined, they offer a 2–20% advantage in overall execution
time depending on the benchmark. This is particularly
significant in the context of $100 million acquisitions
such as those found in the ASC program. In such cases, a
2% improvement in overall execution time justifies the
expenditure of almost $2 million.

In this study we set out to evaluate the impacts of an MPI
implementation that provides independent progress and
overlap capabilities by using network interface- or processor-

Fig. 8 Comparison for (a) LAMMPS with the Lennard–
Jones system input set, (b) LAMMPS with the bead
spring polymer chain input set, and (c) CTH with EFP3D.

61
.1

3

43
.7

4

40
.2

9 42
.3

1

57
.5

9

40
.4

0

36
.6

1 39
.1

1

62
.1

0

45
.6

0

42
.6

2

43
.6

7

57
.9

0

40
.9

7

36
.9

7 39
.1

8

0

10

20

30

40

50

60

70

8 27 64 125

Number of Processors

R
un

tim
e

(s
ec

on
ds

)

Eager - Proc0
Eager - Proc1
Rendezvous - Proc0
Rendezvous - Proc1

25
71

.7
2

92
5.

60

50
8.

67

37
9.

80

25
28

.7
9

90
5.

61

49
0.

31

36
5.

45

25
82

.1
2

96
0.

86

52
3.

57

38
6.

62

25
31

.9
8

93
7.

34

50
1.

32

36
7.

88

0

500

1000

1500

2000

2500

3000

8 27 64 125

Number of Processors

R
un

tim
e

(s
ec

on
ds

)

Eager - Proc0
Eager - Proc1
Rendezvous - Proc0
Rendezvous - Proc1

18
34

9.
97

11
67

8.
04

68
12

.9
6

41
21

.6
8

27
63

.8
8

18
33

9.
62

11
64

6.
12

67
19

.6
9

40
90

.0
9

27
66

.1
9

18
37

7.
90

11
75

7.
42

68
99

.6
7

42
35

.1
5

27
93

.0
1

18
44

2.
77

11
78

0.
83

68
89

.0
7

42
57

.0
7

28
08

.6
3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8 16 32 64 128

Number of Processors

R
un

tim
e

(s
ec

on
ds

)

Eager - Proc0
Eager - Proc1
Rendezvous - Proc0
Rendezvous - Proc1

(a)

(b)

(c)

116 COMPUTING APPLICATIONS

based MPI offload. The expectation was that both advantages
and disadvantages would be uncovered: advantages for
“well-behaved” applications that had short MPI queues,
and disadvantages for “poorly-behaved” applications that
used long MPI queues. In the process, we sought to answer
three questions. Does offload onto a slower network interface
processor negatively affect applications with long MPI
queues? Does independent progress yield an advantage to
applications? Do overlap and offload impact application
performance? The answers were somewhat surprising.

The Tports MPI (the offloading MPI) wins almost uni-
formly (and sometimes by a significant margin) despite
the fact that the SHMEM MPI has almost identical per-
formance. In the rare cases (three of 23 data points)
where SHMEM MPI is faster, it is by a very small mar-
gin. In contrast, Tports MPI has a surprisingly large mar-
gin of victory over SHMEM MPI (20%) on the “poorly
behaved” IS benchmark, a 5–10% advantage for SP, and
a 2–4% advantage for BT. Also surprising was the fact
that SHMEM MPI had a slight edge in performance for
CG (a “well-behaved” application). In summary, the ben-
efits of independent progress, overlap, and offload were
not outweighed by the slow network interface processor
that offloads MPI queue handling for “poorly-behaved”
applications; however, improving network interface per-
formance may benefit these applications further.

Taken by itself, independent progress is a critical con-
tributor to application performance improvements. For
BT, SP and all of the real applications, independent
progress improves performance as seen on ASCI Red and
the Quadrics network. Similarly, the combination of over-
lap and offload in the absence of independent progress
accelerates a number of the benchmarks (particularly LU,
BT, SP, and all of the applications). The striking result is
that the combined performance improvement from inde-
pendent progress, overlap, and offload is often more than
simply the composition of the parts. Another important
observation comes from the IS benchmark. The results for
IS are a dramatic improvement of 20% on the Quadrics
network, but an actual loss of performance on the ASCI
Red system. This highlights an important aspect for
implementers of independent progress for MPI: the imple-
mentation must be careful not to sacrifice too much per-
formance for non-optimal applications, such as those like
IS that have a significant number of unexpected messages.

ACKNOWLEDGMENTS

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000

The authors would like to gratefully acknowledge the
CCS-3 group at Los Alamos National Laboratory, espe-

cially Fabrizio Petrini, for providing access to the Elan3
cluster used for our experiments.

AUTHOR BIOGRAPHIES

Ron Brightwell received his B.S. in mathematics in
1991 and his M.S. in computer science in 1994 from Mis-
sissippi State University. He joined Sandia National Lab-
oratories in 1995 after serving as a research assistant in
the system software group at the MSU/NSF Engineering
Research Center for Computational Field Simulation.
While at Sandia, he has designed and developed high per-
formance implementations of the MPI Standard on sev-
eral large-scale, massively parallel computing platforms,
including the Cray T3D and T3E, the Intel Paragon and
TeraFLOPS (ASCI/Red), and Sandia’s Computational
Plant clusters. His research interests include high per-
formance, scalable communication interfaces and proto-
cols for system area networks, operating systems for
massively parallel processing machines, and parallel pro-
gram performance analysis libraries and tools. He is also
currently pursuing a Ph.D. in the Department of Compu-
ter Science at the University of New Mexico.

Rolf Riesen is a principal member of technical staff at
Sandia National Laboratories in Albuquerque, New Mex-
ico. He holds a Ph.D. degree in computer science from the
University of New Mexico. His research interests include
message passing systems, operating systems, and runtime
software for massively parallel computers. Over the last
10 years in this field he has primarily concentrated on top-
ics related to efficient, scalable message passing and inter-
actions at the software/hardware boundary. Dr. Riesen has
been a key member of the design team for SUNMOS for
the nCUBE-2 and the Intel Paragon, as well as Puma/Cou-
gar, the second generation lightweight kernel for the Intel
ASCI Red machine. He is also a key designer of the Por-
tals message passing mechanism. He has been a principal
designer of Cplant, the largest commodity cluster for sci-
entific applications in the world. He was involved in the
overall design and the low-level message passing layers,
including the scalable wire protocol used by Cplant.

Keith Underwood received B.S. and Ph.D. degrees in
computer engineering from Clemson University in 1995
and 2002, respectively. His dissertation research focused
on incorporating FPGA devices in the network interface
to create an intelligent NIC that was capable of processing
the entire network data stream. He joined Sandia National
Labs as a senior member of the technical staff in 2002. He
has recently been exploring the ability of FPGAs to per-
form IEEE compliant floating-point arithmetic to support
scientific computation. He has also researched hardware
mechanisms to accelerate MPI processing. His research

117OVERLAP, OFFLOAD, AND PROGRESS

interests include high performance networking for next
generation supercomputers, programmable network inter-
faces, and the role of reconfigurable computing in high
performance computing systems.

NOTES
1 These runs have more comparable execution times to those

on the Quadrics cluster and therefore more comparable bal-
ances of communication and computation.

References
Boden, N. J., Cohen, D., Kulawik, R. E. F. A. E., Seitz, C. L.,

Seizovic, J. N., and Su, W-K. 1995. Myrinet: a gigabit-
per-second local area network. IEEE Micro 15(1):29–36

Brightwell, R. 2004. A new MPI implementation for Cray
SHMEM. Recent Advances in Parallel Virtual Machine and
Message Passing Interface: 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, September 18–21.

Brightwell, R. and Shuler, P. L. 1996. Design and implementa-
tion of MPI on Puma portals. Proceedings of the 2nd MPI
Developer’s Conference, July, pp. 18–25.

Brightwell, R. and Underwood, K. 2003. Evaluation of an eager
protocol optimization for MPI. Proceedings of the 10th
European PVM/MPI Users’ Group Meeting (EuroPVM/
MPI), Venice, Italy, September.

Brightwell, R. and Underwood, K. D. 2004a. An analysis of
NIC resource usage for offloading MPI. Proceedings of
the 2004 Workshop on Communication Architecture for
Clusters, Santa Fe, NM, April.

Brightwell, R. and Underwood, K. D. 2004b. An initial analysis
of the impact of overlap and independent progress for
MPI. Recent Advances in Parallel Virtual Machine and
Message Passing Interface: 9th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, September.

Brightwell, R., Hudson, T. B., Maccabe, A. B., and Riesen, R.
E. 1999. The Portals 3.0 message passing interface. San-
dia National Laboratories, Technical Report SAND99-
2959, December.

Brightwell, R., Lawry, W., Maccabe, A. B., and Riesen, R.
2002. Portals 3.0: protocol building blocks for low over-
head communication. Proceedings of the 2002 Workshop
on Communication Architecture for Clusters, April.

Cray Research, Inc. 1994. SHMEM Technical Note for C, SG-
2516 2.3, October.

Dimitrov, R. and Skjellum, A. 2000. Impact of latency on appli-
cations’ performance. Fourth MPI Developers’ and Users’
Conference, March.

Liu, J., Wu, J., Kini, S. P., Wyckoff, P., and Panda, D. K.
2003a. High performance RDMA-based MPI implemen-
tation over InfiniBand. Proceedings of the 2003 Interna-
tional Conference on Supercomputing (ICS-03), June 23–
26, ACM Press, New York, pp. 295–304.

Liu, J., Chandrasekaran, B., Wu, J., Jiang, W., Kini, S., Yu, W.,
Buntinas, D., Wyckoff, P., and Panda, D. K. 2003b. Per-
formance comparison of MPI implementations over Infin-
iBand, Myrinet and Quadrics. Proceedings of the
International Conference for High Performance Comput-
ing and Communications (SC2003), November.

Liu, J., Chandrasekaran, B., Yu, W., Wu, J., Buntinas, D., Kini,
S. P., Wyckoff, P., and Panda, D. K. 2004. Microbench-
mark performance comparison of high-speed cluster inter-
connects. IEEE Micro 24(1):42–51.

Maccabe, A. B., Riesen, R., and van Dresser, D. W. 1996.
Dynamic processor modes in Puma. Bulletin of the Tech-
nical Committee on Operating Systems and Application
Environments (TCOS) 8(2):4–12.

Martin, R. P., Vahdat, A. M., Culler, D. E., and Anderson, T. E.
1997. Effects of communication latency, overhead, and
bandwidth in a cluster architecture. Proceedings of the
24th Annual International Symposium on Computer
Architecture, June.

MPI Forum. 1994. MPI: a message-passing interface standard.
International Journal of Supercomputer Applications and
High Performance Computing 8(3–4):159–416.

MPI Forum. 1997. MPI-2: Extensions to the Message-Passing
Interface, http://www.mpi-forum.org/docs/mpi-20-html/
mpi2-report.html.

Petrini, F., Chun Feng, W., Hoisie, A., Coll, S., and Frachten-
berg, E. 2002. The Quadrics network: high-performance
clustering technology. IEEE Micro 22(1):46–57.

Petrini, F., Kerbyson, D. J., and Pakin, S. 2003. The case of the
missing supercomputer performance: identifying and
eliminating the performance variability on the ASCI Q
machine. Proceedings of the 2003 Conference on High
Performance Networking and Computing, Phoenix, AZ,
November.

Rehm, W., Grabner, R., Mietke, F., Mehlan, T., and Siebert, C.
2004. An MPICH2 channel device implementation over
VAPI on InfiniBand. Proceedings of the 2004 Workshop
on Communication Architecture for Clusters, April.

Rodrigues, A., Murphy, R., Kogge, P., and Underwood, K.
2004. Characterizing a new class of threads in scientific
applications for high end supercomputers. Proceedings of
the 2004 International Conference on Supercomputing
(ICS2004), St. Malo, France, June.

Shuler, L., Jong, C., Riesen, R., van Dresser, D., Maccabe, A.
B., Fisk, L. A., and Stallcup, T. M. 1995. The Puma oper-
ating system for massively parallel computers. Proceed-
ings of the 1995 Intel Supercomputer User’s Group
Conference.

Underwood, K. D. and Brightwell, R. 2004. The impact of MPI
queue usage on message latency. Proceedings of the Inter-
national Conference on Parallel Processing (ICPP),
Montreal, Canada, August.

Vetter, J. S. and Mueller, F. 2002. Communication characteris-
tics of large-scale scientific applications for contemporary
cluster architectures. Proceedings of the 16th Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS’02), April, pp. 27–29.

Wheat, S., Mattson, T. G., and Scott, D. 1996. A TeraFLOPS
Supercomputer in 1996: the ASCI TFLOP System. Pro-
ceedings of the 1996 International Parallel Processing
Symposium.

Wong, F., Martin, R., Arpaci-Dusseau, R., and Culler, D. E.
1999. Architectural requirements and scalability of the
NAS parallel benchmarks. Proceedings of the SC99 Con-
ference on High Performance Networking and Computing,
November.

