Approaching the Chiral Limit with Dynamical Overlap Fermions

T. Kaneko for the JLQCD collaboration
${ }^{1}$ High Energy Accelerator Research Organization (KEK)
${ }^{2}$ Graduate University for Advanced Studies
"Domain Wall Fermions at Ten Years", March 15-17, 2007

1.1 introduction

- JLQCD: studying lattice QCD using computers at KEK
- w/ new supercomputer system (2006-) Hitachi SR11000, IBM Blue Gene/L (60 TFLOPS) \Downarrow
large-scale simulations w/ dynamical overlap fermions
介
computationally expensive \Leftarrow improvements of algorithm
- this talk: algorithmic aspects of production run for $N_{f}=2$
- lattice action / simulation parameters
- our implementation of HMC
- production run

2.1 lattice action

- quark action = overlap $w /$ std . Wilson kernel

$$
D_{\mathrm{ov}}=\left(m_{0}+\frac{m}{2}\right)+\left(m_{0}-\frac{m}{2}\right) \gamma_{5} \operatorname{sgn}\left[H_{\mathrm{w}}\left(-m_{0}\right)\right], \quad m_{0}=1.6
$$

std. Wilson kernel $H_{\mathrm{W}} \Rightarrow$ (near-)zero modes of H_{W}

- gauge action = Iwasaki action \Leftarrow low mode density, locality
- extra-fields \Rightarrow to suppress (near-)zero modes

Vranas, 2000; RBC, 2002 (DWF); JLQCD, 2006 (ovr)

- Wilson fermion $\quad \Rightarrow$ suppress zero modes
- twisted mass ghost \Rightarrow suppress effects of higher modes

$$
\text { Boltzmann weight } \propto \frac{\operatorname{det}\left[H_{W}\left(-m_{0}\right)^{2}\right]}{\operatorname{det}\left[H_{W}\left(-m_{0}\right)^{2}+\mu^{2}\right]}
$$

- extra-fields \Rightarrow do NOT change continuum limit

2.2 simulation parameters

- $N_{f}=2$ QCD
- Iwasaki gauge + overlap quark + extra-Wilson $(\mu=0.2)$
- $\beta=2.30 \Rightarrow a \approx 0.125 \mathrm{fm}$
- $16^{3} \times 32$ lattice $\Rightarrow L \simeq 2 \mathrm{fm}$
- 6 sea quark masses $\in\left[m_{s, \text { phys }} / 6, m_{s, \text { phys }}\right]$

$$
m_{\text {sea }}=0.015,0.025,0.035,0.050,0.070 .0 .100
$$

- focus on $Q=0$ sector
- test runs (500-1000 traj.)

$$
(\beta, \mu)=(2.30,0.2), \quad(2.45,0.0), \quad(2.50,0.2), \quad(2.60,0.0)
$$

3.1 algorithm

- HMC w/ dynamical overlap quarks on BG / L
- mult D_{W} : depends on machine spec.
- mult $D_{\text {ov }}$: treatment of $\operatorname{sgn}\left[H_{\mathrm{w}}\right]$
- overlap solver : choice of algorithm, 4D or 5D
- HMC : Hasenbusch precond., multiple time scale
- multiplication of $D_{\mathrm{W}} \Rightarrow$ assembler code by IBM on BG / L
- double FPU instruction of PowerPC 440D
double pipelines enable complex number add/mult
- use low-level communication API
overlap computation/communication
$\Rightarrow \sim 3$ times faster than our Fortran code

3.2 multiplication of D_{ov}

- multiplication of $D_{\text {ov }} \ni \operatorname{sgn}\left[H_{\mathrm{W}}\right]$
- $\sigma\left[H_{W}\right] \Rightarrow\left[\lambda_{\text {min }}, \lambda_{\text {thrs }}\right] \cup\left[\lambda_{\text {thrs }}, \lambda_{\text {max }}\right], \quad \lambda_{\text {thrs }}=0.045$
- low mode preconditioning eigenmodes $\mathrm{w} / \lambda \in\left[\lambda_{\text {min }}, \lambda_{\text {thrs }}\right] \Rightarrow$ projected out
- Zolotarev approx. of $\operatorname{sgn}\left[H_{W}\right]$ for $\lambda \in\left[\lambda_{\text {thrs }}, \lambda_{\text {max }}\right]$ $N=10 \Rightarrow$ accuracy of $\left|1-\operatorname{sgn} H_{W}{ }^{2}\right| \sim 10^{-7}$
example of $\lambda\left[H_{\mathrm{W}}\right]$ (test runs @ $a \sim 0.1 \mathrm{fm}, m_{\text {sea }} \sim m_{\mathrm{s}, \text { phys }}$)
w/ extra-Wilson

w/o extra-Wilson

3.3 4D overlap solver

inner loop:

- partial fraction form

$$
\operatorname{sgn}\left[H_{\mathrm{W}}\right] \ni \sum_{l=1}^{N_{\mathrm{p}}} \frac{b_{l}}{H_{\mathrm{W}}^{2}+c_{2 l-1}}
$$

- multi-shift CG (Frommer et al., 1995)

outer loop:

- relaxed CG (Cundy et al., 2004)
- $D_{\mathrm{ov}}^{\dagger} D_{\mathrm{ov}} \Rightarrow \mathrm{CG}$
- $\times 2$ faster than unrelaxed CG
residual $\left|D_{\mathrm{ov}}^{\dagger} D_{\text {ov }} x-b\right|$ vs \# of D_{w} mult ($m_{\text {sea }}=0.015$)

3.3 5D overlap solver

Boriçi, 2004; Edwards et al.,2005

- $M_{5}=($ Schur decomposition $) \Rightarrow \gamma_{5} D_{\mathrm{ov}}=H_{\mathrm{ov}}$ as Schur complement

$$
\begin{aligned}
& M_{5}=\left(\begin{array}{lllll|l}
H_{\mathrm{W}} & -\sqrt{q_{2}} & & & & 0 \\
-\sqrt{q_{2}} & H_{\mathrm{W}} & & & & \sqrt{p_{2}} \\
& & \cdots & & & \cdots \\
& & & H_{\mathrm{W}} & -\sqrt{q_{1}} & 0 \\
\hline 0 & \sqrt{p_{2}} & \cdots & 0 & \sqrt{q_{1}} & H_{\mathrm{W}} \\
\hline & & \sqrt{p_{1}} \\
\hline
\end{array}\right. \\
& =\left(\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right)=\left(\begin{array}{l|l}
1 & 0 \\
\hline C A^{-1} & 1
\end{array}\right)\left(\begin{array}{l|l}
A & 0 \\
\hline 0 & S
\end{array}\right)\left(\begin{array}{l|l}
1 & A^{-1} B \\
\hline 0 & 1
\end{array}\right) \\
& S=R \gamma_{5}+H_{\mathrm{W}}\left(p_{0}+\sum_{i} \frac{p_{i}}{H_{\mathrm{W}}^{2}+q_{i}}\right)=\gamma_{5}\left(R+\gamma_{5} \operatorname{sgn}\left[H_{\mathrm{W}}\right]\right) \Rightarrow H_{\mathrm{ov}}
\end{aligned}
$$

3.3 5D overlap solver

- $x=D_{\text {ov }}^{-1} b$ from 5D linear equation

residual vs \# of D_{w} mult

$$
M_{5}\binom{\chi}{x}=\binom{0}{b},
$$

- even-odd precond.: implemented
- low-mode precond.: not yet...
\Rightarrow need small $x_{\text {min }}$ and large N_{p} $\Leftrightarrow \mathrm{CPU}$ time $\propto N_{\mathrm{p}}$

- ~4 times faster than 4D CG

3.4 HMC w/ 4D solver

- Hasenbusch preconditioning (Hasenbusch, 2001)

$$
\operatorname{det}\left[D_{\mathrm{ov}}(m)^{2}\right]=\operatorname{det}\left[D_{\mathrm{ov}}\left(m^{\prime}\right)^{2}\right] \operatorname{det}\left[\frac{D_{\mathrm{ov}}(m)^{2}}{D_{\mathrm{ov}}\left(m^{\prime}\right)^{2}}\right]=\text { "PF1". "PF2" }
$$

- $m^{\prime}=0.2\left(m_{\text {sea }}=0.015,0.025\right), \quad 0.4\left(m_{\text {sea }}=0.035-0.100\right)$
force (ave, max) at $m_{\text {sea }}=0.015$
CPU time for force calc (512nodes)

PF2 \ll PF1 \ll gauge \approx ex-Wilson

PF2 \gg PF1 \gg ex-Wilson \gg gauge

3.4 HMC w/ 4D solver

- multiple time scale integration

$$
\tau=0.5
$$

3 nested loops:

```
PF2: outer-most loop : N
PF1:
gauge,ex-Wilson: inner-most: }\quad\mp@subsup{N}{\textrm{MD}}{}\mp@subsup{R}{\textrm{PF}}{}\mp@subsup{R}{\textrm{G}}{
```

$m_{\text {sea }}$	$N_{\text {MD }}$	$R_{\text {PF }}$	R_{G}	m^{\prime}	$P_{\text {HMC }}$
0.015	9	4	5	0.2	0.89
0.025	8	4	5	0.2	0.90
0.035	6	5	6	0.4	0.74
0.050	6	5	6	0.4	0.79
0.070	5	5	6	0.4	0.81
0.100	5	5	6	0.4	0.85

3.5 HMC w/ 5D solver

- Hasenbusch precond. + multiple time scale

$$
\begin{aligned}
\operatorname{det}\left[D_{\mathrm{ov}}(m)^{2}\right] & =\operatorname{det}\left[D_{\mathrm{ov}, 5 \mathrm{D}}\left(m^{\prime}\right)^{2}\right] \operatorname{det}\left[\frac{D_{\mathrm{ov}, 5 \mathrm{D}}(m)^{2}}{D_{\mathrm{ov}, 5 \mathrm{D}}\left(m^{\prime}\right)^{2}}\right] \operatorname{det}\left[\frac{D_{\mathrm{ov}}(m)^{2}}{D_{\mathrm{ov}, 5 \mathrm{D}}(m)^{2}}\right] \\
& =\text { "PF1". "PF2". "noisy Metropolis test" }
\end{aligned}
$$

- sufficiently high " N_{s} " to achieve reasonable $P_{\text {HMC }}$
- factor of 2-3 faster than HMC w/ 4D solver

$m_{\text {sea }}$	N_{MD}	R_{PF}	R_{G}	m^{\prime}	P_{HMC}
0.015	13	6	8	0.2	0.68
0.025	10	6	8	0.2	0.82
0.035	10	6	8	0.4	0.87
0.050	9	6	8	0.4	0.87
0.070	8	6	8	0.4	0.90
0.100	7	6	8	0.4	0.91

3.6 reflection / refraction

- extra-Wilson fermion
\Rightarrow suppress zero-modes of H_{W}
\Rightarrow switch off reflection/refraction step
- reflection/refraction is not rare event!
(at $a=0.11 \mathrm{fm} \mathbf{w} / \mathrm{o}$ extra-Wilson)
\Rightarrow factor of ~ 3 faster
w/ extra-Wilson

w/o extra-Wilson

4.1 production run

10,000 traj. $(\times \tau=0.5)$ have been accumulated

$m_{\text {sea }}$	N_{MD}	R_{PF}	R_{G}	m^{\prime}	traj.	P_{HMC}	$M_{\mathrm{PS}} / M_{\mathrm{V}}$
0.015	9	4	5	0.2	2800	0.89	0.34
0.025	8	4	5	0.2	5200	0.90	0.40
0.035	6	5	6	0.4	4600	0.74	0.46
0.050	6	5	6	0.4	4800	0.79	0.54
0.070	5	5	6	0.4	4500	0.81	0.60
0.100	5	5	6	0.4	4600	0.85	0.67
$m_{\text {sea }}$	N_{MD}	R_{PF}	R_{G}	m^{\prime}	traj	P_{HMC}	$M_{\mathrm{PS}} / M_{\mathrm{V}}$
0.015	13	6	8	0.2	7200	0.68	0.34
0.025	10	6	8	0.2	4800	0.82	0.40
0.035	10	6	8	0.4	5400	0.87	0.46
0.050	9	6	8	0.4	5200	0.87	0.54
0.070	8	6	8	0.4	5500	0.90	0.60
0.100	7	6	8	0.4	5400	0.91	0.67

4.2 basic properties of HMC

area preserving

ΔH at $m_{\text {sea }}=0.025$

- a few spikes per $O(10,000)$ trajectories: $P_{\text {spike }} \lesssim 0.03 \%$
- $\langle\exp [-\Delta H]\rangle=1$ in all runs
- does not need "replay" trick

reversibility

$\Delta U=\sqrt{\sum|U(\tau+1-1)-U(\tau)|^{2} / N_{\mathrm{dof}}}$ ϵ : stop. cond. for MS/overlap solver

- $\Delta U \lesssim 10^{-8}$: comparable to previous simulations

4.3 effects of low modes of $D_{\text {ov }}$

- as approaching to ϵ-regime cost is governed by $\lambda_{\text {ov, min }}$ rather than $m_{\text {sea }}$
- too small volume?
$M_{\mathrm{PS}} L \gtrsim 2.7, \quad \exp \left[-M_{\mathrm{PS}} L\right] \Rightarrow \lesssim 1-2 \%$ effects on M_{PS} larger L for $m_{\text {sea }} \ll 0.015$

4.3 timing

\# D_{W} mult vs $m_{\text {sea }}$

CPU time [min] on $B G / L \times 10$ racks

	HMC-4D		HMC-5D	
$m_{\text {sea }}$	traj.	time	traj.	time
0.015	2800	6.1	7200	2.6
0.025	5200	4.7	4800	2.2
0.035	4600	3.0	5400	1.5
0.050	4800	2.6	5200	1.3
0.070	4500	2.1	5500	1.1
0.100	4600	2.0	5400	1.0

4.4 autocorrelation

history of $N_{\text {inv, }}$

- plaquette: local
\Rightarrow small m_{q} dependence
- $N_{\text {inv, } \mathrm{H}}$: long range
\Rightarrow rapid increase as $m_{q} \rightarrow 0$
\Rightarrow may need large statistics
history of $\lambda_{\text {ov, min }} /\left\langle\lambda_{\text {ov, min }}\right\rangle$

5. summary

- algorithm for JLQCD's dynamical overlap simulations
- Hasenbusch precond. + multiple time scale MD + ...
- 5D solver
- extra-Wilson fermion to suppress (near-)zero modes
\Rightarrow cheap approx. for $\operatorname{sgn}\left[H_{\mathrm{w}}\right], \Rightarrow$ turn off reflection/refraction
- effects due to fixed (global) topology (R.Brower et al., 2003)
- topological properties $\left(\chi_{t}, \ldots\right) \Rightarrow$ talks by T-W.Chiu, T.Onogi
- Q-dependence of observables \Leftarrow simulations w/ $Q \neq 0$
- suitable for ϵ-regime \Rightarrow talk by S. Hashimoto
- on-going/future plans
- spectrum/matix elements \Rightarrow talks by J.Noaki, N. Yamada
- simulations of $N_{f}=3$ QCD
- extend to larger volumes

