Approaching the Chiral Limit with Dynamical Overlap Fermions

T. Kaneko for the JLQCD collaboration

¹High Energy Accelerator Research Organization (KEK)

²Graduate University for Advanced Studies

"Domain Wall Fermions at Ten Years", March 15–17, 2007

イロト イ押ト イヨト イヨト

1.1 introduction

- JLQCD: studying lattice QCD using computers at KEK
- this talk: algorithmic aspects of production run for $N_f = 2$
 - lattice action / simulation parameters
 - our implementation of HMC
 - production run

イロト イ押ト イヨト イヨトー

2.1 lattice action

• guark action = overlap w/ std. Wilson kernel

$$D_{\rm ov} = \left(m_0 + \frac{m}{2}\right) + \left(m_0 - \frac{m}{2}\right) \gamma_5 \, \text{sgn}[H_{\rm w}(-m_0)], \quad m_0 = 1.6$$

std. Wilson kernel $H_W \Rightarrow$ (near-)zero modes of H_W

- gauge action = |wasaki| action \leftarrow low mode density, locality
- extra-fields \Rightarrow to suppress (near-)zero modes Vranas, 2000; RBC, 2002 (DWF); JLQCD, 2006 (ovr)
 - Wilson fermion ⇒ suppress zero modes
 - twisted mass ghost \Rightarrow suppress effects of higher modes

Boltzmann weight $\propto \frac{\det[H_W(-m_0)^2]}{\det[H_W(-m_0)^2 + \mu^2]}$

• extra-fields \Rightarrow do NOT change continuum limit

lattice action simulation parameters

2.2 simulation parameters

- $N_f = 2 \text{ QCD}$
- Iwasaki gauge + overlap quark + extra-Wilson ($\mu = 0.2$)
- $\beta = 2.30 \Rightarrow a \approx 0.125 \text{ fm}$
- $16^3 \times 32$ lattice $\Rightarrow L \simeq 2$ fm
- 6 sea quark masses $\in [m_{s, phys}/6, m_{s, phys}]$ $m_{sea} = 0.015, 0.025, 0.035, 0.050, 0.070.0.100$
- focus on Q = 0 sector
- test runs (500-1000 traj.)

 $(\beta,\mu) = (2.30,0.2), (2.45,0.0), (2.50,0.2), (2.60,0.0)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- HMC w/ dynamical overlap quarks on BG/L
 - mult $D_{\rm W}$: depends on machine spec.
 - mult D_{ov} : treatment of sgn[H_W]
 - overlap solver : choice of algorithm, 4D or 5D
 - HMC : Hasenbusch precond., multiple time scale
- multiplication of $D_W \Rightarrow$ assembler code by IBM on BG/L
 - double FPU instruction of PowerPC 440D double pipelines enable complex number add/mult
 - use low-level communication API overlap computation/communication

 \Rightarrow \sim 3 times faster than our Fortran code

・ロット (雪) (山) (山) (山)

-

3.2 multiplication of D_{ov}

- multiplication of $D_{ov} \ni \operatorname{sgn}[H_W]$
 - $\sigma[H_W] \Rightarrow [\lambda_{\min}, \lambda_{thrs}] \cup [\lambda_{thrs}, \lambda_{max}], \quad \lambda_{thrs} = 0.045$
 - low mode preconditioning
 eigenmodes w/ λ ∈ [λ_{min}, λ_{thrs}] ⇒ projected out

T.Kaneko

• Zolotarev approx. of $\text{sgn}[H_W]$ for $\lambda \in [\lambda_{\text{thrs}}, \lambda_{\text{max}}]$ $N = 10 \Rightarrow \text{accuracy of } |1 - \text{sgn}H_W^2| \sim 10^{-7}$

example of $\lambda[H_W]$ (test runs @ $a \sim 0.1 \,\text{fm}, m_{\text{sea}} \sim m_{\text{s,phys}}$)

w/o extra-Wilson

multiplication of $D_{\rm W}$ and $D_{\rm ov}$ overlap solver HMC

3.3 4D overlap solver

inner loop:

• partial fraction form

$$\operatorname{sgn}[H_{\mathsf{W}}] \quad \ni \quad \sum_{l=1}^{N_{\mathsf{p}}} \frac{b_l}{H_{\mathsf{W}}^2 + c_{2l-1}}$$

outer loop:

- relaxed CG (Cundy et al., 2004)
 - $D_{\rm ov}^{\dagger} D_{\rm ov} \Rightarrow \mathbf{CG}$
 - \bullet \times 2 faster than unrelaxed CG

residual $|D_{ov}^{\dagger} D_{ov} x - b|$ vs # of D_{W} mult ($m_{sea} = 0.015$)

< ロ > < 同 > < 回 >

3.3 5D overlap solver

Boriçi, 2004; Edwards et al.,2005

• $M_5 = ($ Schur decomposition $) \Rightarrow \gamma_5 D_{ov} = H_{ov}$ as Schur complement

algorithm overlap solver HMC

3.3 5D overlap solver

• $x = D_{ov}^{-1}b$ from 5D linear equation $M_5 \begin{pmatrix} \chi \\ x \end{pmatrix} = \begin{pmatrix} 0 \\ b \end{pmatrix},$

- even-odd precond.: implemented
- Iow-mode precond.: not yet...

 $\Rightarrow \text{ need small } x_{\min} \text{ and large } N_{p}$ $\Leftrightarrow \text{CPU time } \propto N_{p}$

• \sim 4 times faster than 4D CG

イロト イポト イヨト イヨト

multiplication of $D_{\rm W}$ and $D_{\rm ov}$ overlap solver HMC

3.4 HMC w/ 4D solver

Hasenbusch preconditioning (Hasenbusch, 2001)

$$det[D_{ov}(m)^{2}] = det[D_{ov}(m')^{2}] det\left[\frac{D_{ov}(m)^{2}}{D_{ov}(m')^{2}}\right] = "PF1" \cdot "PF2"$$

•
$$m' = 0.2$$
 ($m_{sea} = 0.015, 0.025$), 0.4 ($m_{sea} = 0.035 - 0.100$)

force (ave,max) at $m_{sea} = 0.015$

CPU time for force calc (512nodes)

T.Kaneko

algorithm

multiplication of $D_{\rm W}$ and $D_{\rm ov}$ overlap solver HMC

3.4 HMC w/ 4D solver

- multiple time scale integration
 - au=0.5

3 nested loops:

PF2 :	outer-most loop :	N _{MD} times / traj.
PF1 :	intermediate :	$N_{\sf MD} {R_{\sf PF}}$
gauge,ex-Wilson :	inner-most :	$N_{\sf MD}R_{\sf PF}{f R_{\sf G}}$

m_{sea}	$N_{\rm MD}$	R_{PF}	R_{G}	m'	P_{HMC}
0.015	9	4	5	0.2	0.89
0.025	8	4	5	0.2	0.90
0.035	6	5	6	0.4	0.74
0.050	6	5	6	0.4	0.79
0.070	5	5	6	0.4	0.81
0.100	5	5	6	0.4	0.85

algorithm multiplication of D_W overlap solver HMC

3.5 HMC w/ 5D solver

• Hasenbusch precond. + multiple time scale

$$\det[D_{\mathsf{ov}}(m)^2] = \det[D_{\mathsf{ov},\mathsf{5D}}(m')^2] \det\left[\frac{D_{\mathsf{ov},\mathsf{5D}}(m)^2}{D_{\mathsf{ov},\mathsf{5D}}(m')^2}\right] \det\left[\frac{D_{\mathsf{ov}}(m)^2}{D_{\mathsf{ov},\mathsf{5D}}(m')^2}\right]$$

= "PF1" · "PF2" · "noisy Metropolis test"

- sufficiently high " N_s " to achieve reasonable $P_{\rm HMC}$
- factor of 2-3 faster than HMC w/ 4D solver

$m_{\sf sea}$	N_{MD}	R_{PF}	R_{G}	m'	P_{HMC}
0.015	13	6	8	0.2	0.68
0.025	10	6	8	0.2	0.82
0.035	10	6	8	0.4	0.87
0.050	9	6	8	0.4	0.87
0.070	8	6	8	0.4	0.90
0.100	7	6	8	0.4	0.91

< □ > < 同 > < 三 > < 三 > . 三 . の Q ()

algorithm

multiplication of $D_{\rm W}$ and $D_{\rm ov}$ overlap solver HMC

3.6 reflection / refraction

- extra-Wilson fermion
 - \Rightarrow suppress zero-modes of H_W
 - ⇒ switch off reflection/refraction step
 - reflection/refraction is not rare event!
 - (at a = 0.11 fm w/o extra-Wilson)
 - \Rightarrow factor of \sim 3 faster

T.Kaneko

parameters properties timing

4.1 production run

10,000 traj. (× τ = 0.5) have been accumulated

$m_{\sf sea}$	N_{MD}	R_{PF}	R_{G}	m'	traj.	P_{HMC}	$M_{\rm PS}/M_{\rm V}$
0.015	9	4	5	0.2	2800	0.89	0.34
0.025	8	4	5	0.2	5200	0.90	0.40
0.035	6	5	6	0.4	4600	0.74	0.46
0.050	6	5	6	0.4	4800	0.79	0.54
0.070	5	5	6	0.4	4500	0.81	0.60
0.100	5	5	6	0.4	4600	0.85	0.67
$m_{\rm sea}$	$N_{\rm MD}$	R_{PF}	R_{G}	m'	traj	P_{HMC}	$M_{\rm PS}/M_{\rm V}$
m _{sea}	N _{MD} 13	<i>R</i> _{РF}	<i>R</i> G	<i>m'</i> 0.2	traj 7200	<i>Р</i> _{НМС} 0.68	M _{PS} /M _V
m _{sea} 0.015 0.025	N _{MD} 13 10	<i>R</i> _{РF} 6 6	R _G 8 8	<i>m'</i> 0.2 0.2	traj 7200 4800	Р _{НМС} 0.68 0.82	M _{PS} /M _V 0.34 0.40
m _{sea} 0.015 0.025 0.035	N _{MD} 13 10 10	R _{PF} 6 6 6	R _G 8 8 8	<i>m'</i> 0.2 0.2 0.4	traj 7200 4800 5400	<i>Р</i> _{НМС} 0.68 0.82 0.87	M _{PS} /M _V 0.34 0.40 0.46
<i>m</i> _{sea} 0.015 0.025 0.035 0.050	N _{MD} 13 10 10 9	R _{PF} 6 6 6 6	R _G 8 8 8 8 8	m' 0.2 0.2 0.4 0.4	traj 7200 4800 5400 5200	<i>Р</i> _{НМС} 0.68 0.82 0.87 0.87	M _{PS} /M _V 0.34 0.40 0.46 0.54
<i>m</i> _{sea} 0.015 0.025 0.035 0.050 0.070	N _{MD} 13 10 10 9 8	R _{PF} 6 6 6 6 6	R _G 8 8 8 8 8 8	m' 0.2 0.2 0.4 0.4 0.4	traj 7200 4800 5400 5200 5500	<i>Р</i> _{НМС} 0.68 0.82 0.87 0.87 0.90	<i>M</i> _{PS} / <i>M</i> _V 0.34 0.40 0.46 0.54 0.60

T.Kaneko Approaching the chiral limit with dynamical overlap fermions

イロト イボト イヨト イヨト

parameters properties timing

4.2 basic properties of HMC

area preserving

- a few spikes per *O*(10,000) trajectories: *P*_{spike} ≤ 0.03 %
- $\langle \exp[-\Delta H] \rangle = 1$ in all runs
- o does not need "replay" trick

reversibility

- $\Delta U = \sqrt{\sum |U(\tau+1-1) U(\tau)|^2 / N_{dof}}$
- ϵ : stop. cond. for MS/overlap solver
 - $\Delta U \lesssim 10^{-8}$: comparable to previous simulations

프 🖌 🛪 프 🕨

parameters properties timing

4.3 effects of low modes of D_{ov}

- as approaching to ε-regime cost is governed by λ_{ov,min} rather than m_{sea}
- too small volume?

 $M_{\rm PS} L \gtrsim 2.7$, $\exp[-M_{\rm PS} L] \Rightarrow \lesssim 1-2\%$ effects on $M_{\rm PS}$ larger L for $m_{\rm sea} \ll 0.015$

イロト イポト イヨト イヨ

T.Kaneko

• mild m_{sea} dep. of $N_{\text{inv,H}}$ and N_{MD} $\downarrow \downarrow$ CPU time $\propto 1/m_{\text{sea}}^{-\alpha}$, w/ $\alpha \sim 0.53$ \uparrow naive expectation: $N_{\text{inv}} \propto 1/m_{\text{sea}}$, $N_{\text{MD}} \propto 1/m_{\text{sea}}$

CPU time [min] on BG/L×10 racks

	HMC	-4D	HMC-5D		
$m_{\rm sea}$	traj.	time	traj.	time	
0.015	2800	6.1	7200	2.6	
0.025	5200	4.7	4800	2.2	
0.035	4600	3.0	5400	1.5	
0.050	4800	2.6	5200	1.3	
0.070	4500	2.1	5500	1.1	
0.100	4600	2.0	5400	1.0	

BG/L × 10 racks × 1 month ⇒ 4000 traj. at all m_{sea}

parameters properties timing

4.4 autocorrelation

- plaquette: local
 - \Rightarrow small m_q dependence
- N_{inv,H}: long range
 - \Rightarrow rapid increase as $m_q \rightarrow 0$ \Rightarrow may need large statistics

5. summary

- algorithm for JLQCD's dynamical overlap simulations
 - Hasenbusch precond. + multiple time scale MD + · · ·
 - 5D solver
 - extra-Wilson fermion to suppress (near-)zero modes
 - \Rightarrow cheap approx. for sgn[H_W], \Rightarrow turn off reflection/refraction
- effects due to fixed (global) topology (R.Brower et al., 2003)
 - topological properties $(\chi_t,...) \Rightarrow$ talks by T-W.Chiu, T.Onogi
 - Q-dependence of observables \leftarrow simulations w/ $Q \neq 0$
 - suitable for ϵ -regime \Rightarrow talk by S.Hashimoto
- on-going/future plans
 - spectrum/matix elements ⇒ talks by J.Noaki, N.Yamada
 - simulations of $N_f = 3 \text{ QCD}$
 - extend to larger volumes

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●