ASSESSING CHEMICAL INTEGRITY IN THE GREAT LAKES BASIN

Keith Solomon University of Guelph ksolomon@uoguelph.ca

OUTLINE

- Identifying chemicals of concern
- Identifying sources
- Assessing effects
- Assessing risks of chemicals of concern
- Toxicity, hazard and risk
- Dealing with mixtures
- Conclusions

IDENTIFYING CHEMICALS OF CONCERN

- The chemical is in the system
 - So what?
- By analogy because the chemical is in other systems

- Other systems are different?

• Must avoid Type-3 errors

Data from Weseloh et al, 1995

RESIDUES IN ORGANISMS

 Presence in the organism does not mean that it is causing a problem.

- Canadian "Toxic Nation" report.

• Presence in the matrix does not mean that it is causing a problem.

Global Assessment

> of the State-of-the-Science of

Endocrine Disruptors

Edited by Terri Damstra Sue Barlow Aake Bergman Robert Kavlock Glen Van Der Kraak IPCS

6

WHO/PCS/EDC/02.5

CAUSAL CRITERIA FOR ASSESSING ENDOCRINE DISRUPTORS: A PROPOSED FRAMEWORK

IPCS. 2002. Global Assessment of the State-of-the-Science of Endocrine Disruptors. Geneva, Switzerland: International Programme on Chemical Safety of the World Health Organization Report No. WHO/PCS/EDC/02.2. August 2002. http://www.who.int/pcs

GUIDELINES FOR CAUSALITY

Hill

- Temporality
- Strength of association
- Consistency
- Biological plausibility
- Recovery

Koch R. 1882. Die Aetiologie der Tuberculose. In: Clark DH, ed. Source Book of Medical History. Dover Publications, Inc. p 392–406
Hill AB. 1965. The environment and disease: association or causation? *Proc. Roy. Soc. Med.* 58:295-300

Koch

CAUSE FOR WORRY

- The concentrations are increasing
 - PBDEs
 - PFOA and PFCs
 - Pharmaceuticals
- The substance biomagnifies
 - PBDEs, not tetrabromobisphenol A
 - PFOA/ long chain PFCs
- The substance is persistent or pseudopersistent
 - PBDEs
 - PFCs
 - Pharmaceuticals

IDENTIFYING SOURCES

- Where is it coming from?
- Can we do anything about it?
 - Process changes
 - Source mitigation

PULP MILL EFFLUENTS

EFFECTS IN FISH

Data from Robinson et al, 1994

IDENTIFYING THE KEY FRACTION

Hewitt ML, Smyth SAM, Dube MG, Gilman CI, Maclatchy DL. 2002. Isolation of compounds from bleached kraft mill recovery condensates associated with reduced levels of testosterone in mummichog (*Fundulus heteroclitus*). Environ Toxicol Chem 21:1359–1367.

AGRICULTURAL PHARMACEUTICALS

Agricultural Surface Waters (n=97)

ASSESSING RISKS OF CHEMICALS OF CONCERN

• Frameworks for risk assessment

RISK ASSESSMENT

USEPA 1998

TOXICITY, HAZARD, AND RISK

• Toxicity is not Hazard is not Risk

Ranking of concerns in the absence of exposure information

EFFECTS CHARACTERIZATION

- Laboratory studies
 - Surrogate species with standard protocols
 - Mechanisms of action
 - Simple mixtures

ACUTE GROWTH INHIBITION ASSAYS

"All substances are poisons: there is none which is not a poison. The right dose differentiates a poison and a remedy"

PARACELSUS,1493-1541

CARL FRIEDRICH GAUß 30 April 1777 - 23 Feb 1855

Assessment of risk based on likelihood of exposure and/or toxicity

PROBABILITY OF EFFECT

DEALING WITH MIXTURES

- Additive toxicity and using potency addition (TE).
- Whole effluent testing

TOTAL POTENCY AS TOXIC UNITS

RISK ASSESSMENT

- Special considerations
 - Chronic exposures from pseudopersistence
 - Non-traditional endpoints
 - Mixtures a reality and additivity likely

AQUATIC COSMS

EFFECT CHARACTERIZATION IN COSMS

- Community-down approach rapidly identify sensitive species in several trophic levels
- Observation of direct and indirect effects
- Structural and functional endpoints
- More realistic stressor exposure
- Range of concentrations upper and lower thresholds - multiple species - multiple responses
- Synthetic mixtures (Whole Effluent Test)

FATE OF TYLOSIN IN AQUATIC MICROCOSMS

MIXTURE CONCENTRATIONS

Zooplankton Community Response

Ciprofloxacin, Fluoxetine, Ibuprofen

Richards et al. 2004 ET&C

Phytoplankton Community Response

Ciprofloxacin, Fluoxetine, Ibuprofen

Richards et al. 2004 ET&C

RESPONSE OF MYRIOPHYLLUM SIBIRICUM

Tetracycline, oxytetracycline, chlortetracycline, and doxycycline

RESPONSE OF PLANKTON

CONCLUSIONS

- Identifying chemicals of concern
 - Need to consider causality
- Identifying sources
 - Not always easy
- Assessing effects
 - Need to consider effects above the level of the organism
- Assessing risks of chemicals of concern
 - Cannot rely on traditional tests with traditional endpoints
- Toxicity, hazard and risk
 - Probabilistic approaches are promising
- Dealing with mixtures
 - Complex but whole effluent testing offers advantages

THANK YOU

ksolomon@uoguelph.ca