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introduction introduction

1.1 introduction

JLQCD: studying lattice QCD using computers at KEK

w/ new supercomputer system (2006 –)
Hitachi SR11000, IBM Blue Gene/L (∼ 60 TFLOPS)

⇓
large-scale simulations w/ dynamical overlap fermions

⇑
computationally expensive ⇐ improvements of algorithm

this talk: algorithmic aspects of production run for Nf =2

lattice action / simulation parameters

our implementation of HMC

production run
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setup of simulation
lattice action
simulation parameters

2.1 lattice action

quark action = overlap w/ std. Wilson kernel

Dov =
(

m0 +
m

2

)

+
(

m0 −
m

2

)

γ5 sgn[Hw(−m0)], m0 = 1.6

std. Wilson kernel HW ⇒ (near-)zero modes of HW

gauge action = Iwasaki action ⇐ low mode density, locality

extra-fields ⇒ to suppress (near-)zero modes
Vranas, 2000; RBC, 2002 (DWF); JLQCD, 2006 (ovr)

Wilson fermion ⇒ suppress zero modes

twisted mass ghost ⇒ suppress effects of higher modes

Boltzmann weight ∝ det[HW (−m0)
2]

det[HW (−m0)2 + µ2]

extra-fields ⇒ do NOT change continuum limit
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setup of simulation
lattice action
simulation parameters

2.2 simulation parameters

Nf =2 QCD

Iwasaki gauge + overlap quark + extra-Wilson (µ=0.2)

β=2.30 ⇒ a ≈ 0.125 fm

163 × 32 lattice ⇒ L≃2 fm

6 sea quark masses ∈ [ms,phys/6, ms,phys]
msea = 0.015, 0.025, 0.035, 0.050, 0.070.0.100

focus on Q=0 sector

test runs (500 – 1000 traj.)
(β, µ) = (2.30,0.2), (2.45, 0.0), (2.50,0.2), (2.60, 0.0)
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algorithm
multiplication of DW and Dov

overlap solver
HMC

3.1 algorithm

HMC w/ dynamical overlap quarks on BG/L

mult DW : depends on machine spec.

mult Dov : treatment of sgn[HW]

overlap solver : choice of algorithm, 4D or 5D

HMC : Hasenbusch precond., multiple time scale

multiplication of DW ⇒ assembler code by IBM on BG/L

double FPU instruction of PowerPC 440D
double pipelines enable complex number add/mult

use low-level communication API
overlap computation/communication

⇒ ∼ 3 times faster than our Fortran code

T.Kaneko Approaching the chiral limit with dynamical overlap fermions



algorithm
multiplication of DW and Dov

overlap solver
HMC

3.2 multiplication of Dov

multiplication of Dov∋sgn[HW]

σ[HW ] ⇒ [λmin, λthrs] ∪ [λthrs, λmax], λthrs =0.045

low mode preconditioning
eigenmodes w/ λ ∈ [λmin, λthrs] ⇒ projected out

Zolotarev approx. of sgn[HW ] for λ ∈ [λthrs, λmax]

N = 10 ⇒ accuracy of |1 − sgnHW
2| ∼ 10−7

example of λ[HW] (test runs @ a∼0.1 fm, msea∼ms,phys)

w/ extra-Wilson
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algorithm
multiplication of DW and Dov

overlap solver
HMC

3.3 4D overlap solver

inner loop:
partial fraction form

sgn[HW] ∋
Np
X

l=1

bl

H2
W + c2l−1

multi-shift CG (Frommer et al., 1995)

outer loop:

relaxed CG (Cundy et al., 2004)

D†
ov Dov ⇒ CG

× 2 faster than unrelaxed CG

residual |D†
ov Dov x − b|

vs # of DW mult (msea =0.015)
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algorithm
multiplication of DW and Dov

overlap solver
HMC

3.3 5D overlap solver

Boriçi, 2004; Edwards et al.,2005

M5 =(Schur decomposition)⇒ γ5 Dov =Hov as Schur complement

M5 =
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algorithm
multiplication of DW and Dov

overlap solver
HMC

3.3 5D overlap solver

x = D−1
ov b from 5D linear equation

M5

„

χ
x

«

=

„

0
b

«

,

even-odd precond.: implemented

low-mode precond.: not yet...

⇒ need small xmin and large Np

⇔ CPU time ∝ Np

∼4 times faster than 4D CG

residual vs # of DW mult
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algorithm
multiplication of DW and Dov

overlap solver
HMC

3.4 HMC w/ 4D solver

Hasenbusch preconditioning (Hasenbusch, 2001)

det[Dov(m)2] = det[Dov(m
′)2] det

»

Dov(m)2

Dov(m′)2

–

= “PF1” · “PF2”

m′ = 0.2 (msea =0.015, 0.025), 0.4 (msea =0.035 – 0.100)

force (ave,max) at msea =0.015
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PF2 ≫ PF1 ≫ ex-Wilson ≫ gauge
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algorithm
multiplication of DW and Dov

overlap solver
HMC

3.4 HMC w/ 4D solver

multiple time scale integration

τ = 0.5

3 nested loops:

PF2 : outer-most loop : NMD times / traj.
PF1 : intermediate : NMD RPF

gauge,ex-Wilson : inner-most : NMD RPF RG

msea NMD RPF RG m′ PHMC

0.015 9 4 5 0.2 0.89
0.025 8 4 5 0.2 0.90
0.035 6 5 6 0.4 0.74
0.050 6 5 6 0.4 0.79
0.070 5 5 6 0.4 0.81
0.100 5 5 6 0.4 0.85
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algorithm
multiplication of DW and Dov

overlap solver
HMC

3.5 HMC w/ 5D solver

Hasenbusch precond. + multiple time scale

det[Dov(m)2] = det[Dov,5D(m′)2] det

»

Dov,5D(m)2

Dov,5D(m′)2

–

det

»

Dov(m)2

Dov,5D(m)2

–

= “PF1” · “PF2” · “noisy Metropolis test”

sufficiently high “N s” to achieve reasonable PHMC

factor of 2 – 3 faster than HMC w/ 4D solver

msea NMD RPF RG m′ PHMC

0.015 13 6 8 0.2 0.68
0.025 10 6 8 0.2 0.82
0.035 10 6 8 0.4 0.87
0.050 9 6 8 0.4 0.87
0.070 8 6 8 0.4 0.90
0.100 7 6 8 0.4 0.91
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algorithm
multiplication of DW and Dov

overlap solver
HMC

3.6 reflection / refraction

extra-Wilson fermion

⇒ suppress zero-modes of HW

⇒ switch off reflection/refraction step
• reflection/refraction is not rare event!

(at a=0.11 fm w/o extra-Wilson)

⇒ factor of ∼3 faster

w/ extra-Wilson
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-0.04

-0.02

0.00

0.02

0.04

λ m
in

β=2.35,  msea=0.090

w/o extra-Wilson
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production run
parameters
properties
timing

4.1 production run

10,000 traj. (×τ =0.5) have been accumulated

msea NMD RPF RG m′ traj. PHMC MPS/MV

0.015 9 4 5 0.2 2800 0.89 0.34
0.025 8 4 5 0.2 5200 0.90 0.40
0.035 6 5 6 0.4 4600 0.74 0.46
0.050 6 5 6 0.4 4800 0.79 0.54
0.070 5 5 6 0.4 4500 0.81 0.60
0.100 5 5 6 0.4 4600 0.85 0.67

msea NMD RPF RG m′ traj PHMC MPS/MV

0.015 13 6 8 0.2 7200 0.68 0.34
0.025 10 6 8 0.2 4800 0.82 0.40
0.035 10 6 8 0.4 5400 0.87 0.46
0.050 9 6 8 0.4 5200 0.87 0.54
0.070 8 6 8 0.4 5500 0.90 0.60
0.100 7 6 8 0.4 5400 0.91 0.67

T.Kaneko Approaching the chiral limit with dynamical overlap fermions



production run
parameters
properties
timing

4.2 basic properties of HMC

area preserving

∆H at msea =0.025

0 1000 2000 3000 4000 5000 6000
HMC traj.
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10.0

∆H

a few spikes per O(10, 000)
trajectories: Pspike .0.03 %

〈exp[−∆H]〉=1 in all runs

does not need “replay” trick

reversibility

∆U vs ǫ
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∆U =
p
P |U(τ +1−1)−U(τ)|2/Ndof

ǫ : stop. cond. for MS/overlap solver

∆U . 10−8: comparable to
previous simulations
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production run
parameters
properties
timing

4.3 effects of low modes of Dov

Ninv,H vs msea
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as approaching to ǫ-regime

cost is governed by λov,min rather than msea

too small volume?

MPS L&2.7, exp[−MPS L] ⇒ . 1 – 2% effects on MPS

larger L for msea≪0.015
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production run
parameters
properties
timing

4.3 timing

# DW mult vs msea
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CPU time [min] on BG/L×10 racks
HMC-4D HMC-5D

msea traj. time traj. time
0.015 2800 6.1 7200 2.6
0.025 5200 4.7 4800 2.2
0.035 4600 3.0 5400 1.5
0.050 4800 2.6 5200 1.3
0.070 4500 2.1 5500 1.1
0.100 4600 2.0 5400 1.0

mild msea dep. of Ninv,H and NMD

⇓

CPU time ∝ 1/m−α
sea , w/ α∼0.53

m
naive expectation: Ninv∝1/msea,

NMD∝1/msea

BG/L × 10 racks × 1 month
⇒ 4000 traj. at all msea
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production run
parameters
properties
timing

4.4 autocorrelation
τint vs msea
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Ninv

plaquette: local

⇒ small mq dependence

Ninv,H: long range

⇒ rapid increase as mq → 0
⇒ may need large statistics

history of Ninv,H
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summary summary

5. summary

algorithm for JLQCD’s dynamical overlap simulations

Hasenbusch precond. + multiple time scale MD + · · ·

5D solver

extra-Wilson fermion to suppress (near-)zero modes

⇒ cheap approx. for sgn[HW], ⇒ turn off reflection/refraction

effects due to fixed (global) topology (R.Brower et al., 2003)

topological properties (χt,...) ⇒ talks by T-W.Chiu, T.Onogi

Q-dependence of observables ⇐ simulations w/ Q 6=0

suitable for ǫ-regime ⇒ talk by S.Hashimoto

on-going/future plans
spectrum/matix elements ⇒ talks by J.Noaki, N.Yamada

simulations of Nf =3 QCD
extend to larger volumes
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