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[1] The overlap properties of �850 snapshots of convective cloud fields generated by a
cloud-resolving model are studied and compared with previously published results based
on cloud radar observations. Total cloud cover is overestimated by the random overlap
assumption but underestimated by the maximum overlap assumption and two standard
implementations of the combined maximum/random overlap assumption. When the
overlap of two layers is examined as a function of vertical separation distance, the value of
the parameter a measuring the relative weight of maximum (a = 1) and random (a = 0)
overlap decreases in such a way that only layers less than 1 km apart can be considered
maximally overlapped, while layers more than 5 km apart are essentially randomly
overlapped. The decrease of a with separation distance �z is best expressed by a power
law, which may not, however, be suitable for parameterization purposes. The more
physically appropriate exponential function has slightly smaller goodness of fit overall but
still gives very good fits for �z between 0 and 5 km, which is the range of separation
distances that would be of most importance in any overlap parameterization for radiative
transfer purposes. INDEX TERMS: 0320 Atmospheric Composition and Structure: Cloud physics and

chemistry; 1655 Global Change: Water cycles (1836); 3337 Meteorology and Atmospheric Dynamics:

Numerical modeling and data assimilation; 3359 Meteorology and Atmospheric Dynamics: Radiative

processes; KEYWORDS: clouds, radiative transfer, overlap, cloud-resolving models, general circulation models,

cloud parameterization
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1. Introduction

[2] One of the main requirements for good performance
of radiative transfer algorithms in large-scale models
(LSMs) is availability of accurate vertical distributions of
cloud fraction [e.g., Barker et al., 1999a]. This is, of course,
not an easy requirement to meet, since processes relevant to
cloud formation that determine cloud area at different levels
of the atmosphere are often of subgrid nature and need to be
parameterized. Although it is generally accepted that recent
progress with prognostic cloud schemes has resulted in
improved LSM cloudiness, evaluating the realism of mod-
eled vertical cloud distributions is still a challenging task.
Moreover, even if LSM cloud profiles are realistic, it is still
doubtful whether current operational radiative transfer
schemes can incorporate this information in a robust way.
[3] One of the most popular assumptions currently used in

LSMs is that adjacent cloud layers overlap maximally while
cloud layers separated by clear skies overlap randomly. This
is based on a compilation of 15-level US Air Force 3D
Nephanalysis data by Tian and Curry [1989]. To evaluate the

degree of cloud profile realism in LSMs, one needs, how-
ever, comparisons with more detailed observations. Unfor-
tunately, there is no such global data set available to this day.
In the future, the space-based 94 GHz radar instrument
CloudSat [Stephens et al., 2002], scheduled for launch in
2004 will hopefully help in filling this observational gap.
However, until CloudSat data become available, the best
observations of cloud overlap will be ground-based and will
be coming from millimeter cloud radar (MMCR) operating
at few selected sites.
[4] Ground-based radar data have already been used for

studies of cloud overlap: Hogan and Illingworth [2000]
(hereinafter referred to as HI2000) derived overlap statistics
(discussed later) from radar observations in southern En-
gland for the period November 1998 to January 1999. Mace
and Benson-Troth [2002] (hereinafter referred to as
MBT2002) performed similar analysis using a much more
extensive data set that included 103 months of MMCR
observations at three (tropical, midlatitude, and polar) sites
of the Atmospheric Radiation Measurements (ARM) pro-
gram, and were thus able to examine seasonal cycles in
overlap and differences among climate regimes. Hogan and
Illingworth [2003] used MMCR data to study the overlap
characteristics of the in-cloud fluctuations of water content.
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[5] In this paper we use a different type of data set to study
cloud fraction overlap: cloud fields from a cloud-resolving
model (CRM). Cloud fields from CRMs have recently
become quite popular inputs for testing atmospheric radia-
tive transfer algorithms [Oreopoulos and Barker, 1999;
Barker et al., 1999a, 2003; R. Scheirer and A. Macke,
Cloud inhomogeneity and broadband solar fluxes, submit-
ted to Journal of Geophysical Research, 2002]. The ratio-
nale behind their use in this context is that they provide
instantaneous full 3-D ‘‘snapshots’’ of cloud fields with
well-defined spatial scales, which are considered quite
realistic representation of actual cloud fields. In this work,
we proceed then with the assumption that the realism of
CRM cloud fields makes them a good source of useful
statistical information on cloud vertical overlap. It should
be pointed out, however, that our results can probably be
considered typical of only the three regions of the globe

whose convective cloud fields the CRM attempts to simu-
late. As with the MMCR studies, these regions may have
their local biases and the results may not be automatically
applicable to a wider range of geographical locations and
meteorological conditions. They are also specific to the
vertical bin size (0.5 km) and domain size (�250 and
�500 km) of our analysis and the horizontal resolution
(2 km) of the data set.

2. Data Set

[6] A detailed description of the CRM used in this study
is given by Khairoutdinov and Randall [2003]. The con-
vective cloud fields come from runs using the time varying
forcing derived from observations collected during inten-
sive observation periods (IOPs) of ARM, GATE (Global
Atmospheric Research Program (GARP) Atlantic Tropical

Figure 1. Cloud masks (black is clear and white is cloudy sky) of three randomly selected consecutive
snapshots from each experiment showing the fast decorrelation of the cloud fields.
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Experiment), and TOGA-COARE (Tropical Ocean and
Global Atmosphere Coupled Ocean-Atmosphere Response
Experiment). The ARM forcing is from the Summer 1997
IOP over Oklahoma and Nebraska from 18 June to 16 July
[Khairoutdinov and Randall, 2003]; the GATE Phase III
forcing covers the period from 1 to 18 September 1974;
finally, the TOGA-COARE (hereinafter, for brevity,
‘‘TOGA’’) data set corresponds to the time period from
18 December 1992 to 8 January 1993. For all three cases,
the domain size is 512 km � 512 km with 2 km horizontal
grid size and variable vertical resolution: �100–200 m up
to the first two kilometers, gradually increasing to 500 m at
a height of �6 km. The number of fields with significant
cloud amount for statistical analysis is 193 for ARM, 164
for GATE, and 498 for TOGA and are ‘‘snapshots’’ saved
every hour. We found that this time interval is sufficient for
significant decorrelation and thus relatively high degree of
independence of the cloud fields. Since it is extremely
difficult to determine decorrelation quantitatively in our
case, we demonstrate it empirically by showing in Figure 1
cloud masks (from total cloud cover calculations explained
later) of three randomly selected successive snapshots from
each experiment. Figure 1 shows that the cloud fields are
changing fast. This is consistent with the lifetime of
convective cloud cells being usually less than an hour
and the presence of wind shear which drives existing cells
further apart.
[7] In order to study overlap also for domain sizes

closer to those of typical General Circulation Models, we
split the domain into four (256km)2 subdomains, and
performed additional analysis. Many results are shown
for both domain sizes. We did not attempt to examine in
detail overlap dependence on domain size by splitting into
even smaller subdomains because the relatively coarse
resolution of 2 km and the rather small layer cloud
fractions in many fields yields relatively few cloudy grid
points for small subdomains and thus more noisy results
per snapshot.

[8] For each model layer the cloud fraction is determined
by counting the number of grid boxes with nonprecipitating
total water (liquid and ice) greater that 10�5 g/Kg. Figure 2
shows cloud fraction and TWC profiles derived by ensem-
ble-averaging individual cloud fields. GATE fields have
larger cloud fractions than the ARM and TOGA fields,
except for high altitudes where TOGA has slightly more
clouds. TOGA has the highest TWC at low altitudes (<4 km)
where the cloud fractions are very low, and ARM the
highest above that altitude. Even though no layer of the
GATE and TOGA data set has ensemble-average cloud
fraction above 0.5, the total cloud cover (fraction of
columns with at least one cloudy grid box) is much higher
(mean values of ‘‘true’’ curve in Figure 3, middle and
bottom), and frequently assumes values corresponding to
overcast conditions.

3. Overlap Analysis

[9] The large number of cloud fields from the CRM runs
gives us some assurance that meaningful statistics of cloud
overlap characteristics can be obtained. As we go through
the presentation of our results, we will be providing
information on how to calculate cloud fractions from the
various overlap assumptions. We start immediately below
with three classic overlap assumptions. Given two cloud
layers, their combined cloud fraction, when only their
individual cloud fractions C1 and C2 are known, can be
calculated from (e.g., MBT2002):

Cmax ¼ max C1;C2ð Þ ð1aÞ

Cmin ¼ max 1;C1 þ C2ð Þ ð1bÞ

Cran ¼ C1 þ C2 � C1C2 ð1cÞ

Figure 2. Ensemble average profiles of cloud fraction and total (nonprecipitating) water content TWC
for the simulated ARM, GATE, and TOGA cloud fields used in this study.
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Figure 3. Total cloud cover of each (512 km)2 domain cloud field as estimated from the number of
cloudy columns (‘‘true’’) and as calculated from layer cloud fractions using the random (‘‘ran’’),
maximum (‘‘max’’) and two maximum/random overlap assumptions (‘‘maxran blocks’’ and ‘‘maxran
GH’’). See text for details.

Table 1. Total Cloud Cover RMS Errors for the Various Overlap Approximationsa

Ran
(512 km)2

Max
(512 km)2

Maxran1
(512 km)2

Maxran2
(512 km)2

Ran
(256 km)2

Max
(256 km)2

Maxran1
(256 km)2

Maxran2
(256 km)2

ARM 0.350 0.190 0.190 0.165 0.289 0.175 0.172 0.144
GATE 0.167 0.308 0.296 0.221 0.164 0.298 0.281 0.200
TOGA 0.233 0.233 0.223 0.203 0.215 0.224 0.217 0.186

aHere ‘‘maxran1’’ is ‘‘maxran blocks’’ and ‘‘maxran2’’ is ‘‘maxran GH’’ of Figure 3.
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which are, respectively, the cloud fractions corresponding
to the maximum, minimum, and random overlap assump-
tion. The true combined cloud fraction of two cloud layers
most often does not agree with any of the cloud fractions
derived from (1). HI2000 introduced a parameter a to
quantify the degree of agreement between the combined
true cloud fraction Ctrue and that from the overlap
assumptions:

Ctrue ¼ a Cmax þ 1� að ÞCran ð2Þ

According to the above formulation, a = 0 corresponds to
random overlap, a = 1 to maximum overlap, while
negative values of a indicate cloud fractions larger than
Cran that start approaching values of Cmin (MBT2002).
[10] Figure 3 shows the total cloud cover for each cloud

field. Five different estimates are shown. ‘‘True’’ is the
actual total cloud cover, as ‘‘observed’’. It is estimated as
the fraction of the total number of columns that are cloudy.
A column is considered cloudy if it contains one or more
cloudy grid boxes. The ‘‘max’’ curve corresponds to the
total cloud cover using the maximum overlap assumption
(generalization of equation (1a) for multiple cloud layers)
and is simply equal to the maximum cloud fraction of the
vertical profile. The ‘‘ran’’ curve corresponds to the total
cloud cover from the random overlap assumption and is

derived from a generalization of equation (1c) for multiple
(N) cloud layers:

Cran ¼ 1�
YN

i¼1

1� Cið Þ ð3Þ

The ‘‘maxran blocks’’ curve is derived by combining the
maximum and random overlap assumption in the following
way: contiguous cloud layers form blocks; whenever a clear
layer exists a new cloud block is formed; the cloudy layers
within a block overlap according to the maximum overlap
assumption, while cloud blocks themselves overlap accord-
ing to the random overlap assumption. Thus equation (3) is
used with N being the number of cloud blocks and each Ci

representing the maximum cloud fraction within the block.
Finally, the curve ‘‘maxran GH’’ is the total cloud cover
according to the combined maximum/random overlap
assumption as implemented by Geleyn and Hollingsworth
[1979]:

Cmaxran ¼ 1� 1� C1ð Þ �
YN

i¼2

1�max Ci�1;Cið Þ
1� Ci�1

ð4Þ

The Geleyn and Hollingsworth [1979] implementation of
maximum/random overlap differs from the ‘‘block’’

Figure 4. Ensemble average of combined cloud fraction of pairs of layers separated vertically by
distances shown in the ordinate as ‘‘observed’’ from the modeled fields (‘‘true’’) and as derived using the
maximum (‘‘max’’), random (‘‘ran’’), and minimum (‘‘min’’) overlap assumptions. Top row is for
analysis of the entire (512 km)2 domain while bottom row is for analysis of (256 km)2 subdomains.
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approach in that layers within a block are considered
maximally overlapped only when there is no local cloud
fraction minimum in between. Thus the Geleyn and
Hollingsworth method generally results in a larger cloud
cover than the ‘‘block’’ method.
[11] For the CRM fields, the true total cloud cover

assumes values between those derived from the random
and maximum overlap assumptions. In addition, neither of
the two max/ran overlap assumptions is a particularly good
fit. The ‘‘block’’ max/ran scheme gives values almost
identical to the maximum overlap scheme for all three sets
of runs. The reason is that for the majority of fields, clouds
form a single block, i.e., clouds are contiguous. For the
GATE fields, equation (4) performs better than the maxi-
mum overlap assumption, but still underestimates substan-
tially the true total cloud cover. These results are also
summarized in Table 1 as total cloud cover RMS errors
of the various approximations. It can be seen that for
(256 km)2 domain size performance is slightly improved.
[12] Figure 4 shows the ensemble-average (i.e., averaged

over all snapshots) combined cloud fraction of two cloudy
layers as a function of their vertical separation distance �z
shown in the ordinate. The true combined cloud fraction is
compared with combined cloud fraction derived from the
maximum, random, and minimum overlap assumptions.
The vertical separation bin size is 500 m. Figure 4 is similar
to Figure 3 of HI2000 and panel a of Figures 3–5 of
MBT2002. Note, however, that in contrast to their work, we
do not distinguish between pairs of layers with and without
cloud in the intervening layers. The reason is that in the
majority of cases only one cloud block is present (recall the
small difference between ‘‘max’’ and ‘‘maxran blocks’’
cloud fraction in Figure 3), so that statistics for the rare
occurrences of layers separated by clear skies are quite
limited and applicable only to the case of large separation
distances. As expected, the true combined cloud fraction
of the pair lies between its counterparts for the random and
maximum overlap assumption. For small separation distan-
ces (first two bins, �z < 1000 m) the two layers overlap in
a manner resembling maximum overlap conditions, but
very quickly true combined cloud fraction takes values

Figure 5. Values of a for all (512 km)2 domain cloud
fields derived from the true combined cloud fraction and the
combined cloud fraction of the random, and maximum
overlap assumption using equation (2). Pairs of layers
separated by distances either within the 0–500 m range or
the 1500–2000 m range are shown.

Figure 6. Ensemble average profiles of a derived for the original (512 km)2 domain and for (256 km)2

subdomains.
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between those for maximum and random overlap. Condi-
tions of almost purely random overlap prevail when the
layers are separated by more than 5 km. However, it would
probably not be wise to attempt to incorporate directly into
radiative transfer calculations overlap effects of clouds too
far apart, unless, of course, only clear skies separate the two
distant layers. When some of the intervening layers are
cloudy, radiative interactions are already so complex that
details of the overlap of two remote layers will usually have
small effect on the radiative flux profile.
[13] There are slight increases in the combined cloud

fractions when the analysis is performed for the (256 km)2

domains. This means that the degree of overlap decreases
when the domain size becomes smaller. This is consistent
with the findings of HI2000 who noted that as the temporal
scale over which they were sampling MMCR data increased
(effectively larger spatial domains) so did the overlap.

[14] Figure 5 shows individual values of a derived from
equation (2), and averaged for each snapshot, for pairs of
layers separated by distances either within the 0–500 m
range or the 1500–2000 m range (i.e., first and fourth �z
bin in our analysis). The values for the first bin are not much
variable and are close to the value that corresponds to the
maximum overlap assumption (a = 1), as expected. In
contrast, the a values for the fourth bin have a significant
degree of variability and indicate that in some occasions
random overlap conditions have already been established
when the cloud layers are separated by �z � 2 km. In
general, as �z increases, so does the variability of a and the
number of snapshots for which combined cloud fractions
can no longer be calculated because of unavailability of
clouds in one of the two layers.
[15] Figure 6 shows ensemble-average profiles of a.

There are two curves for each of the ARM, GATE, and

Figure 7. Power law fits (equation (5a)) of the ensemble averaged a for vertical separation distances up
to 15 km (top row, dashed curve) and exponential fits (equation (5b)) for separation distances up to 5 km
(bottom row, dashed curve). The solid curves are the original ensemble average profiles of a.

Table 2. Least Squares Fit Parameters and Correlation Coefficients for Equation (5a)

c (512 km)2 b (512 km)2 R (512 km)2 c (256 km)2 b (256 km)2 R (256 km)2

ARM 56.1 0.65 0.944 37.2 0.62 0.970
GATE 78.3 0.75 0.970 196.9 0.89 0.954
TOGA 299.1 0.93 0.906 370.6 0.97 0.905
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TOGA cloud fields corresponding to the two domain sizes
used in our analysis, As expected, a drops with separation
distance, indicating that as cloud layers become more
distant they acquire an increasingly stronger tendency for
random overlap. This tendency is slightly more pronounced
for the smaller domain size, especially for the ARM data
set.
[16] Figure 7, top row, shows least squares power fits to

the solid curves of Figure 6 (large domains). The parameters
of the power law function

a ¼ c�z�b ð5aÞ

and the goodness of fit coefficient R are given in Table 2 for
both domain sizes. The least successful power law fit is for
the TOGA data set. However, the power law function is not
very suitable for LSM parameterization purposes since it
does not have the required property that a ! 1 as �z ! 0.
A function that has this property is the exponential function
proposed by HI2000:

a ¼ exp ��z=�z0ð Þ ð5bÞ

�z0 has now the physical meaning of the e-folding or
‘‘decorrelation’’ distance (HI2000). The exponential fit
does not perform very well when applied to the entire
range of separation distances, but when restricted to a
maximum separation distance of 5 km, which would be of
most importance in modeling applications, the quality of
fit is quite good (Figure 7, bottom row, and Table 3). The
results in Table 3 suggest an increase in �z0 for an
increase in domain size, in agreement with similar results
by HI2000.
[17] Provided that fits of this type can be reproduced

from more data sets, one can envision the introduction in
an LSM of a completely generalized overlap scheme
where the combined cloud fraction of any two layers is
given by equation (2) with a values provided as a
function of separation distance from parameterizations
such as equation (5b). A solar radiative transfer algorithm
based on this concept was presented by Bergman and
Rasch [2002].

4. Discussion and Conclusions

[18] We have shown that the overlap properties of nu-
merous convective cloud fields generated by a CRM show
consistency with previous analyses from ground-based
millimeter radar data (HI2000; MBT2002). We reach this
conclusion using spatial cloud variability. We did not
attempt to emulate MMCR-type cloud observations by
following the temporal evolution of selected cloudy col-
umns drawn from our CRM ‘‘snapshots’’ as by Barker et al.

[1999b] because of the coarse temporal sampling (1 hour)
and the rapid decorrelation of our cloud fields.
[19] We found that the total cloud cover and the combined

cloud fraction of any two layers separated by a certain
distance assumes values between those corresponding to the
maximum and random overlap assumptions. The value of
the parameter a describing the degree to which cloud
fraction agrees with the idealized overlap assumptions is a
smooth varying function of separation distance and can be
fit with analytical functions. This may turn out to be very
useful for parameterization purposes. An added advantage
of the type of overlap scheme presented in this work, as well
as in those of HI2000 and MBT2002 is that it does not
parameterize cloud overlap based on which layers are
cloudy, but on the vertical separation of cloudy layers
expressed in physical units of distance. Such an overlap
scheme, does not explicitly depend on details of the vertical
discretization, and is therefore not very sensitive to changes
in vertical resolution [Bergman and Rasch, 2002]. Random
and maximum/random overlap schemes, in contrast, can be
very sensitive to the details of vertical discretization.
[20] Overlap analysis such as this presented in the current

study should continuously be extended with results for other
cloud types and ultimately be considered for implementation
in the radiative transfer schemes of LSMs or even stochastic
multilayer cloud generators. Efforts have already begun in
this direction [Bergman and Rasch, 2002; Oreopoulos et al.,
2002], despite the inherent difficulties in conveying the
overlap information into the radiation algorithm in a mean-
ingful way. Things become even more complex when
attempting to account not only for cloud overlap, but also
concurrently for horizontal inhomogeneity, and vertical
correlations of cloud water [Hogan and Illingworth, 2003].
Nonetheless, initial evidence suggests that even at their
current stage of development these algorithms are capable
of outperforming current plane-parallel algorithms with
standard overlap assumptions.
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