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We analyze trapping of diffusing particles by nonoverlapping partially absorbing disks randomly
located on a reflecting surface, the problem that arises in many branches of chemical and biological
physics. We approach the problem by replacing the heterogeneous boundary condition on the patchy
surface by the homogenized partially absorbing boundary condition, which is uniform over the
surface. The latter can be used to analyze any problem~internal and external, steady state, and time
dependent! in which diffusing particles are trapped by the surface. Our main result is an expression
for the effective trapping rate of the homogenized boundary as a function of the fraction of the
surface covered by the disks, the disk radius and trapping efficiency, and the particle diffusion
constant. We demonstrate excellent accuracy of this expression by testing it against the results of
Brownian dynamics simulations. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1814351#

I. INTRODUCTION

Problems where diffusing particles are trapped by patchy
surfaces are abundant in chemical and biological physics.
Ligand binding to cell surface receptors,1,2 reactions on sup-
ported catalysts,3 electric current through arrays of
microelectrodes,4 and water exchange in plants5 are just a
few from a long list of practical examples. Patchy cells, elec-
trodes, or catalysts can be modeled as reflecting surfaces
covered by partially absorbing traps.6 In this paper we con-
sider the case of randomly distributed, nonoverlapping circu-
lar traps. We approach the problem by replacing the hetero-
geneous boundary condition on the patchy surface by the
homogenized partially absorbing boundary condition, which
is uniform over the surface~Fig. 1!. This uniform boundary
condition is universal in the sense that it can be used to
analyze both internal and external problems in which diffus-
ing particles come to the trapping surface from inside a cav-
ity or from its outside. In addition this boundary condition
can be used to analyze both steady state and time-dependent
problems.

Boundary homogenization discussed below belongs to a

class of methods called ‘‘effective medium theories.’’7–9

These theories treat phenomena in micro-non-uniform
random/regular media by replacing the real medium by a
fictitious uniform medium with prescribed effective param-
eters. The specific feature of the problem under study is that
we homogenize nonuniform boundary condition. The idea
underlying homogenization in our case is that nonuniformity
of the boundary manifests itself only near the surface. The
memory about local properties of the boundary decays with
the distance from the boundary and the fields of fluxes and
concentrations become uniform in lateral directions.

We use a computer-assisted boundary homogenization
procedure to evaluate the effective trapping rate of the sur-
face. Our main result is the expression for the effective trap-
ping rate given in Eq.~5.1! with function F(s) defined in
Eq. ~3.3!. This expression shows how the trapping rate de-
pends on the fraction of the surface covered by the disks, the
disk radius and trapping efficiency, and the particle diffusion
constant. To obtain this result, we first construct an approxi-
mating formula that fits the effective trapping rates deduced
from simulations with perfectly absorbing disks. A conven-
tional ‘‘addition of resistances’’ trick is then used to extend
this formula to partially absorbing disks. Excellent accuracy
of this approximation is demonstrated by testing it against
the results of Brownian dynamics simulations~Figs. 2
and 3!.
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II. SUMMARY OF RESULTS FOR SURFACES
COVERED BY PERFECTLY ABSORBING DISKS

The homogenization of the boundary condition on a re-
flecting surface randomly covered by nonoverlapping per-
fectly absorbing disks was first introduced by Shoup and
Szabo10 in their intuitively appealing derivation of the Berg
and Purcell~BP! result for the stationary flux of diffusing
particles to a reflecting1 sphere covered by small perfectly
absorbing disks. When analyzing ligand binding to cell sur-
face receptors BP approximated a cell withN receptors by a
reflecting sphere of radiusR with N small perfectly absorb-
ing disks of radiusa on the surface,a!R. Ligands were
modeled as point Brownian particles with diffusion constant
D, which were trapped upon the first contact with disk-
shaped receptors.

BP derived an approximate expression for the stationary
flux of particles to the trap-covered sphere,JN

BP :

JN
BP5kN

BPc` , kN
BP5kSm

Nkdisk

kSm1Nkdisk
. ~2.1!

Here c` is the ligand concentration at infinity. The BP
rate constantkN

BP is written in the Collins–Kimball form, i.e.,
as a product of the Smoluchowski rate constant,kSm

54pDR, and the trapping probability for a particle that
starts from the surface of a uniformly absorbing sphere of
radius R having the surface trapping ratekBP

5Nkdisk /(4pR2). In these equationskdisk54Da is the sta-
tionary rate constant for a perfectly absorbing disk of radius
a located on the otherwise reflecting plane.11 These results
were tested by Brownian dynamics simulations.12

We can write the BP result for the effective trapping rate
in the form

kBP5
4D

pa
s, s5

Na2

4R2
, ~2.2!

wheres is the trap-covered fraction of the spherical surface
and 4D/(pa) is the ratio ofkdisk to the disk area. Using an
effective medium treatment, Zwanzig~Zw! extended the BP
result to arbitrary surface coverages:7

kZw5
1

12s
kBP5

4D

pa

s

12s
. ~2.3!

A simple derivation of this formula is given in Appendix A.

III. EFFECTIVE TRAPPING RATE FOR SURFACES
COVERED BY PERFECTLY ABSORBING DISKS

From dimensional arguments it follows that the trapping
rate entering into the homogenized boundary condition, can
be written as

k5
4D

pa
F~s!, ~3.1!

whereF(s) is a dimensionless function of the fraction of the
surface covered by the traps. Thus, homogenization of the
patchy surface reduces to finding a dimensionless function of
the trap surface fraction. This function is universal for any
surface if the boundary homogenization is justified. Whether

FIG. 1. Schematic representation of the homogenization procedure. The
original heterogeneous boundary condition on the surface~a! is replaced by
the homogenized partially absorbing boundary condition~b! characterized
by the uniform trapping ratek. On the heterogeneous surface, the boundary
condition is D“nG(r ,tur0)5kdiskG(r ,tur0) on the trap surfaces and
“nG(r ,tur0)50 otherwise, whereG(r ,tur0) is the particle propagator andn
is the surface normal vector. The boundary condition over the entire homog-
enized surface is given byD“nG(r ,tur0)5kG(r ,tur0).

FIG. 2. FunctionF(s) obtained from simulations and predicted by the
Berg–Purcell~BP! and Zwanzig~Zw! formulas given in Eq.~3.2! and the
approximation in Eq.~3.3!. In simulations with spherical geometry we chose
D51 andR51. Simulations were run with disks of radiia50.025 ~h!,
0.05 ~s!, 0.1 ~n!, and 0.2~>!; the surface fractions was varied from 0.01
to 0.5. The values ofF(s) were computed from̂t& determined from simu-
lations with 105 diffusing particles. For each of the particles the simulations
were run with a new random disks’ configuration. In simulations with planar
geometry~* !, we takea51 and determineF(s) from ^t& found in simula-
tions with 105 diffusing particles in the regime when^t& linearly depends on
L (L51000). In these simulations, 200 traps were generated using the ran-
dom sequential addition algorithm in a periodic geometry. The size of the
unit cell was computed from the trap surface fraction. With 200 traps, av-
eraging over trap configurations did not lead to improvement of results. In
both cases, the relative error of simulation results is within 5%.

FIG. 3. Dimensionless effective trapping ratespak/4D obtained from
simulations with partially absorbing disks and predicted by Eq.~5.1! with
F(s) given in Eq. ~3.3!. The results are presented for disks withkdisk

50.1, 1, and 10. The upper curve corresponds to perfectly absorbing disks
(kdisk5`).
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this is really the case or not depends on the relation between
the disk radius and characteristic lengths associated with the
surface. The homogenization is justified when the smallest
characteristic length is much greater than the disk radius.

FunctionF(s) tends to zero ass→0 and to infinity as
s→1, since the plane becomes perfectly reflecting and ab-
sorbing in these limiting cases. Note that the trapping rate
becomes infinite~k→`!, when a→0 at s5const. This
means that the plane may act as perfectly absorbing when the
disks cover only a very small fraction of its surface.

The Berg–Purcell and Zwanzig expressions fork lead to
F(s) of the form

FBP~s!5s, FZw~s!5
s

12s
. ~3.2!

While FBP(s) describes only the limiting behavior ofF(s)
when s!1, FZw(s) captures both of the asymptotes: it re-
duces toFBP(s) ass→0 and diverges ass→1. The range of
applicability of FZw(s) is unknown. Our numerical results
show thatF(s) grows withs much faster than it is predicted
by FZw(s) ~Fig. 2!. We found that, over a wide range ofs,
F(s) is accurately approximated by the following expres-
sion:

F~s!5FZw~s!~113.8s1.25!5
s

12s
~113.8s1.25!.

~3.3!

This is the main result of this paper. FunctionF(s) can be
used to generalize the BP expression for the rate constant in
Eq. ~2.1!:

kN5kSm

NkdiskF113.8S Na2

4R2D 1.25G
kSmS 12

Na2

4R2D 1NkdiskF113.8S Na2

4R2D 1.25G . ~3.4!

This rate constant reduces tokBP when the trap surface frac-
tion s5Na2/(4R2) is small compared to unity.

IV. COMPUTER-ASSISTED BOUNDARY
HOMOGENIZATION

To find the approximating formula forF(s), we per-
formed Brownian dynamics simulations in spherical and pla-
nar geometries. In simulations with spherical geometry, we
computed the average lifetime of particles diffusing in a
spherical cavity of radiusR. The particles were initiated uni-
formly over the surface of the sphere and allowed to diffuse
until they were trapped by perfectly absorbing nonoverlap-
ping circular disks of radiusa. The disks were randomly
located on the surface of the sphere.

To determineF(s), we use the relation between the
average particle lifetime in the spherical cavity with uniform
partially absorbing wall and the wall trapping ratek. As
shown in Appendix B, for particles starting from the surface
of the sphere, the average lifetime^t& is independent of the
particle diffusion constant and given by

^t&5
R

3k
. ~4.1!

The boundary homogenization is justified whena!R. In
this regime, we can use the expression fork given in Eq.
~3.1! in order to relate the average lifetime toF(s):

^t&5
paR

12DF~s!
. ~4.2!

This relation was used to determineF(s) from ^t& found in
simulations.

The simulations were run withD5R51 and disks of
radii a50.025, 0.05, 0.1, and 0.2. The surface fractions was
varied from 0.01 to 0.5. The values ofF(s) found in simu-
lations witha50.025 and 0.05 are practically identical. This
means that the boundary homogenization is justified when
the disk radius is smaller than 0.05 of the radius of the
sphere. These values were used to fit the simulation results
by an approximating formulaF(s)5FZw(s)(11AsB). Fit-
ting leads toA53.8 andB51.25 as given in Eq.~3.3!. Fig-
ure 2 shows that Eq.~3.3! provides an extremely accurate
approximation for numerically determined values ofF(s).
The difference between the approximation and numerical re-
sults grows with the disk radius. Systematic but small devia-
tions from the formula have been found ata50.1 and 0.2
~the deviations are too small to be seen in Fig. 2!.

In the planar geometry, we computed the average life-
time of particles diffusing in a layer of thicknessL. The
upper boundary of the layer was perfectly reflecting. The
lower boundary was randomly covered by perfectly absorb-
ing disks of unit radius, which did not overlap. The particles
were initiated uniformly over the lower trap-covered bound-
ary. To determineF(s), we took advantage of the fact that
the average lifetime of particles starting from the uniformly
absorbing lower boundary is given by

^t&5
L

k
, ~4.3!

wherek is the trapping rate of the boundary. This expression
can be derived similarly to the analogous result in Eq.~4.1!
for the spherical geometry.

To check the validity of the boundary homogenization,
simulations were performed with layers of different heights.
Simulations, from which we determinedF(s), were done in
the regime where the average lifetime linearly depends on
the height of the layer. Assuming that the boundary homog-
enization is justified and thatk is given by the relation in Eq.
~3.1!, we can write

^t&5
paL

4DF~s!
. ~4.4!

As expected, the values ofF(s) found in simulations fall
right on top of the curve predicted by the approximation
formula in Eq.~3.3! ~Fig. 2!.
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V. PARTIALLY ABSORBING DISKS

We use the following approximation to find the effective
trapping rate in the case when the disks are partially absorb-
ing:

1

k
5

pa

4DF~s!
1

1

skdisk
. ~5.1!

Here,kdisk is the trapping rate of the disk surface~not to be
confused withkdisk54Da). This formula interpolates the
effective trapping rate between the limiting cases of perfectly
absorbing and perfectly reflecting disks. Similar interpolation
formula was suggested by Zwanzig and Szabo.13 For per-
fectly absorbing disks (kdisk5`) the formula leads to the
expression fork in Eq. ~3.1!. When the disks are perfectly
reflecting (kdisk50) the effective trapping rate vanishes
since the entire surface is perfectly reflecting. In the limiting
case of smalls, F(s)5FBP(s)5s and the relation in Eq.
~5.1! takes the form

1

k
5

1

s S pa

4D
1

1

kdisk
D , ~5.2!

which is the Zwanzig–Szabo generalization of the BP result
in Eq. ~2.2! to the case of partially absorbing disks.13 When
s→1, F(s)→` andk approacheskdisk as it should.

We have found that the approximation in Eq.~5.1! is in
excellent agreement with the results of Brownian dynamics
simulations of the trapping in planar geometry~Fig. 3!. The
simulations were performed similarly to the case of perfectly
absorbing disks with particles initiated uniformly over the
patchy surface. To deal with the partially absorbing boundary
conditions on the disk surface, we used recently reported
adaptive time-step algorithm that combines the first-passage
time techniques with sampling of exact one-dimensional
propagators.14 The trapping rates were extracted from simu-
lations using Eq.~4.3! as we did in the case of perfectly
absorbing disks.

VI. CONCLUDING REMARKS

We have combined dimensional arguments with Brown-
ian dynamics simulations in order to homogenize boundary
conditions on surfaces randomly covered by nonoverlapping
circular traps. Our homogenization procedure requires the
identity of the average lifetimes in the presence of patchy
and homogenized boundaries. We have found that homog-
enized boundary excellently reproduces not only the average
lifetime, but the survival probability as well. Figure 4 dem-
onstrates excellent agreement of the survival probabilities
found in simulations with patchy surfaces and those found
for the problem with the homogenized boundaries.

The boundary homogenization discussed in this paper
can be extended to a number of related problems with patchy
surfaces. In particular, boundary homogenization can be car-
ried out for surfaces with regular distributions of disk-shaped
traps8 as well as for surfaces regularly or randomly covered
by hemispherical traps. A real patchy surface may be covered
by nonidentical traps, e.g., the trap parameters~size and trap-
ping rate! may fluctuate. Homogenization of such surfaces
might be of use for the analysis of experiments with adherent

cell cultures and cocultures.14,15 In conclusion, we believe
that boundary homogenization is a useful technique that sig-
nificantly simplifies both analytical and numerical analysis of
a large number of problems in which diffusing particles are
trapped by patchy surfaces.
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APPENDIX A: ZWANZIG’S FORMULA FOR k
IN EQ. „2.3…

Consider a particle diffusing in a spherical cavity of ra-
dius R with N nonoverlapping small perfectly absorbing cir-
cular disks of radiusa randomly located on its surface,a
!R. The average lifetime of the particle, which starts from
the cavity center̂ tN&center is given by

^tN&center5
R2

6D
1~12s!^tN&sur f'

R2

6D
1

12s

N
^t1&sur f .

~A1!

HereR2/(6D) is the mean first-passage time from the cavity
center to its wall@cf. Eq. ~B10! from Appendix B with r 0

50 andk5`#, s is the surface fraction covered by the disks,
which is given in Eq.~2.2!, and^tN&sur f is the average life-
time on condition that the particle starting points are uni-
formly distributed over the reflecting part of the cavity wall.
Equation~A1! accounts for the fact that the fractions of all
trajectories lands right on the disks and is trapped instantly.
For this fraction, the average lifetime is the mean first-
passage timeR2/(6D). In the second equality we have ad-
ditionally assumed that̂tN&sur f'^t1&sur f /N, i.e., the aver-

FIG. 4. Survival probabilities computed from simulations with the patchy
surfaces~thick gray curve! and obtained solving the problem with homog-
enized boundaries~black curve!. Logarithms of the survival probabilities are
shown in the inset. Simulations were done in the spherical geometry with
perfectly absorbing disks covering 5% and 50% of the surface of the sphere.
Particle initial positions were uniformly distributed over the volume of the
sphere. In the simulations,R5D51 anda50.025. Survival probabilities
were computed on the basis of 105 trajectories. For the homogenized prob-
lem, the survival probability was found by numerical inversion of the
Laplace transform in Eq.~B13!.
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age lifetime in the presence ofN disks is N times smaller
than the average lifetime in the presence of the only disk.
This is a reasonable approximation whenN is not too large.

To estimatê t1&sur f we use the fact that whena is small
enough, searching for the disk takes much more time than
equilibration in the cavity with perfectly reflecting wall.
Keeping this in mind, we can use the result from Grigoriev
et al.16 to write ^t1&sur f5Vcav /(4Da), where Vcav
54pR3/3 is the cavity volume. Substituting this expression
for ^t1&sur f into Eq. ~A1! we arrive at

^tN&center5
R2

6D
1

~12s!pR3

3DaN
. ~A2!

Zwanzig’s result fork in Eq. ~2.3! arises instantly if one
compares this expression with the result in Eq.~B10! from
Appendix B with r 050.

APPENDIX B: THE AVERAGE LIFETIME IN EQ. „4.1…

Consider a particle diffusing in a spherical cavity of ra-
dius R with a partially absorbing surface. The particle starts
from the point located at distancer 0 from the cavity center.
The particle propagator or Green’s functionG(r ,tur 0) satis-
fies the diffusion equation,

]G

]t
5

D

r 2

]

]r S r 2
]G

]r D ~B1!

with radiation boundary condition on the cavity wall,

2D
]G~r ,tur 0!

]r U
r 5R

5kG~R,tur 0! ~B2!

and the initial condition,

G~r ,tur 0!5d~r 2r 0!/~4pr 0
2!. ~B3!

The particle survival probabilityS(tur 0) is given by

S~ tur 0!54pE
0

R

r 2G~r ,tur 0!dr. ~B4!

Respectively, its average lifetime is

^t~r 0!&5E
0

`

tF2
dS~ tur 0!

dt Gdt5E
0

`

S~ tur 0!dt. ~B5!

The propagator considered as a function ofr 0 satisfies

]G

]t
5

D

r 0
2

]

]r 0
S r 0

2 ]G

]r 0
D , ~B6!

the initial condition in Eq.~B3! and radiation boundary con-
dition on the wall

2D
]G~r ,tur 0!

]r 0
U

r 05R

5kG~r ,tuR!. ~B7!

Using the definitions in Eqs.~B4! and ~B5! one can check
that the average lifetime satisfies

D

r 0
2

d

dr0
S r 0

2 d^t~r 0!&
dr0

D521 ~B8!

and the boundary condition

2D
d^t~r 0!&

dr0
U

r 05R

5k^t~R!&. ~B9!

Solving this equation one finds

^t~r 0!&5
R22r 0

2

6D
1

R

3k
. ~B10!

For particles that start from the cavity wall this reduces to the
expression for the average lifetime given in Eq.~4.1!.

Finally we derive an expression for the Laplace trans-
form of the survival probability for the case of uniform dis-
tribution of the particle starting points inside the sphere. It
follows from Eqs.~B4! and ~B6! that the Laplace transform
of the survival probability,Ŝ(sur 0)5*0

` exp(2st)S(tur0)dt,
satisfies

D

r 0
2

d

dr0
S r 0

2 d^Ŝ~sur 0!&
dr0

D 5sŜ~sur 0!21 ~B11!

with the boundary condition

2D
d^Ŝ~sur 0!&

dr0
U

r 05R

5k^Ŝ~suR!&. ~B12!

Solving this equation and averaging the solution over the
starting points one finds

Ŝu~s!53E
0

1

r 0
2Ŝ~sur 0!dr0

5
1

s H 11
3k̃~As̃ coshAs̃2sinhAs̃!

s̃@~12k̃ !sinhAs̃2As̃ coshAs̃#
J , ~B13!

wheres̃5sR2/D, k̃5kR2/D, and subscriptu indicates that
this survival probability corresponds to the case of uniform
distribution of the starting points. The survival probabilities
for the problems with homogenized boundaries shown in
Fig. 4 are obtained by inverting this Laplace transform.
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