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Abstract. Solid state experiments at extreme pressures (0.1 - 1 Mbar) and strain rates (106–108 s-1) are 
being developed on high-energy laser facilities.  The goal is a capability to test constitutive models for 
high-pressure, solid-state strength of materials.  Relevant constitutive models are discussed, and our 
progress in developing a ramped-pressure, shockless drive is given. Designs to test the constitutive 
models with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in 
solid-state samples are presented. Results from dynamic diffraction and EXAFS lattice diagnostics are 
given, showing that compression, phase, and temperature can be inferred on sub-nsec time scales. 
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INTRODUCTION  

New regimes of materials science at 
extreme pressures, compressions, and strain rates 
are being pursued on high energy density facilities, 
such as lasers, [1,2] Z-pinch facilities, [3,4] and gas 
guns. [5] One of our goals in this area, aimed at the 
National Ignition Facility laser (NIF), [6] is to 
experimentally test models of high pressure, high 
strain rate material strength at pressures P >> 100 
GPa (1 Mbar).  We review here aspects of our 
progress towards achieving this challenging goal.    

CONSTITUTIVE MODELS 
  We begin with a discussion of constitutive 

models for material strength at high pressures and 
strain rates (

! 

˙ " ). [7-11] The Steinberg-Guinan (S-G) 
model, [8] a first order Taylor expansion in 
pressure (P) and temperature (T), is written 
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Here, σ0, ε, f(ε)=[1+β(εi+ε)]n, and η = ρ/ρ0 

represent the ambient strength, plastic strain, work 
hardening factor, and  compression, resp. This 
model applies only to high strain rate, 

! 

˙ "  > ~105 s-1, 

and is independent of strain rate. The Steinberg-

Lund model [1,9] (S-L) is given as: 
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ˆ "  #  ˆ " T +  ˆ " Af($)  ,  (2b) 
 
where σ, σT, σA, and f(ε) are yield strength, the 
thermal and athermal components of strength, and 
the work hardening factor, resp. The nominal S-L 
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model requires that (1) σAf(ε) not exceed an upper 
limit, 

! 

"max
* , and (2) σT not exceed a cap, typically 

taken as the Peierls stress, σP. If this cap on σT is 
removed, we will call this modified case the S-L1 
model. To put the S-L model into dimensionless 
form, we write 

! 

( ˆ " , ˆ " T,A) = (" /G, "T,A /G 0) , (see 
Eq. 2b) where G0 and G correspond to the shear 
modulus at ambient and high - (P,T) conditions. 
Starting with Orowan’s equation, 

! 

˙ " = #
m

bv 
disloc

, 
where ρm(cm-2) and 

! 

v 
disloc

 correspond to mobile 
dislocation density and average dislocation 
velocity, we can relate σT to the strain rate. The 
form we write down differs slightly from the 
nominal Hoge-Mukherjee (H-M) model [7], and is 
given by 
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where p and q represent barrier shape parameters, 
m is the power of the phonon drag term, D* is the 
phonon drag coefficient (dimensionally different 
from that in nominal S-L or H-M, except when 
m=1), and no artificial cap on σT is imposed.  We 
will refer to this model as H-M*.  The nominal 
form of H-M is recovered if p=1, q=2, and m=1. 
When σT resulting from Eq. 3 is inserted into Eq. 
2a, we will call this the S-L2 model.  Nominal S-L 
is recovered with (p, q, m) = (1, 2, 1), and the cap 
imposed on σT, as discussed above. 
 For the following discussion, we consider 
just the thermal activation component of Eq. 3 by 
setting D*=0.  For simplicity in comparisons to the 
PTW model below, let p=q=m=1.  Equation 3 can 
then be inverted to isolate the thermal component 
of the normalized flow stress, 
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ˆ " 
T

="
T

/G , namely 
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where 
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=  #$
De
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m
b

2 , 1/α = 2w2/La, with w, L, 
and a as defined in [7,9]. 
 We wish to compare Eq. 4 with the PTW 
model, [11] which we write here in a simplified 

form, assuming ε ≈ 0 (low strain, negligible work 
hardening), namely 
 

! 

ˆ " = max y0 # (y0 # y$ )erf % ˆ T ln
&˙ ' 

˙ ( 

) 

* 
+ 

, 

- 
. 

/ 

0 
1 
1 

2 

3 
4 
4 
, s0

˙ ( 

&˙ ' 

) 

* 
+ 

, 

- 
. 

56 

7 
8 

9 8 

: 

; 
8 

< 8 
 (5) 

 
Here, y0 represents the total flow stress at T = 0 (ie, 
the sum of the athermal baseline plus Peierls 
stress).  The parameter y∞ corresponds to flow 
stress at high temperature, where erf(x) ≈ 1, where 
flow stress is no longer sensitive to temperature, at 
least in terms of surmounting barriers. The 
parameter, 

! 

˙ " = c
sh

/2a ~ #
De

, is a reference strain 
rate, where csh is the shear wave speed, 4πa3/3 is 
the atomic volume, and ωDe the Debye frequency. 
[11] If we consider only the thermal activation 
component, and limit the discussion to the linear 
region of the error function, where erf(x) ≈ (2/√π)x, 
we can approximate the scaled flow stress as 
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By comparing like terms in Equations 4 and 6, we 
can correlate the PTW “free parameters” γ, κ, y∞, 
and y0 with physical quantities from the H-M* 
model, giving γ ~ ρmb2, κ ~ 1/Uk, 

! 

y" ~ ˆ # A, 

! 

y0 ~ ˆ " A + ˆ " P, and 

! 

y0 " y# ~ ˆ $ P . 
 The correlation γ ~ ρmb2 is particularly 
interesting.  [Note, an analysis of the phonon drag 
components of Eqs. 3 and 5 leads to a similar 
result, provided that m=1/β.]  If the mobile 
dislocation density, ρm, depends on the dynamics 
of the system, as suggested by recent molecular 
dynamics (MD) simulations of shocked Cu, [12] 
then γ may also depend on the dynamics. This 
discussion also applies to the S-L (Eq. 2) and the 
H-M (Eq. 3) models, which also treat ρm as a 
material constant, when it may be a dynamically 
evolving variable.  Developing a theoretical 
approach to follow the evolution of ρm(t) is a 
difficult endeavor, but may be required.  Very large 
scale MD simulations, [12] or the new technique of 
multiscale dislocation dynamics plasticity [13] may 
be beneficial in this task.  
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 The last model we discuss is the Zerilli-
Armstrong model. [14-16] We consider the version 
described for Ta, [15] which is written as 
 
 

! 

" = c0 +K#n +B0e
$%T ,      (7) 

 
where c0 = σG + kl -1/2, and  

! 

"="0 #"1 ln ˙ $ . Here, 
σG, l, β0, and β1 correspond to the athermal stress 
due to the initial defect density, grain size, and 
material constants, resp.  The form of the thermal 
activation term, B0e-βT,  was motivated originally 
by the data of Heslop and Petch, which showed 
that the temperature dependent portion of the flow 
stress decreased as T increased. [17,18], that is, 
dσ/dT < 0.  At the strain rates where this model has 
been traditionally applied, 

! 

"="0 #"1 ln ˙ $ > 0, so that 
automatically dσ/dT < 0.  At the very high strain 
rates considered here, however, this may not 
always be true.  So we explicitly require that β > 0, 
which implies that the model is applicable for 
strain rates 

! 

˙ " < e
#0 /#1 .  We also need to include 

pressure hardening, which we accomplish with an 
overall G/G0 multiplier.  Hence, our modified 
Zerilli-Armstrong model (Z-A1), applicable for 

! 

˙ " < e
#0 /#1 , is written as  

 
        

! 

" = c0 +K#n +Be
$(%0$%1 ln ˙ # )T[ ]

G(P,T)

G0

 .     (8) 

 
Note, for 

! 

"0 >>"1 ln ˙ # , the Z-A1 strength in Eq. 8 
becomes independent of strain rate, similar to the 
first term in Eq. 6 or the first two terms of Eq. 4.  
At very high strain rates, 

! 

"="0 #"1 ln ˙ $  becomes 
small, and a first order Taylor expansion of the 
exponential in Eq. 8 leads to 

! 

" # ln ˙ $ , similar to 
the last terms of Eqs. 4 and 6.  Hence, there is nice 
consistency between the models, over the ranges 
where they are mutually applicable. 
 We illustrate the models discussed above 
in Fig. 1 as a function of strain rate, for Ta at P = 
0.5 Mbar, T = 500 K, and ε = 0.1.  The dot-dashed 
curve labeled (S-L0) corresponds to the nominal S-
L model (Eq. 2a, including the S-L cap on σT when 
σT > σP) with nominal input parameters for Ta. [9]  
The dashed curve labeled (S-L1) corresponds to the 
S-L model with the artificial cap on σT removed.  
Curves (S-L1) and (S-L0) coincide in the thermal 

activation regime, for 

! 

˙ "  < 105 s-1.  At higher strain 
rates, 

! 

˙ "  > ~106 s-1, the nominal S-L model, curve 
(S-L0), transitions to essentially the Steinberg-
Guinan model, Eq. 1, which is strain rate 
 

 
 
FIGURE 1. Flow stress (kbar) versus log strain rate for 
a variety of constitutive models (see text for details) for 
Ta at 0.5 Mbar, 500 K temperature, and plastic strain of 
0.1.  The nominal Steinberg-Lund model is the curve 
labeled S-L0. Steinberg-Lund, with the artificial cap on 
σT removed, is shown by the curve labeled S-L1. 
Steinberg-Lund, modified to resemble PTW, is shown by 
the curve labeled S-L2. The nominal PTW model is 
shown by the solid curve.  And a slightly refined Zerilli-
Armstrong model, suitable for these high pressures and 
strain rates, is shown by the curve labeled Z-A1. 
 
independent. Note, for the S-L1 model at high 
strain rates, where phonon drag dominates flow 
stress, as shown by curve (S-L1) in Fig. 1, σT >> 
σAf(ε) in Eq. 2a, and strength is predicted to be 
essentially independent of the initial microstructure 
and work hardening.  The solid curve labeled 
(PTW) in Fig. 1 corresponds to the PTW model, 
Eq. 5, with nominal input parameters for Ta. [11]  
In the low strain rate regime, 

! 

˙ "  < ~105 s-1, PTW 
also agrees with the S-L models.  This is not 
surprising, since both models were “calibrated” 
against similar Hopkinson bar data.  With nominal 
input parameters for Ta, the PTW model transitions 
to phonon drag at a higher strain rate, ~108 s-1, due 
to the higher reference strain rate 

! 

˙ "  (~ attempt 
frequency), than the S-L models.  The transition is 

767



to a power-law  “nonlinear” phonon drag model, 
with a softer dependence on strain rate, 

! 

"#˙ $ 
1/4 , 

based on overdriven shock data.  The S-L2 model 
(Eqs. 3 + 2a, with m=4, p=1, q=2, and no cap on 
σT) is shown in Fig. 1 by the dashed curve (S-L2).  
Here, the reference strain rate (~ attempt 
frequency), 

! 

˙ " 
0
, has been increased by ~100x over 

the nominal value.  Under these settings, the S-L2 
model is consistent with the PTW model over 
essentially the entire strain rate range.  
 Finally, we show in Fig. 1 the results of 
the modified Zerilli-Armstrong model (Eq. 8) by 
the multidot-dashed curve labeled Z-A1.  For 
nominal input parameters for this model for Ta, the 
thermal activation regime extends to the low x 107 
s-1 strain rate regime, and over this range, it agrees 
very well with the PTW model.  As described in 
[14,15] this model addresses deformation in the 
thermal activation regime.  Zerilli and Armstrong 
pointed out nearly two decades ago, however, that 
to extend to higher strain rates one should address 
the increase of dislocation density, as opposed to 
treating ρm as a material constant. [14]  This is a 
key point, which we also mention in the discussion 
below Eq. 6, which remains to be addressed in 
future constitutive models addressing high strain 
rate deformation. In summary, all the models 
essentially agree, with reasonable parameter 
settings, in the thermal activation regime.  At the 
highest strain rates, where thermal activation no 
longer applies, the models diverge significantly. 
New data will be needed to test the models in this 
ultrahigh strain rate regime. 
 
RAYLEIGH-TAYLOR STRENGTH METHOD 
 
 We next discuss a technique for 
generating a ramped “drive” to load samples to 
high pressure in the solid state for testing models of 
material strength.  The drive technique has been 
experimentally demonstrated up to peak pressures 
of 200 GPa (2 Mbar) at the Omega laser, as shown 
in Fig. 3. [19]  The target typically consists of a 
solid density plastic reservoir of nominal thickness 
~0.2 mm, followed by a ~0.3 mm vacuum gap, 
then an Al sample.  A laser pulse of energy 0.2 – 2 
kJ in a temporally square pulse shape of duration 3 
– 4 ns is used to drive a strong shock through the 
low-Z reservoir.  When the shock reaches the back 

side, the reservoir unloads into vacuum as a plasma 
“ejecta”.  The pressure that is applied to the sample 
 

 
 
FIGURE 2. Pressure vs. time for five different 
experiments, showing the ramped drive for maximum 
pressures spanning 0.15 kbar to 2 Mbar. [19] 
 
results from the ram pressure, 

! 

Pram = "ejectavejecta
2 , 

due to the inflowing ejecta.  This increases 
smoothly and monotonically in time as the 
reservoir unloads. We modeled this shockless 
compression technique after the early work of 
Barnes using high explosives (HE) as the source of 
the shock in the reservoir. [20,21]  The measured 
velocity profiles can be back integrated to infer the 
applied pressure vs. time at the front surface of the 
Al sample, using a technique developed by Hayes. 
[4] We show in Fig. 2 the results from five 
different experiments, varying mainly the laser 
intensity, leading to peak pressures spanning 0.15 – 
2 Mbar.  As the peak pressure increases, the rise 
time decreases.  At 2 Mbar, with a ~3 ns rise time, 
the sample is not shocked, at least over the first 10-
20 µm of Al. Furthermore, design simulations 
show that on future facilities, such as the NIF laser, 
[6] this technique should be able to drive samples 
in the solid state to much higher pressures, P > 10 
Mbar. [22]   
 We show in Fig. 3 the results of 2D 
simulations of the Rayleigh-Taylor (RT) 
instability, [23] for a quasi-isentropically driven 
RT experiment in Ta at Pmax ~ 2 Mbar.  This 
experiment was designed for the first bundle of the 
NIF laser. [6]  The simulations assumed the S-G 
strength model, and varied the initial strength 
parameter, σ0.  There is considerable sensitivity in 
the predicted RT growth factors, due to the 
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FIGURE 3. Growth factor vs time (ns). Predicted RT 
growth of preimposed sinusoidal ripple (wavelength λ = 
50 µm, initial amplitude η0 = 0.2 µm) showing 
sensitivity to high pressure strength for Ta at 2 Mbar 
peak pressure. Note the log scale. 
 
stabilizing influence of material strength.  Recent 
experiments on Omega in V and Al at lower peak 
pressures corroborate this prediction. [23]   
 

LATTICE DIAGNOSTICS 
 

We conclude by summarizing a selection 
from our work at the lattice level, starting with 
dynamic diffraction experiments. [24] This 
technique offers the potential to probe fundamental 
quantities such as phase, Peierls barrier, and 
dislocation mobility, at high pressures and strain 
rates, and is particularly well suited to studies of 
shocked, single crystals.  We show an example 
from a dynamic (driven) experiment in Fig. 4 for 
single crystal Ti shocked along the [0001] direction 
at Pshk ~ 70 kbar, done on the Janus laser at LLNL.  
[25]  One laser beam is used to shock the crystal, 
while a second beam, the “backlighter”, is used to 
drive a point source of x-rays, located to match the 
Bragg diffraction condition, 2d sinθ = nλ, where d 
is the lattice spacing, n is the order, and λ is the x-
ray wavelength.  Initially there is diffraction only 
from the unshocked region (lower arc, labeled 
“ambient”).  Later in time, the Ti has been 
shocked.  With the backlighter laser double pulsed, 
both shocked and unshocked regions can be 

superposed on the same film pack, as shown in the 
image in Fig. 4.  The diffraction experiments give 
the phase and lattice compression, and can probe 
whether the lattice is in a plastically relaxed 3D 
state (~hydrostatic), or a uniaxially compressed 1D 
state. [12, 24]   
 

 
 
Figure 4. Example of the dynamic diffraction technique 
for shocked single crystal Ti, at Pshk ~ 70 kbar, shocked 
along the [0001] direction. [25] 
 

We have also developed the time-resolved 
EXAFS diagnostic technique at the Omega laser. 
[26]  Three laser beams are used to shock compress 
the sample being studied.  The remaining 57 beams 
implode an inertial confinement fusion capsule to 
generate a short (~120 ps) burst of smoothly 
varying hard x-rays, I = I0 exp(-Ex/T), to be used 
for the EXAFS absorption.  We show the result for 
shocked polycrystalline Ti at Pshk≈330 kbar in Fig. 
5. [26]  The modulations as a function of electron 
energy, or equivalently, electron wave number, are 
due to the interference from reflections off 
neighboring atoms, that occur as the freed electron 
(from bound-free x-ray absorption) leaves its host 
atom.  These modulations can be modeled with an 
EXAFS theoretical model (FEFF8) to infer lattice 
compression, phase, and temperature.  In Fig. 5, if 
we assume that the shock temperature is the same 
as for shocked V experiments at the same shock 
strength, which agree with LASNEX radiation-
hydrodynamics simulations, then fit the FEFF8 
model to reproduce the modulation period, 
assuming no phase transition, the result is shown in 
green, labeled α-Ti. The fit is clearly 
unsatisfactory, and suggests this interpretation 
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cannot be correct.  If we again assume no phase 
transition, but arbitrarily increase the temperature 
until the theoretical curve fits the data, the resulting 
 

 
 
Figure 5.  Dynamic EXAFS measurements of shocked 
Ti at Pshk = 330 kbar (33 GPa).  [26] 
 
temperature is T≈2100 K. This temperature is over 
a factor of two higher than predicted with 
simulations, and in distinct disagreement with 
temperatures inferred from shocked V experiments 
at the same shock strength. If, on the other hand, 
the shocked Ti has undergone the α–ω phase 
transition, as expected for these pressures, and we 
assume the shock temperatures from the radiation-
hydrodynamics simulations of T≈900 K, the result 
is shown by the red curve in Fig. 5, labeled ω-Ti.  
The agreement with the data is excellent, and 
suggests that this is the most likely interpretation.  
At Pshk ≈ 330 kbar, the time scale for the α−ω 
phase transition in Ti is prompt, δtα−ε < 1 nsec. 
 

CONCLUSION 
 
We are developing the capability to do solid state, 
material dynamics experiments at very high 
pressures and strain rates (P, 

! 

˙ " ), where model 
uncertainties are very large. A ramped pressure 
drive has been developed to reach high – (P, 

! 

˙ " ) in 
the solid state, and Rayleigh-Taylor experiment 
designs show sensitivity to the strength models in 
this regime. Dynamic diffraction measures lattice 
response, compression and phase, and dynamic 
EXAFS independently measures compression, 
phase, and temperature, all relevant to testing 

constitutive models. Phase transitions have been 
inferred with transition time scales < ~1 nsec. 
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