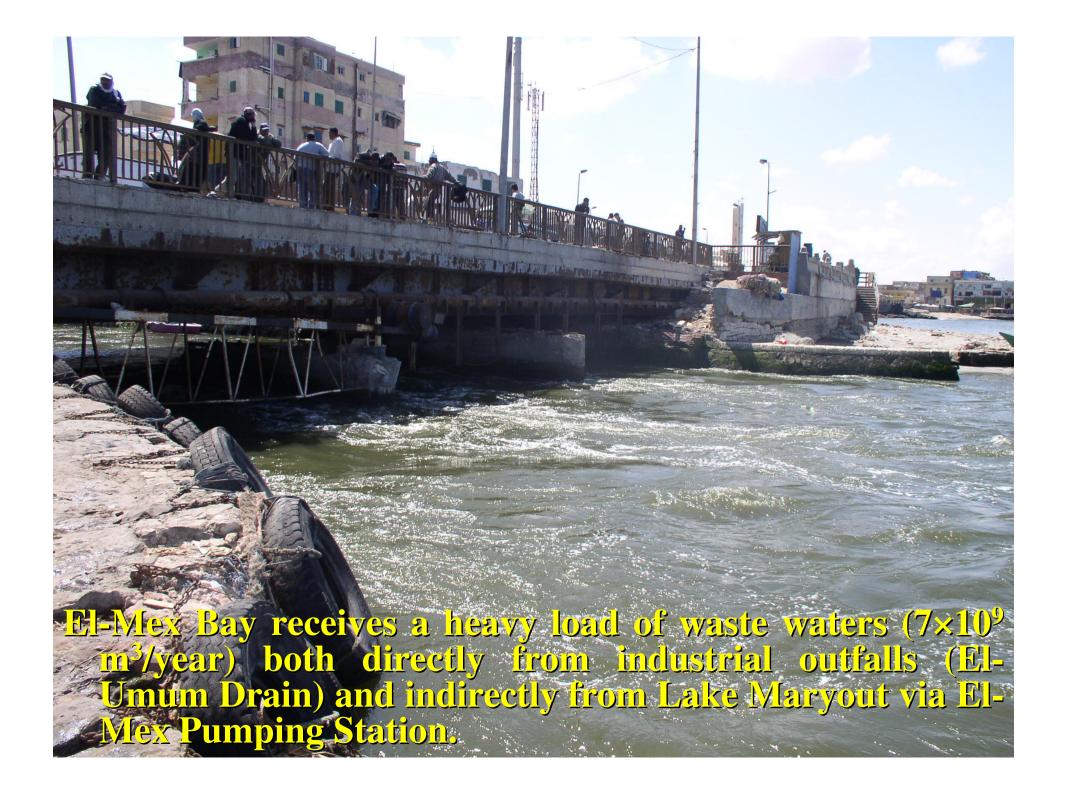
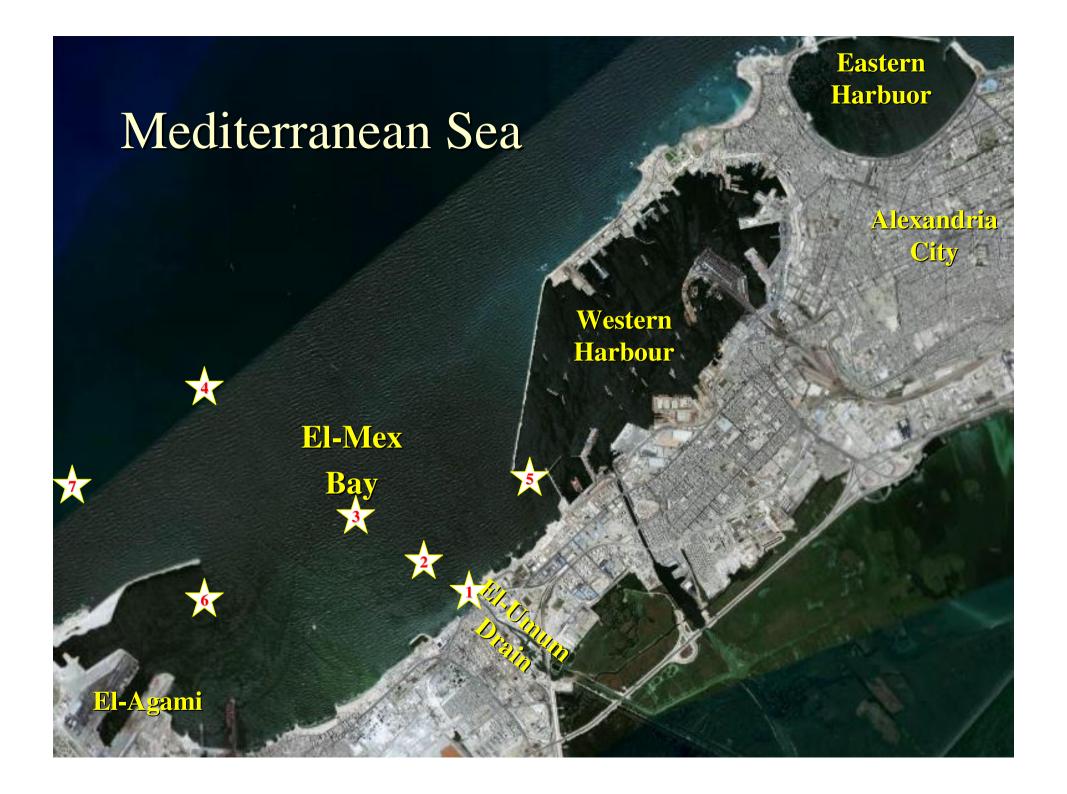

Influence of Salinity Variations on Zooplankton Community in El-Mex Bay, Alexandria, Egypt


Howaida Y. Zakaria, A.A. Radwan and M.A. Said

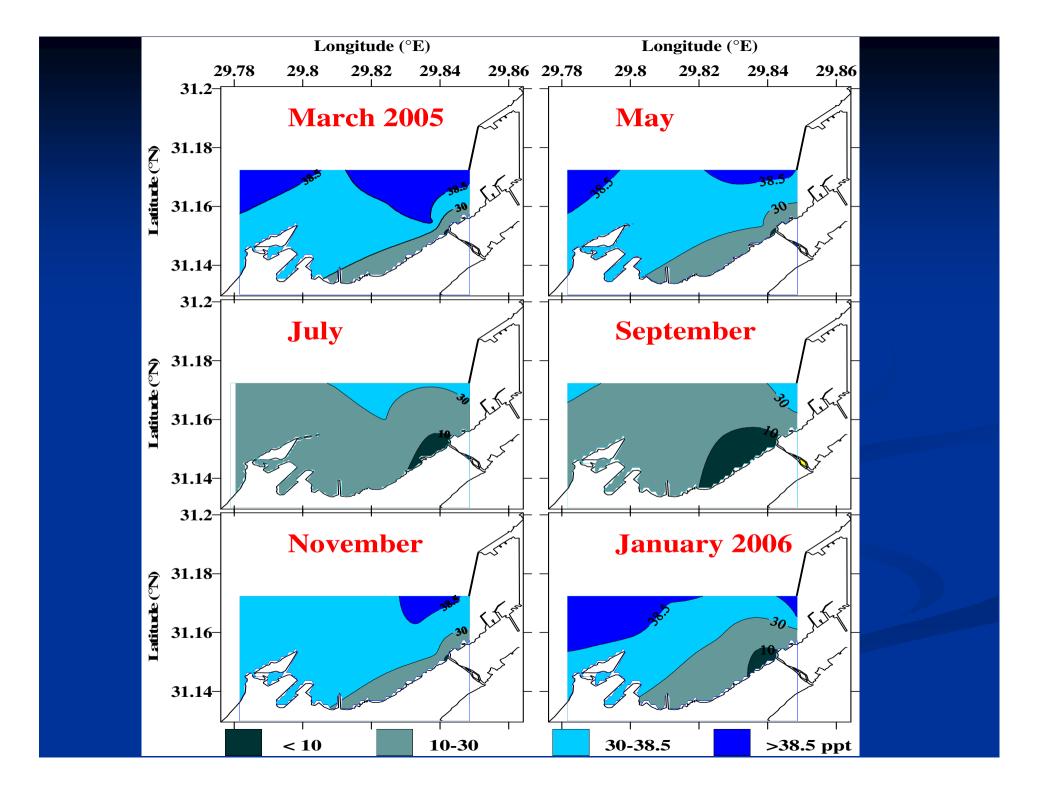
National Institute of Oceanography & Fisheries, Alexandria, Egypt.



Aim of the Study

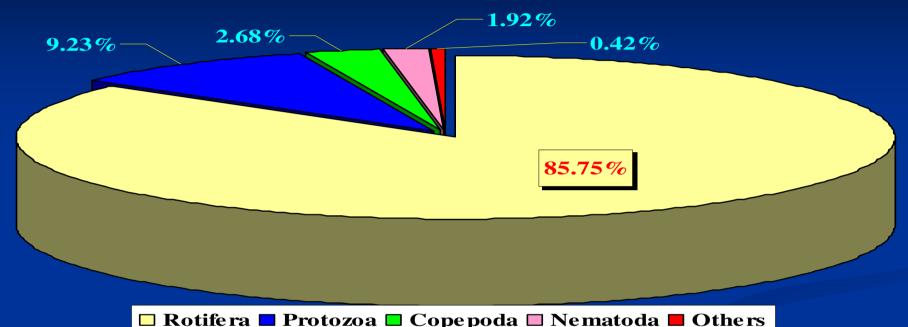
The present work is an attempt to illustrate the influence of salinity variations on the abundance and community structure of zooplankton in El-Mex Bay waters

Materials and Methods of Analysis


- Quantitative and qualitative studies on zooplankton community were performed bimonthly in El-Mex Bay, from March 2005 to January 2006. Seven stations were selected to represent the different habitat in the Bay.
- Zooplankton samples were collected at each station by vertical hauls (from bottom to the surface) using standard plankton net of 55 μm mesh.
- Water temperature and salinity were also measured along with sampling.

(I) Water types characteristics

- Based on the distribution of surface salinity in the investigated area, four types of water could be identified:
- 1- Mixed land drainage (L) with a salinity of < 10.00 ppt.
- 2- Mixed water (M) with a salinity range from 10.00 to 30.00 ppt.
- 3- Diluted sea water (D) with a salinity range from 30.00 to 38.50 ppt
- 4- Mediterranean Sea water (S) of salinity > 38.50 ppt.

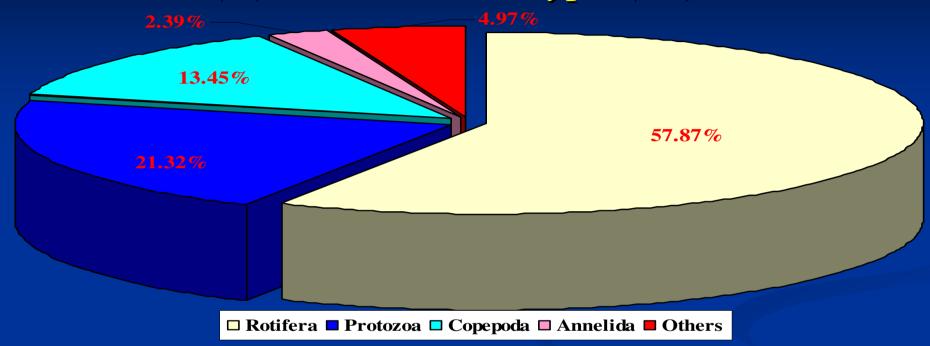


(II) Zooplankton community characteristics

(a) Mixed land drainage water type (L)

Zooplankton community in the mixed land drainage water type (L) of salinity less than 10 ppt was represented by 47 taxa, out of them 25 protozoan species, 19 Rotifera and 3 species of Crustacea (2 Copepoda and one species of Cladocera). The water type characterized by highest number of species belonging to fresh water fauna (37 species).

(II) Zooplankton community characteristics (a) Mixed land drainage water type (L)

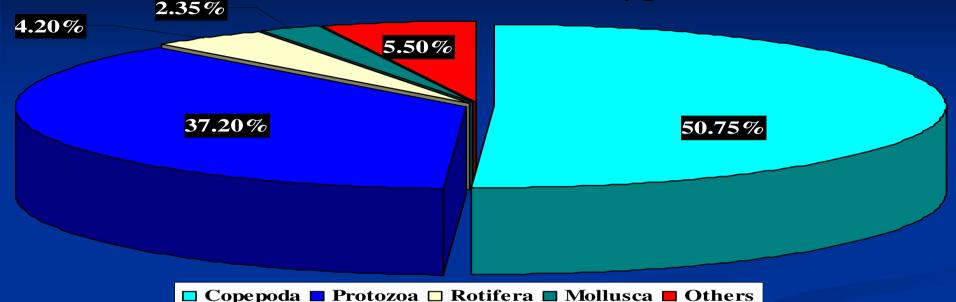


- Ropispodsvand the imbated batages to compiled the othig doorder of stituting cele contributing 2068 % tab the plotakt zoop lankthio non unnity lathey and eitherices knight despecies, domithous clopse ainericants in diffractifications. The hamplio predominated Rose fethe population tributing 84 is 15%, to the crotal cope pode lans, Brachionus angularis, B.
- Milkiefleaus, ared Rvinligatiliatourse frantalung with the total zooplankton.
- Brntergraups such as seemed durant tentagrers as contributing er planktonic har valtaber and plank time of the valtaber of the cuvery depression to the total protozoan population respectively.

(II) Zooplankton community characteristics (b) Mixed water type (M)

Zooplankton community in the mixed water type (M) of salinity 10-30 ppt was containing 65 taxa, out of them 27 protozoan species, 19 Rotifera and 14 species of Crustacea (7 Copepoda, 4 Cladocera, one species of Ostracoda and two decapods). Besides one species of Cnidaria and 4 species of Larvacea.

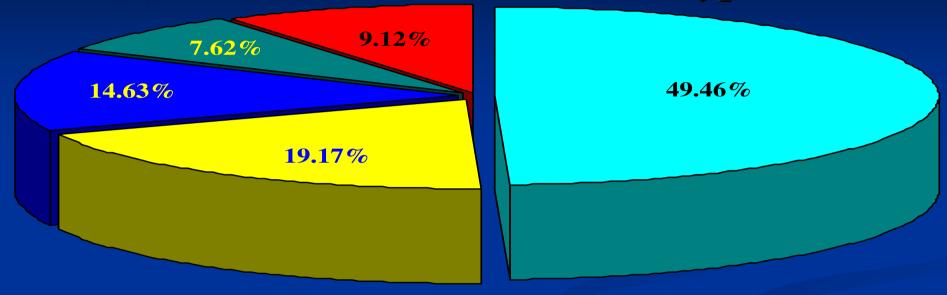
(II) Zooplankton community characteristics (b) Mixed water type (M)



- Copepoda and their larval stages were numerically the third group, contributing 13.45%
- to the total zoeplankton counts. They were represented by a species 7 belonging to 17 genera, all of them belonging to marine forms. Oithona nana dominated copepod zooplankton in this water type. The copepod haupliff contributed 88.18% to the vopepod work of the population (79.26% to the total Rotifera). Ascomorpha sp.,
- Nunheimentyjichtilimenoplanklunikolanywerofrenmelitadcvithiuneidezædenumbhestotal
- zooplanktonnkOther groups such as Cnidaria, Nematoda, Cladocera of Ostracoda, Decapoda, Larvacea as well as the meroplanktonic larvae of Cirripedia, Mollusca, Echnilottermata et and executacea and religiously represented and constituted contectively supposes to the total population respectively.

(II) Zooplankton community characteristics (c) Diluted sea water type (D)

Zooplankton community in the diluted sea water type (D) of salinity 30-38.5 ppt was represented by 64 taxa, out of them 35 protozoan species, 12 Rotifera and 12 species of Crustacea (10 Copepoda, one species of Cladocera and one species of Ostracoda). Besides there were one species of Cnidaria, one species of Pteropoda and 3 species of Larvacea.



- Rotifera were the third zooplankton group in the numerical abundance forming about
- Copepoda the total eroplankton tages were trepresented by 12 species lanktoning to estimate the total eroplankton to the species of the control of the contr
- Editional population of the Copeptal many continued the continual continual
- community.

(II) Zooplankton community characteristics (d) Mediterranean Sea water type (S)

Zooplankton community in the Mediterranean Sea water type (S) of salinity >38.5 ppt was represented by 41 taxa, including 23 protozoan species and 13 Crustacaea (12 Copepoda, and one species of Ostracoda), 2 Rotifera as well as one species of Pteropoda, one species of Chaetognatha and one Larvacea species.

(II) Zooplankton community characteristics (d) Mediterranean Sea water type (S)

□ Copepoda □ Cirripedia □ Protozoa ■ Mollusca ■ Others

- Protozoa was the third important group contributing 14.63% to the total zooplankton counts. Globigerina sp and Textularia agglutinans were the most dominant protozoan
- twertertre presented population of genus Synchaeta; Synchaeta okai and S. pectinata.
- Ostracoda, Chaetognatha and Laryacea contributed 1.33%, 0.05% and 1.87% total rooplankton population respectively. The larvae of Annelida and Echinode constituted 1.48% and 2.37% respectively.

Water types Recorded species	L	M	D	S
Protozoa				
Tintinnida:				
Amphorellopsis tetragona (Jorg.)	13	120	85	83
Codonellopsis morchella (Cleve)	0	0	3	6
Coxliella ampla (Jorgensen)	0	0	5	0
Coxliella annulata (Daday)	0	12	39	0
Dadayiella ganymedes (Entz, Sr.)	0	0	34	37
Epiplocylis blanda (Jorgensen)	0	0	1	3
Epiplocylis undella (Ostenfeld & Schmidt)	0	2	0	0
Eutintinnus fraknoi (Daday)	30	85	148	24
Fevella adriatica (Imhof)	0	16	4	0
Fevella ehrenbergi (Claparede & Lachmann)	31	3836	2133	45
Helicostomella fusiformis (Meunier)	32	81	2861	85
Helicostomella subulata (Eherenberg)	13	540	663	20
Metacylis mediterranea (Mer.)	0	236	266	14
Metacylis vitreoides (Kofoid & Campbell)	0	2	0	0
Parundella aculeata (Jorgensen)	0	0	0	3
Parundella grandis (Kofoid & Campbell)	0	0	8	0
Parundella lachmanni (Daday)	0	158	35	0
Parundella sp.	0	0	0	19
Petalotricha ampulla (Fol)	21	495	834	0
Petalotricha major (Jorgensen)	0	7	24	0
Proplectella angustior (Jorgensen)	0	31	2	0
Proplectella ovata (Jorgensen)	0	0	1	6
Proplectella subcaudata (Jorgensen)	0	0	6	0
Rhabdonella spiralis (Fol)	0	0	0	3
Steenstrupiella steenstrupii (Claparede & Lachmann)	0	0	3	23
Stenosemella nivalis (Meunier)	0	0	7	11
Stenosemella ventricosa (Claparede & Lachmann)	0	7	1	30
Tintinnopsis beroidea (St.)	0	411	201	40
Tintinnopsis labiancoi (Dad.)	0	284	11	8
Undella hyalina (Daday)	0	1	3	0
Xystonella lohmanni (Brandt)	0	0	1	0

Water types Recorded species	L	M	D	S
Ciliophora				
* Ancyromonas controta (Lemmermann)	70	0	0	0
* Blepharisma lateritum (Ehernberg)	177	0	0	0
* Chilodontopsis depressa (Perty)	76	0	0	0
* Frontoniella camplanata (Wetzel)	170	95	0	0
* Paramecium aurelia (Ehrenberg)	202	0	0	0
* Paramecium bursaria (Ehrenberg)	25	0	0	0
* Paramecium caudatum (Ehrenberg)	1915	232	0	0
* Paramecium multimicronucleatum (Powers & Mitchell)	50	0	0	0
* Paramecium sp.	1316	411	0	0
* Stokesia vernalis (wenrich)	126	21	0	0
* Tetrahymena pyriformis (Ehrenberg)	63	0	0	0
* Vasicola ciliata (Tatem)	44	0	0	0
Rhizopoda:				
* Difflugia sp.	4948	2357	17	0
Foraminifera:				
* Ammonia baccarii (Linneus)	69	0	7	0
* Elphidium crispum (L.)	72	0	0	0
Textularia agglutinans (Orb.)	57	33	16	123
Globigerina bulloides (Orb.)	13	0	2	3
Globigerina inflata (Orb.)	0	0	4	0
Globigerina sp.	232	138	16	159
Globorotalia truncatuloides (Orb.)	0	66	7	46
* Quinqueloculina sp.	79	121	36	0
Tretomphalus bulloides (Orb.)	0	0	8	69
Total	9844	9798	7492	860

Water types	L	M	D	S	
Recorded species	L	TAT			
Rotifera					
* Ascomorpha saltans (Beauchamp)	4852	1	О	O	
* Ascomorpha sp.	31	2736	11	O	
* Brachionus angularis (Gosse)	3318	42	17	O	
* Brachionus budapestiensis (Daday)	129	358	О	O	
* Brachionus calyciflorus (Pallas)	2358	547	14	O	
* Brachionus plicatilis (O.F. Muller)	1954	894	98	О	
* Brachionus quadridentatus (Hermann)	93	O	О	O	
* Brachionus urceolaris (Muller)	62506	21082	26	O	
* Colurella adriatica (Carlin)	803	53	О	О	
* Filinia longiseta (Ehrenberg)	13375	46	О	O	
* Hexarthra mira (Schmarda)	15	O	О	O	
* Keratella quadrata (O.F. Muller)	74	52	О	О	
* Lecane luna (O.F. Muller)	25	O	O	O	
* Lecane sp.	29	О	О	O	
* Lepadella sp.	O	21	O	O	
* Monommata grandis (Tessin)	223	O	O	O	
* Monostyla bulla (Gosse)	895	21	1	O	
* <i>Monostyla closterocerca</i> (schmarda)	292	32	4	O	
* Monostyla lunaris (Ehernberg)	201	3	O	O	
* Polyarthra vulgaris (Carlin)	O	21	O	О	
* Synchaeta oblonga (Ehrenberg)	O	146	74	O	
* Synchaeta okai (Sudzuki)	О	303	480	24	
* Synchaeta pectinata (Ehrenberg)	O	18	72	95	
* Synchaeta trenula (O.F. Muller)	О	O	3	O	
* Synchaeta sp.	230	224	45	O	
Total	91403	26600	845	119	

Water types	\mathbf{L}	M	D	S
Recorded species	L	1	D	5
Copepoda				
<u>Calanoida</u>				
Acartia lause (Giesbrecht)	0	92	19	160
Acartia latisetosa (Krieczaguin)	0	0	9	21
Acartia danne (Giesbrecht)	0	0	3	0
Centropages koryeri (Giesbrecht)	0	5	13	23
Ctenocalanus vanus (Giesbrecht)	0	0	15	10
Eucalanus attenuatus (Dana)	0	0	0	8
Eucalanus crassus (Giesbrecht)	0	81	198	43
Paracalanus parvus (Claus)	0	65	118	137
Cyclopoida				
* Acanthocylops americanus (March)	296	0	0	0
Corycaeus lause (Dohl)	0	0	0	8
Corycaeus typicus (Kroyer)	0	0	0	35
Oithona nana (Giesbrecht)	0	1304	2328	261
Harpacticoida				
Euterpina acutifrons (Dana)	44	313	775	89
Microstella norvegica (Boeck)	0	32	10	27
Copepod nauplii	2424	4091	6641	1890
Copepodite stages	94	199	93	195
Total	2858	6182	10222	2907

CONCLUSIONS

- ⇒ Based on the salinity values, four water types could be observed in El-Mex Bay, namely; mixed land drainage (L), mixed water (M), diluted sea water (D) and Mediterranean water (S).
- The mixed land drainage water type (L) is slightly brackish and is characterized by very low salinity 3.295-6.779 ppt The highest zooplankton abundance (106.6×10³ ind.m⁻³) was found in this water type (L). Rotifera was the leading group at this water type, constituted 85.75% to the total zooplankton community.

CONCLUSIONS

- → Mediterranean water type "S" differed greatly from water type "L". It represents pure Mediterranean water free from the effects of land drainage. Its salinity ranged between 38.608 and 39.325 ppt. The lowest zooplankton abundance (5.9×103 ind.m-3) was recorded at this water type and characterized by a great number of marine forms, constituting 95.12% to the total number of the recorded species. Copepoda and their larval stages were the most dominant group in this high salinity water type, contributing about 50% to the total zooplankton community.
- ⇒ Water types (M) and (D) represent intermediate stages between water types (L) and (S). They are affected to a certain extent by land drainage water which is clearly observed in the water type (M) than in the water type (D)

Acknowledgement

- The authors wish to acknowledge CIESM staff and UNESCO/IOC for their support to attend the Workshop.
- They also wish to express their thanks to the Organizing committee of the WGZE/CIESM Workshop.

