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[1] Cloud vertical structure influences the fluxes of precipitation and radiation throughout
the atmosphere. This structure is not predicted in large-scale models but is instead applied
in the form of ‘‘overlap assumptions.’’ In their current guise, overlap assumptions apply to
the presence or absence of clouds, and new data sets have led to the development of
empirical formulations described by exponential decay from maximum to random overlap
over a characteristic length scale. At the same time, cloud parameterizations in many
large-scale models have been moving toward ‘‘assumed PDF’’ schemes that predict the
distribution of total water within each grid cell, which will require overlap assumptions
that may be applied to cells with specified internal variability. This paper uses a month-
long cloud-resolving model simulation of continental convection to develop overlap
assumptions for use with assumed PDF cloud schemes in large-scale models. An
observing system simulation experiment shows that overlap assumptions derived from
millimeter-wavelength cloud radar observations can be strongly affected by the presence
of precipitation and convective clouds and, to a lesser degree, by limited sampling and
reliance on the frozen turbulence assumption. Current representations of overlap can be
extended with good accuracy to treat the rank correlation of total water in each grid
cell, which provides a natural way to treat vertical structure in assumed PDF cloud
schemes. The scale length that describes an exponential fit to the rank correlation of
total water depends on the state of the atmosphere: convection is associated with greater
vertical coherence (longer scale lengths), while wind shear decreases vertical coherence
(shorter scale lengths). The new overlap assumptions are evaluated using cloud
physical properties, microphysical process rates, and top-of-atmosphere radiative fluxes.
These quantities can be reproduced very well when the exact cloud structure is replaced
with its statistical equivalent and somewhat less well when the time mean vertical
structure is imposed. Overlap formulations that treat total water can also be used to
determine the variability in clear-air relative humidity, which might be used by convection
and aerosol parameterizations.
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1. Vertical Structure and Cloud Subgrid-Scale
Variability in Large-Scale Models

[2] Global weather forecast and climate models predict
the evolution of the atmosphere by computing changes in
the energy, momentum, and air and water mass budgets at

many points around the planet. The governing equations in
these models contain source and sink terms representing
processes both explicitly resolved by the model (such as
advection) and those that are not resolved, but are instead
parameterized (such as convection). The rates at which
these processes proceed depends, of course, on the state
of the atmosphere: that is, the values of energy, momentum,
and mass in each cell.
[3] Many processes represented in a model are local, in

that the process rate in one cell is independent of the rate in
other cells. Others, however, including radiation and pre-
cipitation/evaporation, are nonlocal because they depend on
the state of the atmosphere throughout each grid column.
Rain falling into subsaturated clear sky evaporates, for
example, while the same amount of rain falling into another
cloud collects smaller droplets and produces even more rain,
at the cost of depleting the lower cloud’s water content.
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Similarly, because the incremental change of albedo with
cloud optical depth decreases as the optical depth increases,
two partially cloudy layers reflect less solar radiation if one
cloud obscures the other than if both layers are visible from
the top of the atmosphere. To compute the large-scale
effects of precipitation and radiation the degree to which
clouds and precipitation are vertically aligned with each
other must be known. This structure is determined by cloud-
scale dynamics that are not resolved by global or other
large-scale models, so the calculations are closed using rules
called ‘‘overlap assumptions.’’
[4] Overlap assumptions are applied to instantaneous

profiles of domain-averaged cloud properties to infer sub-
grid-scale structure. In most current large-scale models
these cloud properties include the portion of each grid cell
occupied by cloud (the ‘‘cloud fraction’’) and the mean
condensate (liquid and ice) concentration. Given these two
variables, overlap assumptions apply to the presence or
absence of cloud in each layer, which we call ‘‘occurrence
overlap.’’ Occurrence overlap assumptions can be used to
construct explicit subcolumns from a profile of cloud
properties. Given N partially cloudy layers, for example,
overlap assumptions determine what fraction of the col-
umn’s area is occupied by each of the 2N possibilities of
cloud/clear sky in each layer. Profiles of precipitation
[Jakob and Klein, 2000] or radiative fluxes [Collins,
2001] can then be calculated for each possible configuration
of clouds and the results weighted by the area fraction to
provide domain mean fluxes. A variation on this technique
is to construct a population of subcolumns stochastically
such that each layer of each subcolumn is homogeneous
(that is, completely clear or cloudy, with uniform cloud
properties) while ensuring that the statistics of a large
collection of subcolumns reproduces both the profiles of
cloud properties and the overlap assumptions. This very
flexible approach has been used in radiation calculations
[Räisänen et al., 2004] and for diagnostic purposes, notably
the ISCCP simulator [Webb et al., 2001; Yu et al., 1996].
[5] To date, large-scale models have typically used one of

three very simple assumptions: random, maximum, and the
popular maximum-random [Geleyn and Hollingsworth,
1979], the latter of which is supported, to some degree,
by observations [Tian and Curry, 1989]. Recently obtained
long-term radar records, however, indicate that clouds are
less vertically coherent than the maximum-random assump-
tion implies. These new observations suggest that occur-
rence within vertically continuous cloud layers decays
inverse-exponentially from maximum to random overlap as
the vertical distance separating cloud layers increases, with a
scale length of several kilometers [Hogan and Illingworth,
2000; Mace and Benson-Troth, 2002]. Clouds produced by
relatively fine-scale cloud-resolving models behave in
much the same way [Oreopoulos and Khairoutdinov, 2003;
Räisänen et al., 2004]. The characteristic length scale in both
observed and modeled clouds varies widely depending on
location and time of year, but does not appear to depend
primarily on height within the atmosphere.
[6] This new description of occurrence overlap arrives

just as interest is shifting toward cloud schemes that account
for variability of cloud condensate within model layers.
Models that predict only the mean value of cloud properties
in each cell are subject to uncomfortably large biases in

many process rates, including radiation and precipitation
[Cahalan et al., 1994; Pincus and Klein, 2000]. The biases
introduced by unresolved subgrid-scale inhomogeneity
appear to be one of the main reasons that large-scale models
need to be tuned, i.e., why physical parameters in the
model must be changed from known, reasonable values to
unrealistic values in order to reproduce a realistic climate
[Rotstayn, 2000]. One promising way around this problem
are schemes which predict the horizontal probability distri-
bution function (PDF) of total water within each model
grid cell, from which the PDF of condensate is inferred
[Tompkins, 2002]. These schemes are sometimes called
‘‘statistical cloud schemes,’’ although they might more
accurately be called ‘‘assumed PDF cloud schemes.’’
[7] Assumed PDF cloud schemes require more general

overlap assumptions than currently exist. If the amount of
condensate varies within each grid cell, overlap assumptions
must express not only the likelihood of occurrence, but also
the degree to which condensate concentration is correlated
in the vertical. Radar observations show that condensate
behaves much like occurrence overlap, changing from
perfectly correlated to completely uncorrelated roughly
exponentially as the separation between layers increases
[Hogan and Illingworth, 2003], although the length scales
are typically shorter than those for occurrence overlap.
Cloud-resolving models produce similar structures. It is
possible to incorporate this correlation, along with specified
subgrid-scale distributions of condensate, into stochastically
generated subcolumns [Räisänen et al., 2004]. It is not
clear, however, how one would reconcile an approach that
uses separately defined correlations for cloud occurrence
and condensate overlap with the total water distributions
predicted by an assumed PDF cloud scheme.
[8] In this paper we develop overlap specifications for

cloud schemes that predict the distribution of total water
within each model grid cell. The descriptions are based on a
month-long simulation made with a cloud-resolving model.
We treat the domain of the cloud-resolving model as a
single large-scale model grid cell within which we have
perfect information about the horizontal and vertical distri-
bution of clouds and water vapor at every snapshot time. On
the basis of these descriptions, we examine the degree to
which overlap assumptions derived from cloud radar data
might be expected to agree with those derived from model
snapshots, then extend current representations of overlap to
specify the vertical organization of total water when the
horizontal distribution is specified. We explore some of the
factors that determine the degree of vertical coherence of
total water, and examine how accurately column integrated
cloud properties and precipitation and radiation fluxes can
be reconstructed based on our representations of overlap.

2. Sources of Information for Overlap
Parameterizations

[9] We seek a description of the vertical structure of
clouds within a large-scale model’s grid column; that is, a
description that can be applied instantaneously to describe
the horizontal and vertical structure within a domain several
tens or hundreds of kilometers across. Direct observations
of this structure as it occurs in nature are hard to come by, so
to date most descriptions of overlap have relied on two
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sources: time series obtained by vertically pointing cloud
radars, and the fields produced by fine-scale models.
[10] Cloud-sensing (millimeter wavelength) radars have

been deployed over the last decade in many locations
around the globe. Observations from these radars (and from
lidar, in thin clouds) are the only long-term direct measure-
ment of cloud vertical structure in the real atmosphere, and
can be used to estimate overlap occurrence as well as the
correlation of condensate. They are, however, somewhat
difficult to interpret. Radars measure the distribution of all
forms of condensed water in the atmosphere, while most
large-scale models make distinctions between precipitation,
clouds directly associated with convection (‘‘convective
clouds’’), and large-scale (‘‘stratiform’’) clouds, with over-
lap being applied separately to each category. Ambiguities
also arise from the way the instruments are operated. The
vast majority of radar observations are made from the
ground with the instrument pointing directly upward, which
yields a time series of profiles of cloud properties from
which statistics describing spatial structure (like overlap) are
inferred by accumulating point observations over time. This
approach relies heavily on the frozen turbulence assump-
tion, since the observations include both evolution and
advection. Additionally, inferences of spatial structure from
time series almost always equate a constant time interval
with a fixed horizontal domain size, even though wind
speeds vary with time and height, and overlap parameters
derived from observations made by vertically pointing
radars are known to be sensitive to the time window chosen
[see Hogan and Illingworth, 2000, Table 1; Mace and
Benson-Troth, 2002, Table 3]. Vertical and horizontal struc-
ture may be obtained more readily from radars operated in
scanning mode, but these observations are few and far
between.
[11] Cloud fields simulated by fine-scale models (i.e.,

cloud resolving models, or CRMs) have complementary
strengths and weaknesses. They rely on inexact subgrid-
scale parameterizations embedded in the cloud model and

have finite spatial resolution, and so may not resolve all the
important circulations. This means that there is no guarantee
that the cloud structures produced by a fine-scale model are
faithful to nature. On the other hand, fine-scale models can
provide instantaneous snapshots of two- or three-dimen-
sional cloud structure in a domain about the size of a large-
scale model grid column, and this structure is exactly what a
large-scale model tries to simulate each time it applies an
overlap assumption. Furthermore, it is straightforward to
distinguish precipitation from stratiform and convective
clouds (though this has not always been done), and it is
possible to examine the vertical structure of quantities (i.e.,
total water concentration) that are difficult to measure
directly.
[12] Here we use a 29 day simulation of summertime

deep convection over the central United States to quantify
overlap. The runs are made with the UCLA/CSU cloud
system model [Krueger, 1988; Xu and Krueger, 1991]
forced by a variational analysis of observations made from
19 June to 17 July 1997 [Zhang et al., 2001] at the ARM
Southern Great Plains site near Lamont, Oklahoma. The
model is configured as a two-dimensional 512 km domain
with horizontal grid spacing of 2 km and 35 vertical levels
on a stretched grid. Calculations use a bulk microphysics
scheme with prognostic equations for two species of cloud
condensate (liquid and ice) and three species of precipitation
(rain, snow, and graupel). Snapshots of the atmospheric
state are recorded every five minutes. Most of the clouds are
produced by convection and detrained into the free atmo-
sphere as anvils, although some (poorly resolved) shallow
convection is also simulated. The domain-averaged cloud
fraction as a function of time and height is shown in
Figure 1. Additional details about the simulation are given
by Xu et al. [2002]. Extensive evaluation against observa-
tions are reported by Luo et al. [2003], who show the
simulation accurately reproduces the occurrence of cumu-
lonimbus clouds and their associated anvils, but is less
successful at predicting cirrus clouds associated with

Figure 1. Time-height cross section of domain mean cloud fraction during the last 26 days of a 29 day
simulation of deep convection over a continental site and a profile of the time mean cloud fraction. Few
clouds occurred in the first 3 days. The majority of clouds are anvils and other upper level clouds
produced by detrainment from deep convection. Contour levels are every 20%.
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large-scale advection. Cloud microphysical and macrophys-
ical properties in the simulations are also comparable with
those obtained from cloud radar observations.

3. Estimates of Overlap From Radar
Observations and From Fine-Scale Model Fields

[13] Overlap assumptions in large-scale models determine
the instantaneous three-dimensional structure of cloudiness
given a profile of the atmospheric state. The overlap derived
from radar observations, which is typically determined
using methods introduced by Hogan and Illingworth
[2000] and described more fully below, is not quite the
same quantity. In this section we use the cloud structure
produced by the cloud resolving model to assess the
accuracy with which the overlap needed by a large-scale
model can be determined from radar observations.

3.1. Occurrence Overlap of Clouds and Precipitation
as Would Be Inferred From Radar Observations

[14] We begin by constructing a ‘‘radar’s eye view’’ of
occurrence overlap in the model simulations. We extract the
central column from the CRM domain at each model
snapshot time (i.e., we sample 12 columns per hour) and
compute the reflectivity profile that would be observed by a
cloud-sensing radar. These instruments are sensitive to all
hydrometeors (i.e., both clouds and precipitation), so we
determine the reflectivity in each grid cell due to all forms
of condensed water using the power law fits of reflectivity
to concentration for each species described by Luo et al.
[2003]. As in that paper, a cell is considered ‘‘cloudy’’ if the
reflectivity exceeds �40 dBz, and the end result is a binary
(yes/no) profile of cloudiness every five minutes.
[15] We determine overlap from these profiles following

the techniques introduced by Hogan and Illingworth
[2000]. We compute the hourly-averaged hydrometeor layer
fraction ci for every layer i by counting the fraction of
cloudy cells in each layer during the hour. We use the term
‘‘hydrometeor fraction’’ to emphasize that this measure
includes both clouds and precipitation.
[16] For each pair of layers (i, j) we compute the

combined fraction Ctrue in each hour by counting the
number of profiles in which hydrometeors exist in either
or both of layer i and j. We also compute the theoretical
combined fractions Cmax = max(ci, cj) and Cran = ci + cj =
cicj that would be observed if the hydrometeors obeyed the
maximum or random overlap assumptions. The combined
hourly fractions are then averaged over the length of the
simulation, excluding times when the hydrometeor fraction
in either layer is exactly zero or one (in which case the
overlap is irrelevant) and including only times when the
hydrometeor fraction in all intervening levels is greater than
zero (i.e., the hydrometeors are ‘‘contiguous’’). The three
time-averaged fractions are used to define an overlap
parameter by solving

Ctrue ¼ aCmax þ 1� að ÞCran ð1Þ

for the weighting a [Hogan and Illingworth, 2000]. The
variable a is sometimes called the ‘‘overlap parameter,’’ and
has the value a = 1 when layers are maximally overlapped
and a = 0 when layers are randomly overlapped. It may take

on negative values if the true combined fraction for a pair of
layers is greater than would be computed from the random
overlap assumption. We examine the value of a as a
function of the distance Dz separating layers i and j, and
estimate a characteristic length scale z0 for a by fitting the
data to the relationship

a Dzð Þ ¼ exp �Dz=z0ð Þ ð2Þ

using Gauss-Newton nonlinear least squares. The goodness
of this fit can be evaluated by considering the normalized
error variance [see, e.g., DelSole and Chang, 2003], the
mean of the squared residuals divided by the variance of a;
good fits have normalized error variance values much less
than 1.
[17] Figure 2a shows the overlap parameter a determined

from (1) for each pair of layers for all hydrometeors,
including all clouds and precipitation. (We exclude pairs
of layers with five or fewer observations in the course of the
simulation so that estimates of a from each layer pair are
made from a large enough sample.) Values of a decrease
roughly exponentially with distance for the first five or six
kilometers before becoming very broadly distributed about
a value somewhat greater than 0. This behavior is consistent
with radar observations [Mace and Benson-Troth, 2002]
and other cloud resolving simulations [Oreopoulos and
Khairoutdinov, 2003] at this location in this season. Hydro-
meteors are observed in continuous layers as deep as
13,660 m. The value of z0 is 3676 m (see Table 1). Because
layers separated by distances greater than a few kilometers
are essentially uncorrelated, we also examine the value of z0
estimated using only those layer pairs separated by less than
5 km. This does not change the estimate of z0 very much but
does improve the quality of the fit.
[18] In order to use the radar-derived overlap in a large-

scale model, one has to make three assumptions: (1) that the
overlap determined from all the radar-sensed clouds and
precipitation may be equated with the overlap of large-scale
clouds in a large-scale model, (2) that cloud fraction may be
determined in every layer of the atmosphere simultaneously
by averaging over a fixed time interval, regardless of
varying wind speed or direction, and (3) that overlap
determined from cloud fractions averaged over long times
may be equated with the temporally averaged value of
overlap determined instantaneously. Assumption 1 can be
relaxed by using additional information from the cloud
resolving simulations. This is relevant because most large-
scale models assume that both convective clouds and
precipitation are each maximally overlapped, and apply a
separate assumption to stratiform (or ‘‘large-scale’’) clouds,
while the simulated radar measurements lump all three
kinds of hydrometeors together. We refine our calculations
in two stages to make them more applicable to large-scale
models. First, we identify clouds (as distinct from hydro-
meteors) as being those CRM grid cells containing nonzero
amounts of cloud liquid and ice. Then we use the algorithm
of Xu [1995] to find and remove the convective columns at
each time step (these comprise about 4.7% of the total),
leaving only stratiform clouds. The overlap behavior for all
clouds and for stratiform clouds, respectively, is shown in
Figures 2b and 2c. Clouds are substantially less vertically
coherent than the mixture of clouds and precipitation (z0 =
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Figure 2. Occurrence overlap as a function of separation distance in a cloud-resolving model simulation
of summertime continental deep convection. Overlap is characterized by the weight a describing the
similarity of the observed overlap to maximum (a = 1) and random (a = 0) overlap. The rows show
(a and d) the overlap for all clouds and precipitation as would be observed by a cloud radar, (b and e) the
overlap for all clouds, and (c and f) the overlap for stratiform clouds alone. Figures 2a–2c use only
information from the central column of the cloud resolving model domain, which has been processed to
mimic radar observations, while Figures 2d–2f use information from the full model domain. Fits to the
parameter z0 in (2) using nonlinear least squares are indicated with lines.
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2085 m), which reflects the fact that heavy convective
precipitation falls more or less straight down in this low-
shear environment (i.e., precipitation is maximally over-
lapped, as large-scale models assume). Stratiform clouds are
in turn less vertically coherent than the mixture of stratiform
and convective clouds (z0 = 793 m). This is because the
algorithm of Xu [1995] identifies convective columns as
those in which updrafts are strong, and clouds in these
columns tend to be more vertically extensive than clouds
subject to less vigorous vertical motions. The sensitivity of
the scale length to the exact definition of ‘‘cloud’’ suggests
that results for overlap obtained by radars in convective
regions may be very sensitive to the subset of data chosen.

3.2. Occurrence Overlap of Stratiform Clouds Inferred
Using Two-Dimensional Cloud Structure

[19] The overlap estimates in section 3.1. followed Hogan
and Illingworth [2000] and so rely on assumptions about
inferring layer and combined cloud fractions from a time
series of profiles obtained at a single point (assumption 2),
and about the ability to infer overlap by time-averaging the
cloud fraction observations (assumption 3). Both assump-
tions are related to time-averaging, and neither is necessary
when computing overlap from time-varying cloud-resolving
model fields. Because the spatial variability is resolved,
cloud fraction can be computed for every model layer at
each time step, and combined cloud fractions and a com-
puted for every model layer pair at each time step. That is,
the cloud resolving model fields let us replace (1) with

a ¼ 1

N

XN

k

Ctrue;k � Cran;k

Cmax;k � Cran;k
ð3Þ

where the layer cloud fractions and true, random, and
maximum combined fractions for each pair of layers are
computed at each time step k, and the overlap parameter
computed from these combined fractions and averaged over
time. As a helpful reviewer pointed out, (1) provides the
best fit to time-averaged combined cloud fraction, while
(3) the best fit time to time-averaged values of a. Radar
observations could also be processed using (3), though this
still requires accumulating observations over some length of
time to compute a cloud fraction.
[20] We repeat the calculation of overlap for each of the

three categories described in the last section (hydrometeors,

clouds, and stratiform clouds, are shown in Figures 2d, 2e,
and 2f, respectively) using (3) applied to the full CRM
fields. In all cases the length scales inferred from full CRM
cloud fields are substantially longer than those inferred from
the simulated radar observations, which we attribute to a
combination of limited sampling and the application of the
frozen turbulence assumption to the time series of profiles
extracted from the central column. The cloud structure
between any pair of layers varies with time as clouds
evolve, and Figure 3 illustrates the variability of overlap
in stratiform clouds by showing the number of times that a
value of a occurs for a given separation distance during the
course of the simulation.

Table 1. Scale Length z0 for Occurrence Overlap Estimated by Fitting (2) to Cloud Resolving Model Simulations of Deep Convectiona

a Derived From Central Column a(Ctrue, Cmax, Cran)
b a Averaged Over Timec

All Dz Dz < 5 km All Dz Dz < 5 km All Dz Dz < 5 km

Hydrometeors 3676 (0.21) 3569 (0.18) 6339 (0.28) 5944 (0.39) 5704 (0.30) 5241 (0.43)
All clouds 2085 (0.41) 1990 (0.29) 2569 (0.58) 2245 (0.33) 2812 (0.68) 2313 (0.33)
Contiguous stratiform clouds 793 (0.43) 795 (0.42) 1580 (0.24) 1561 (0.22) 1697 (0.33) 1634 (0.24)
All stratiform clouds 782 (0.66) 781 (0.50) 1481 (0.25) 1472 (0.26) 1560 (0.32) 1524 (0.28)

aThe normalized error variance for each fit is shown in parentheses. Occurrence overlap is estimated for all clouds and precipitation, as would be
observed by a radar, as well as for convective and stratiform clouds and for stratiform clouds alone. Estimates made from a time series extracted from the
model’s central column (imitating radar observations) differ substantially from those that account for the whole domain because the sample from the central
column is so small. When cloud fraction is computed from the spatial variability at each time step, estimates of z0 do not depend strongly on the order of
averaging (i.e., whether z0 is computed using (1), shown in the a(Ctrue, Cmax, Cran) columns, or with (3), shown in the a averaged over time columns).
Layers separated by distance larger than a few kilometers are essentially uncorrelated, so restricting the fit to layers separated by less than 5 km does not
affect z0 but does improve the quality of the fit.

bEquation (1) applied to CRM fields.
cEquation (3) applied to CRM fields.

Figure 3. Number of 5-min intervals during the 29 day
simulation during which pairs of layers separated by a given
distance (the y axis) had a given value of the overlap
parameter a. The overlap parameter is computed only for
stratiform clouds in continuous layers. Also shown is the fit
to (2) computed by averaging the value of a over time for
each pair of layers with separation distances less than 5 km;
this calculation underestimates the value of a (i.e., the
degree of vertical coherence) for scales less than about
1.5 km. Contours are drawn for stratiform clouds in
continuous layers every 1000 occurrences.
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[21] We can use the high density of observations available
from the full CRM fields to test the validity of assumptions
2 and 3, i.e., that overlap parameters determined from time-
averaged cloud fractions using (1) reproduce time-averaged
overlap parameters computed with (3). We make one set of
calculations in which layer cloud fraction ci and combined
cloud fractions Ctrue, Cmax, and Cran are computed from the
cloud model fields at each time step, then averaged over the
duration of the simulation before determining the overlap
structure (i.e., assumption 2 is relaxed but assumption 3
is retained, shown as the a(Ctrue, Cmax, Cran) columns of
Table 1). We make another set of calculations in which a is
computed for each layer pair at each time step and then
averaged (i.e., both assumptions 2 and 3 are relaxed, shown
in Figures 2d, 2e, and 2f and the a averaged over time
columns of Table 1). As Table 1 shows, estimates of the
overlap parameter made using (1) are quite similar to those
made using (3), suggesting that assumption 3 works well.

4. Vertical Structure of Total Water

[22] The spatial distribution of clouds, including occur-
rence overlap, reflects the structure of the underlying total
water field: clouds persist only where the total water
concentration exceeds the local saturation vapor pressure.
Assumed PDF cloud schemes (sometimes called statistical
cloud schemes [e.g., Tompkins, 2002]) are built on this idea.
These parameterizations assume a form for the distribution
of total water qt within each grid cell, then predict the
evolution of this distribution based on sources and sinks
linking the PDF to other (parameterized) physical processes.
Cloud properties in each grid cell, including cloud fraction
and the distribution of condensate, are diagnosed from the
PDF of total water and the mean thermodynamic state.
Sources and sinks for various parameters of the distribution
may behave differently in clear and cloudy skies, but clouds
are otherwise treated as a by-product of the total water
distribution.
[23] Overlap assumptions for assumed PDF schemes are

therefore applied to columns in which the PDF of total
water in each layer is already specified. We suggest that
overlap assumptions for these schemes might be formulated
in terms of the rank correlation Rqt

of total water between
layers. This quantity expresses the degree to which each
part of the total water distribution in one layer is vertically
aligned with the same part of the distribution in other layers.
The rank correlation between two layers is high, for
example, when the relatively dry and moist parts of the
domain in one layer, respectively, are spatially correlated
with the relatively dry and moist parts of the other layer,
regardless of the actual values of total water in either layer.
Equation (2) can be generalized to treat Rqt

:

Rqt Dzð Þ ¼ exp �Dz=z0ð Þ ð4Þ

[24] We estimate z0 in (4) from the rank correlation of
total water in the fields produced by the cloud resolving
model. We calculate the rank of each cell’s value of total
water in the cumulative probability distribution function
(CDF) of total water for each layer at each time step. (The
rank is defined so that the cell with the smallest value of
total water in that layer at that time step has rank 1, the cell

with the next smallest value has rank 2, and so on.) We then
compute Rqt

from the model fields directly (rather than
using, say, Spearman’s formula) by calculating the spatial
correlation of the rank for each pair of layers at each time
step. (If, for example, the cells were arranged in space so
that the lowest value in one layer was in the same horizontal
position as the lowest value of the other layer, and similarly
for every other value of rank, the rank correlation would be
1.) We include all nonconvective columns, including those
with clouds in discontinuous layers and those that don’t
contain clouds at all, consistent with an assumed PDF cloud
scheme.
[25] Figure 4 (left) shows the time-averaged rank corre-

lation of total water as a function of the separation distance
between layer pairs separated by less than 5 km. (The rank
correlation at greater separation distances is near 0.) Figure
4 (right) shows the number of occurrences of each value of
rank correlation as a function of separation distance. The
solid line shows a fit to (4), which yields a value of z0 =
1263 m with a normalized error variance of 0.091. This
underestimates the rank correlation at small separation
distances, however. When we fit (4) to the values of rank
correlation obtained from neighboring pairs of layers
(denoted as circles in Figure 4) the scale length increases
to z0 = 2341 m with a normalized error variance of 0.201
(dashed line). We explore the impact of emphasizing short-
and/or long-range correlations in section 6. The quality of
the fit to total water is as good or better than the fits to
clouds alone.

5. On What Does Vertical Structure Depend?

[26] The overlap assumptions currently used in large-
scale models are applied uniformly in every column at
every time step. Before a parameterization based on (4)
can be implemented (as in section 6, for example) the
characteristic length scale z0 for the rank correlation of total
water must be specified. One could use a single fixed scale
length for the rank correlation of total water between every
pair of levels in every column at all times. However, radar
observations in a range of locations [Mace and Benson-
Troth, 2002] and cloud-resolving models run as a ‘‘super-
parameterization’’ within a global model [Räisänen et al.,
2004] show that the length scales for cloud occurrence and
the correlation of condensate vary with location, season,
and, at any particular moment, height in the atmosphere.
Some amount of the variability seen in vertical correlation
is almost certainly related to the state of the atmosphere,
including the profiles of temperature, humidity, wind, and
so on. In the context of a large-scale model, the scale
length might be parameterized to depend on both the
large-scale state (i.e., the values of prognostic quantities
within the grid cell) and the state of other parameterized
subgrid-scale processes (i.e., the amount of turbulence
within each layer.) In our simulations almost all non-
convective clouds are produced by detrainment from deep
convection, so we focus on the relationship between
vertical structure and two quantities: wind shear and the
strength of convection.
[27] We identify a set of observations (layer pairs at

specific times) that are strongly affected by shear or
convection. The amount of shear is defined as the absolute
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value of the difference between the domain-averaged hor-
izontal wind speeds in the two layers, which is dominated
by the applied large-scale forcing. This definition of shear
could be determined from the large-scale wind fields in a
global model. (Because the CRM is two-dimensional, we
cannot examine the ways directional wind shear might
affect overlap properties.) The strength of convection is
computed as the average convective mass flux between each
pair of layers at each time step. (The convective mass flux is
defined as the product of the reference density, the mean
updraft velocity in the convective columns, and the fraction
of the domain deemed convective.) Convective mass flux is
a diagnostic quantity in many large-scale models. We build
the cumulative distribution from the values of shear and
convection strength for each layer pair at each time during
the simulation. Observations at the extremes of the distri-
bution of convective mass flux are considered to be strongly
or weakly affected by convection, and similarly for shear.
[28] Figure 5 (left) shows the time mean average rank

correlation of total water as a function of separation distance
for those observations in the top and bottom 10% of the
cumulative distribution of shear; Figure 5 (right) shows the
10% of observations when convection is strongest. Wind
shear reduces vertical organization [Hogan and Illingworth,
2003]: the correlation length when shear is small (z0 =
1541 m, shown in black) is only slightly larger than that
computed from the full set of observations (z0 = 1263 m),
but decreases dramatically (z0 = 731 m, in blue) in the most
strongly sheared layers. Strong convection, on the other
hand, produces abundant upper level anvils, but does not
have a large effect on low-level clouds. This is evident when
scale lengths are calculated for high- and low-level layers
separately. In those observations most affected by convec-
tion, the scale length for the rank correlation of total water

for layer pairs above 6 km (in blue) is z0 = 3159 m, while
layers below 2 km are unperturbed (in red; z0 = 1269 m),
producing an intermediate value (z0 = 1826 m; in black) for
the whole domain. Figure 5 suggests that (4) might be
useful in a variety of circumstances if z0 can be adjusted
appropriately, though the value of z0 might be expected to
depend in many ways on the state of the atmosphere.

6. Evaluating Overlap Assumptions

[29] How can the success of an overlap parameterization
be judged? Overlap assumptions help determine column-
integrated cloud statistics such as cloud fraction, and they
are used by large-scale models to provide the information
needed to compute radiation fluxes and precipitation/evap-
oration profiles. Here we evaluate the skill of various
overlap assumptions by testing their ability to reproduce
column-integrated cloud physical quantities, microphysical
process rates, and top-of-the-atmosphere radiative fluxes
computed from the original CRM fields.
[30] For each overlap assumption we construct a set of

columns corresponding to each cloud model snapshot in
which the horizontal variability (i.e., the PDF of total water
in each layer) is sampled directly from the corresponding
cloud model field, but the vertical structure is determined by
the overlap assumption. We construct as many synthesized
columns at each time step (256) as are contained in the
original model fields.
[31] We test two overlap assumptions based on the rank

correlation of total water between layers: (1) a ‘‘best case’’
scenario, in which the rank correlation between each neigh-
boring pair of layers in each snapshot is taken directly from
the cloud-resolving model fields, and (2) using (4) with
values of z0 (for all layer pairs and for neighboring layers)

Figure 4. Rank correlation of total water in nonconvective columns, including both cloudy and clear
layer pairs. (left) Relationship between each pair of layers averaged over the length of the cloud-resolving
model simulation. Neighboring layers are shown as circles. (right) Contours showing the number of
5-min intervals during the simulation during which pairs of layers separated by a given distance (the y
axis) had a given value of rank correlation of total water (x axis). Contours are in steps of 5000. Solid lines
show a fit to (4) for all layer pairs shown in Figure 4 (left); dashed lines show a fit to those pairs of layers
adjacent to one another.
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determined from Figure 4. We also include three overlap
assumptions used in large-scale models (maximum, ran-
dom, and maximum-random). These are extended to treat
total water in the same way that (4) is a generalization of
occurrence overlap expressed by (2), i.e., the rank correla-
tion of total water between pairs of layers is 1 for maximum
overlap and 0 for random overlap.
[32] We create sets of sample columns following the

‘‘cloud generator’’ described by Räisänen et al. [2004].
Within each column, we generate a random number R1(zi)
for each layer zi, uniformly distributed between 0 and 1.
This number determines the rank (position within the CDF)
of total water for the grid cell. We control the rank
correlation between each pair of layers, where applicable,
by mixing maximum and random overlap: we generate a
second random number R2(zi) and compare this to rank
correlation between layer i and layer i + 1; if R2(zi) is less
than the rank correlation we set R1(zi) = R1(zi+1). (Choosing
R2(zi) is not necessary when the maximum or random
overlap assumptions are used, since rank correlation is, by
definition, 1 for maximum overlap and 0 for random
overlap.) This process proceeds from top to bottom.
[33] At each time step, the rank in each sample column is

replaced by the value of total water taken from the PDF
within that layer, so that a cell in which R1(zi) = 0.5 will be
assigned the median value of total water in layer i at the

time of the model snapshot. The proportion of ice and
liquid, if applicable, from the original CRM cell are
retained. An example of this process is shown in Figure 6
for a single cloud-resolving model snapshot.
[34] For each set of columns at each time step we

compute domain mean vertically integrated cloud physical
quantities, including the total vertically projected cloud
fraction and the domain mean condensate (liquid plus ice)
water path. We calculate domain-averaged process rates by
applying the parameterizations from the Geophysical Fluid
Dynamics Laboratory’s AM2 global atmospheric model
[GFDL Global Atmospheric Model Development Team,
2004] to each column and averaging the results. Micro-
physical process rates (column integrated ice settling and
column integrated snow sublimation) are computed using
the cloud scheme, which includes the cloud microphysics of
Rotstayn [1997] and the fall speed/ice water content rela-
tionships from Heymsfield and Donner [1990]. (This is
certainly not the best way to determine precipitation in a
CRM, but it does provide a useful test of vertical structure.)
Top-of-atmosphere reflected solar and outgoing longwave
radiation are computed independently in each subcolumn
assuming a solar zenith angle of 60�.
[35] We gauge the success of a given overlap assumption

by comparing column-integrated cloud properties and do-
main mean process rates determined from the original fields

Figure 5. The dependence of rank correlation of total water on (left) wind shear and (right) the strength
of convection. Wind shear is measured as the absolute difference between the domain-averaged
horizontal wind speed between any pair of layers; convection strength is quantified using the average
convective mass flux between each pair of layers. These diagnostic quantities are computed for every
layer pair at every time step, and the rank correlation of total water computed for those layer pairs and
times in the top and bottom 10% of the distribution. The times of greatest shear (in blue) are contrasted
with times of no shear (in black); layers with large differences in wind speed are substantially less
organized in the vertical. Convection acts to organize layers in the vertical, increasing the correlation
length scale, but the effect on organization is more pronounced in the upper part of the troposphere. At
times of strong convection, layers above 6 km (blue) have much longer correlation length scales than
when convection is weak, while organization in the lower atmosphere (layers below 2 km, in red) is less
sensitive to the strength of convection. These sensitivities moderate one another, so that the organization
of the atmosphere as a whole (black) is only slightly sensitive to the convection. The best fit to (4) for
each set of observations is shown as a solid line with the same color as the data points to which it is fit.

D15S09 PINCUS ET AL.: OVERLAP ASSUMPTIONS FOR ASSUMED PDF SCHEMES

9 of 12

D15S09



(neglecting convective columns) at each time step with
those determined from the synthesized fields. Bias and
root-mean-square errors are shown in Table 2. The best
case scenario indicates the lower bound of errors for overlap
parameterizations expressed as layer-by-layer rank correla-
tions. Errors in cloud properties and process rates arise in
these calculations because we use a finite, if large, number
of columns, which gives rise to sampling errors, and
because the rank correlation of total water does not always
exactly reproduce the overlap structure in the cloudy parts
of the cloud-resolving model domain. The level of agree-

ment in cloud properties and process rates provided by the
best case scenario would be possible if all dependencies of
vertical structure on atmospheric state were identified and
correctly parameterized in a large-scale model.
[36] Assumptions using less detailed information (i.e., (4)

using a constant scale length) lead to greater errors. Errors
are smallest for many quantities when overlap is prescribed
by (4) with z0 = 2341 (the value inferred using neighboring
pairs of layers in Figure 4), though the maximum or
maximum-random overlap assumptions also perform well
for some calculations. This reflects the fact that the various
quantities used as performance metrics are sensitive in
varying degrees to the vertical distribution of cloudiness.
Outgoing longwave radiation, for example, depends mostly
on the overlap in the first cloudy pair of layers, since OLR is
unaffected by low clouds if the high clouds are opaque.
Total cloud fraction, on the other hand, can remain sensitive
to overlap assumptions over many partially cloudy model
layers. Equation (4) describes the vertical structure at all
separation distances, but underestimates short-range corre-
lations even when the value of z0 derived from neighboring
layers is used (see Figure 4). This causes errors in those
quantities (like OLR) that are most sensitive to short-range
correlations. One could try to develop an alternate overlap
assumption to address this failing. On the other hand, the
best case scenario produces uniformly small errors, which
suggests that effort might be better spent learning how to
relate the scale length in (4) to the state of the atmosphere.

7. Implementation and Applications of Overlap
Assumptions for Total Water in Global Models

[37] Parameterizations like (4) that depend explicitly on
physical distances have two important advantages over,
say, maximum-random overlap schemes: column-integrated
statistics (e.g., total cloud cover) are not sensitive to the
model’s vertical resolution, and the parameterization’s
behavior varies smoothly with some adjustable parameter.
This adaptability offers a way to tie vertical structure to the
state of the atmosphere. We expect that overlap assumptions
might strike a reasonable balance between complexity and
accuracy by implementing (4) but allowing the scale length
to change from layer to layer and place to place depending
on the values of resolved and parameterized processes.
[38] Our results for the characteristic scale length and its

dependence on large-scale wind shear and the amount of
convection provide a starting point for parameterizations in
global models, but are limited because we have relied on a
specific two-dimensional simulation in a particular climate
regime. Relationships between atmospheric state and
vertical structure might be determined more generally by
further analysis of measurements by ground-based active
profiling instruments and by examining cloud-resolving
model simulations of a wider variety of environments. In
addition, two rich new sources of information may make
the problem easier. Cloud-resolving models embedded as
superparameterizations in global models [Khairoutdinov and
Randall, 2001] see a wide range of large-scale conditions. In
addition, spaceborne profilers on the upcoming CloudSat
platform [Stephens et al., 2002] will offer a view of clouds in
the real atmosphere, providing snapshots more closely anal-
ogous to the state of a large-scale model, and avoid the pitfalls

Figure 6. Cloud subgrid-scale structure (top) as produced
by a cloud-resolving model and (middle and bottom) as
created by two overlap assumptions. The columns in
Figure 6 (top) are taken from a single time step of the
cloud-resolving model and have been reordered so that the
total condensed (ice plus liquid) water path increases from
left to right. Figures 6 (middle) and 6 (bottom) show
columns created randomly so as to reproduce the distribu-
tion of total water (including cloud fraction and mean
condensate amount) from the cloud resolving model in each
layer but with vertical structure imposed with overlap
assumptions. Figure 6 (middle) uses the maximum-random
overlap assumption, while Figure 6 (bottom) uses (4) at a
scale length of 2341 m. Column integrated quantities show
better agreement with the original fields when (4) is used.
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associated with time averaging. Long time records and dense
observations from both these sources may make it simpler to
determine the first-order connections between the vertical
structure and the state of the atmosphere.
[39] We have explored how overlap assumptions devel-

oped for cloud occurrence might be extended for use with
cloud schemes that predict the distribution of total water in
each model layer. To date, overlap assumptions have been
applied only to cloud-related calculations, but this restric-
tion is not necessary if overlap assumptions are formulated
in terms of total water. The sets of columns discussed in
section 6 vary in total water, which means that the relative
humidity in clear air varies from place to place. Large-scale
models using assumed PDF cloud schemes can also produce
columns with variable relative humidity, and these might be
used in physical parameterizations beyond those related to
clouds and radiation. Aerosol deliquescence could be cal-
culated separately in each column, for example, and the
overlap assumption will play a role in producing a distri-
bution of aerosol optical depths, just as it does in helping
determine the distribution of liquid water path in clouds.
Columns with variable relative humidly might also be used
as inputs to convection schemes. If the scale length used by
the overlap assumption increases during deep convection,
some sample columns would have deep humidity anomalies
and thus favor further deep convection via enhanced buoy-
ancy. This local positive feedback might usefully represent
the effects of the mesoscale organization of convection.
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