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Current switching in a double-barrier resonant tunneling structure is studied in the regime where the current-
voltage characteristic exhibits intrinsic bistability, so that in a certain range of bias two different steady states
of current are possible. Near the upper boundary Vth of the bistable region the upper current state is metastable,
and because of the shot noise it eventually decays to the stable lower current state. We find the time of this
switching process in strip-shaped devices, with the width small compared to the length. As the bias V is tuned
away from the boundary value Vth of the bistable region, the mean switching time � increases exponentially.
We show that in long strips ln �� �Vth−V�5/4, whereas in short strips ln �� �Vth−V�3/2. The one-dimensional
geometry of the problem enables us to obtain analytically exact expressions for both the exponential and the
prefactor of �. Furthermore, we show that, depending on the parameters of the system, the switching can be
initiated either inside the strip, or at its ends.
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I. INTRODUCTION

In the last two decades with advances of miniaturization
techniques various resonant tunneling structures became the
subject of intensive research. It was experimentally observed
that the current-voltage characteristics of resonant tunneling
devices, such as double-barrier resonant tunneling
structures1–5 �DBRTS� and superlattices,6–9 exhibit intrinsic
bistabilities. Namely, it was shown that for each value of bias
in the bistable region of the I-V curve the current can take
two different values. A bistable I-V curve of a double-barrier
structure derived theoretically in Ref. 10 is depicted sche-
matically in Fig. 1. It is theoretically established11,12 that near
the boundary Vth of the bistable region �e.g., at point A� the
upper current state is metastable. In recent experiments8,9 the
switching from the metastable to stable current state was
studied in superlattices. In particular, the mean switching
time � was measured.

The problems of decay of metastable states were studied
theoretically in various fields, such as condensed matter
physics,13–19 quantum field theory,20–24 and chemical

kinetics.25,26 In the context of resonant tunneling structures it
was addressed in Refs. 11 and 12. A typical double-barrier
resonant tunneling structure consists of three semiconducting
layers of GaAs separated by two insulating layers of
GaAlAs. In the narrow middle layer of GaAs the electron
motion in the direction normal to the layers is quantized, so
that a quantum well is formed. In the bistable region �Fig. 1�
the two current states correspond to two different values of
electron density n in the well. The density n exhibits shot
noise fluctuations caused by random events of tunneling of
electrons in and out of the well. Thus it becomes possible for
the device to switch from one current state to the other. In
Refs. 11 and 12 it was shown that there are two regimes of
current switching. In the case of relatively small samples the
electrons spread uniformly over the well due to diffusion.
Then the switching occurs simultaneously in the entire area
of the sample, and it was found that the switching time � is
exponentially large, with ln �� �Vth−V�3/2. In larger samples
the density in the well is not uniform, and the switching
occurs through nucleation mechanism: It initiates in a small
region of the quantum well of the characteristic size r0,
which then spreads rapidly to the entire sample. The size of
the critical nucleus of the stable current state was found to be
bias dependent, r0� �Vth−V�−1/4. It has been shown that in
the large-sample regime ln �� �Vth−V�.

These results were obtained for samples whose two lateral
dimensions are comparable to each other. In this paper we
study the interesting case of the devices of strip geometry
with w�L, where w is the width and L is the length of the
strip. In these devices there is a special regime where the
applied bias is such that w�r0�L. Since the scale r0 gives
the characteristic size of the density fluctuations, in this case
the density does not vary across the strip, but only along it.
Confining the switching process to one dimension alters its
properties significantly. Similar to the two-dimensional case,
the switching time grows exponentially when bias is tuned
inside the bistable region. However, the exponent follows a
different dependence which is found in Sec. III.

FIG. 1. Current-voltage characteristic of the DBRTS. The

bistable region is present in the range of bias between Ṽth and Vth.
The inset shows a sketch of generic potential u�n� in the bistable
region. The points A and C on the I-V curve correspond to the local
and global minima of u�n�, respectively. The point B on the un-
stable current branch corresponds to the maximum of u.
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We show that in long strips the nucleation can occur ei-
ther inside or at the ends of the device. It turns out that both
nucleation regimes can be observed, but the respective decay
times are dramatically different. To compare them, one needs
to calculate the switching times with the prefactors. Unlike
the case of two-dimensional structures, in one dimension the
prefactors can be found exactly in the limit of long and nar-
row strip, Sec. IV.

The decay of the metastable current state is governed by
shot noise, and therefore, switching is a stochastic process.
We describe this process using the Fokker-Planck equation
approach. In Sec. IV A we introduce the Fokker-Planck
equation for tunneling and in-plane diffusion in DBRTS.
This equation is used to calculate the prefactor of the mean
switching time in strip-shaped �Secs. IV B and IV C� and
ring-shaped devices �Sec. IV D�. We summarize our results
and discuss their experimental implications in Sec. V.

II. STATIONARY DISTRIBUTION FUNCTION OF
ELECTRON DENSITY

It was shown in Ref. 12 that the stationary distribution
function of electron density n�r� in the quantum well takes
the form

P0�n� = e−F�n�, F�n� =� d2r�u�n� + ���n�2� . �1�

Here the integration is over the cross section of the well. In
the case of uniform density F�n� is determined by the effec-
tive potential u�n�, which describes the tunneling between
the well and the leads. The gradient term in the functional
F�n� accounts for the diffusion in the quantum well. The
constant � is positive and proportional to the in-plane
conductivity,12 ���. By suppressing gradients of n, this
term favors the states with uniform density.

The shape of the effective potential u�n� in the bistable
region is schematically shown in the inset of Fig. 1. It has the
local and global minima at points A and C, respectively. In
the case of uniform density n, these minima result in peaks
of the distribution function P0�n�, which correspond to the
upper and lower branches of the I-V curve. Point B on the
unstable current branch corresponds to a maximum of u.

In the vicinity of the threshold voltage Vth the effective
potential u�n� can be approximated by a cubic polynomial

u�n� = − ��n − nth� +
�

3
�n − nth�3, � = a�Vth − V� . �2�

Here � and a are positive constants. The voltage dependence
of � ensures that the local minimum of u, which corresponds
to the metastable state, disappears at the bistability threshold.
The threshold density nth is defined as the density at point
V=Vth, where the local minimum A of u�n� disappears by
merging with the maximum B.

If the system is in the local minimum of u�n�, it will
eventually decay to the global minimum. In the limit of large
conductivity � or small sample size the electron density n in
the quantum well is uniform, and the gradient term in F�n�,
Eq. �1�, can be omitted. In this case Eq. �1� is simplified: The

distribution function P0 is described by the only variable n
and takes the form P0�n�=e−Su�n�, where S is the area of the
sample. Initially, the system is in the local minimum of u�n�,
see point A in the inset of Fig. 1. In order to switch to the
global minimum the system has to pass through point B. As
it follows from the expression for P0�n�, the probability of
reaching point B is exponentially small, with the exponent
determined by the barrier height S�uB−uA�. The latter can be
easily found from the expansion �2�, and the mean switching
time �0 takes the form12

�0 = �0
* exp�4

3

Lw�3/2

�1/2 	 . �3�

Here �0
* is a preexponential factor, and we assumed that the

cross section of the sample has rectangular shape with the
width w and the length L.

Expression �3� is valid as long as L ,w�r0, where

r0 = � �2

��
	1/4

� �Vth − V�−1/4 �4�

has the meaning of the characteristic spatial scale of stochas-
tic fluctuations of electron density.12 The scale r0 can be
tuned by changing the bias V. If L ,w�r0 the switching oc-
curs according to the nucleation scenario. In this case the
critical switching density is first achieved in a small part of
the sample of size 
r0. After stochastic creation of the criti-
cal nucleus, it grows rapidly in size until it occupies the
entire sample.

In this paper we consider the case of a very narrow strip,
w�L. In the regime when the bias is such that w�r0, the
density may change only along the strip, and the problem
becomes one-dimensional.27

In the following it will be convenient to express the den-
sity n�x� in terms of a dimensionless function z�	� that van-
ishes at the minimum of u�n�, namely,

n�x� = nmin − 2��

�
z�x/r0� . �5�

Here the density at the minimum nmin=nth+�� /�. Substitut-
ing Eq. �5� into the functional F in Eq. �1�, we find

F = U1� d	� z�2

2
+

z2

2
−

z3

3
	 , �6�

where prime denotes differentiation with respect to the di-
mensionless coordinate 	=x /r0 along the strip. The charac-
teristic value of the functional F is given by the parameter

U1 =
8w���5/4

�3/4 . �7�

Its value depends on bias as U1� �Vth−V�5/4.

III. THE EXPONENT OF THE MEAN SWITCHING TIME
IN LONG STRIPS

In this section we consider the regime r0
L. In this case,
the density fluctuations along the strip result in a significant
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change of the mean switching time, and the result �3� is no
longer applicable. The one-dimensional nature of this prob-
lem allows us to obtain an explicit expression for the expo-
nent of the mean switching time �.

We begin by finding the minimum and the saddle points
of the functional F in Eq. �6�. They can be found from the
condition �F /�z=0, that is,

−
d2z

d	2 + z − z2 = 0. �8�

This equation should be solved with the boundary conditions
z��0�=z����=0 which account for the fact that there is no
current flowing through the ends of the strip. Here we have
introduced the dimensionless length of the strip �=L /r0.

Equation �8� can be interpreted as the equation of motion
of a classical particle with unit mass in the potential u�z�
=−z2 /2+z3 /3, see the inset of Fig. 2�a�. In this analogy the
coordinate 	 plays the role of time. There are two obvious
solutions, z�	�=0 and z�	�=1, corresponding to the particle
staying at the maximum and minimum of u�z�, respectively.
The minimum of F�z� is obviously given by z�	�=0, since
we defined z in such a way that z=0 at the minimum. The
other solution, z�	�=1, is a saddle point of F�z�.

Apart from the two trivial solutions, Eq. �8� may have
	-dependent solutions corresponding to a moving particle.
The boundary conditions z��0�=z����=0 require zero veloc-
ity at the moments 	=0 and 	=�. Thus the particle performs
oscillatory motion between turning points z�0� and z���. If
the particle starts at z�0�=c0 in the range 0c03/2, one
can easily find the other turning point c from the condition
u�c�=u�c0�. This equation has two solutions:

c± =
3 − 2c0 ± �− 12c0

2 + 12c0 + 9

4
.

The turning point z��� corresponds to the positive root c+.
The time � required for the particle to travel from one

turning point to the other is obviously one-half of the period
of oscillations. The period of small amplitude oscillations
when the particle starts close to the minimum of the potential
u�z�, i.e., at c0→1, equals 2�. The period monotonically
grows to infinity as c0→3/2 or 0. Therefore, if ��� there
are no 	-dependent solutions, and zs�	�=1. At ��� we have
an additional saddle point zs�	� corresponding to a particle
moving from zs�0�=c0 to zs���=c+.

Equation �8� can be solved analytically in terms of the
elliptic integrals. In particular, the inverse function of zs�	�
has the form

	�zs� =
�6

�c0 − c−

F�arcsin� c0 − zs

c0 − c+
,�c0 − c+

c0 − c−
	 , �9�

where F�� ,k� is the elliptic integral of the first kind.28 Using
Eq. �9� the length of the strip � can be expressed in terms of
c0 as

� =
�6

�c0 − c−

F��

2
,�c0 − c+

c0 − c−
	 . �10�

Solving Eq. �10� with respect to c0 one can obtain the depen-
dence c0���. Substituting it into Eq. �9� and inverting 	�zs�
one obtains the saddle point zs�	� for a given �. The saddle-
point solutions zs�	� for several values of � are shown in Fig.
2�a�.

For a strip of infinite length the boundary conditions take
the form c0=zs�0�=3/2 and c+=zs���=0. Then expression
�9� can be significantly simplified and yields

zs�	� =
3

2 cosh2�	/2�
. �11�

This solution can be easily verified by substitution into Eq.
�8�.

The mean switching time � is given by

� = �*eF�zs�, �12�

where �* is a preexponential factor. Using the expression for
F�z�, Eq. �6�, we find

F�zs� = U1I���, I��� = �
0

�

d	� zs�
2

2
+

zs
2

2
−

zs
3

3
	 . �13�

At ���, the only saddle point is zs=1, and therefore,
I���=� /6. At ��� the saddle point solution zs�	� given by
Eq. �9� corresponds to a smaller value of I. In particular, at
�→� the solution �11� gives I=3/5. In the intermediate
region the integral I��� can be evaluated analytically,

FIG. 2. �a� Saddle point solution zs�	� for strips of length �
=�, 3.2, 3.5, 4, 5, and �. The allowed motion of a classical particle
in the potential u�z�=−z2 /2+z3 /3 is shown in the inset. �b� The
dependence I��� defined by Eq. �13�. At ��� it is linear: I���
=� /6; while for ��� it is described by Eq. �14�. At �→� the
saddle point zs�	� is given by Eq. �11�, and I=3/5.
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I =
�

60
�4c+

3 − 6�c+
2 + c+ + c0 − c−� + 9�

+
�6

5
�c0 − c−E��c0 − c+

c0 − c−
	 . �14�

Here E�k� is the complete elliptic integral of the second
kind.28 The dependence I��� is plotted in Fig. 2�b�.

Note that apart from the saddle point described by Eq. �9�,
for ��2� there are additional 	-dependent saddle points.
For example, there is a 	-dependent solution corresponding
to a particle moving from zs�0�=c0 to zs���=c+ and back to
c0. This saddle point is responsible for the processes of
switching inside the strip, see Sec. IV C. At ��3� another
saddle point appears which corresponds to a particle moving
from c0 to c+, returning to c0, and back to c+. In general, for
� between �m and ��m+1� there exist m different
	-dependent solutions. However, the additional saddle points
give larger values of F�zs� and thus do not affect the switch-
ing time.

IV. PREFACTOR OF THE SWITCHING TIME

The exponential dependence of the mean switching time
�12� was obtained from the stationary distribution function
P0�n� of electron density. However, to calculate the prefactor
�*, understanding of the time evolution of the distribution
function P�n�x� , t� is also required. When electrons tunnel in
or out of the well, the density n�x� changes in very small
increments. Thus the dynamics of P�n�x� , t� is described by a
Fokker-Planck equation.12 If the strip is very short, the den-
sity in the quantum well is uniform, and the system dynamics
is described by a single variable n. In this case the Fokker-
Planck equation for P�n , t� essentially coincides with the one
for a small two-dimensional sample. Then by using conven-
tional techniques29 the prefactor of the switching time can be
found12 as

�0
* =

2�

b���
. �15�

This result is correct as long as ��1.
In longer strips the density fluctuates, and therefore, the

Fokker-Planck equation with one variable n cannot ad-
equately describe the evolution of the distribution function
P. In this case P is a functional of n�x�, and the Fokker-
Planck equation is multidimensional. Then to study the de-
cay of metastable current states one should use a more so-
phisticated method.

A. Fokker-Planck approach to current switching in DBRTS

To find the prefactor of the mean switching time for the
system described by the multidimensional Fokker-Planck
equation, we use the first passage time technique.30,31This
method is applied to the Fokker-Planck equation in the form

�P�x,t�
�t

= LP�x,t� , �16a�

L = − �
i

�

�xi
Ki�x� + �

i,j

�2

�xi�xj
Dij�x� , �16b�

where the matrix Dij represents the generic diffusion coeffi-
cient, and K is the drift field. Assuming that the system has a
metastable state, one can consider its domain of attraction �
with the domain boundary �� being the separatrix of the
field K. For the stochastic process described by Eq. �16�, the
mean time of the first passage out of the domain � has been
found in Refs. 30 and 31. The mean switching time is ob-
tained as doubled mean first-passage time and takes the
form,31

� = −

2�
�

ddxP0�x�

�i �
��

dSi� j
Dij�x�P0�x�

�f�x�
�xj

. �17�

Here P0 is the stationary solution of Eq. �16�. The form
function f�x� is defined as a stationary solution of the adjoint
equation,

L†f�x,t� = �
j
�Kj�x� + �

i

Dij�x�
�

�xi
	 �f�x�

�xj
= 0. �18�

It satisfies the boundary conditions f�x�=1 inside the domain
� and f�x�=0 at the boundary ��.

The Fokker-Planck equation for the case of nonuniform
electron density n�r� in the well was obtained in Ref. 12. It
takes the form

�P�n,t�
�t

=
b

2
� dr

�

�n
�u��n� − 2��2n +

�

�n
	P�n,t� .

�19�

It is easy to check that the stationary solution of this equation
is given by Eq. �1�.

Close to the threshold u�n� can be approximated by the
expansion �2�, and the Fokker-Planck equation �19� can be
represented in terms of dimensionless variable z�	�, Eq. �5�,
as

�P�z,��
��

=� d	
�

�z
�−

d2z

d	2 + z − z2 +
1

U1

�

�z
	P�z,�� .

�20�

where �=2�t /�0
* is the dimensionless time. The stationary

solution P0�z� of this equation is e−F with F�z� given by Eq.
�6�. Equation �20� has an infinite number of variables, since
the density z�	� is different at every point. From now on we
can consider a purely mathematical problem of decay of a
metastable state for the system governed by dimensionless
equation �20�. This equation is rather generic and we expect
it to describe other one-dimensional problems of decay of
metastable states.

B. Nucleation at an end of a strip

To find the prefactor of the mean switching time �12� we
use expression �17�. We evaluate both integrals in Eq. �17� in
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Gaussian approximation. The integral in the numerator of
Eq. �17� is dominated by the minimum of F�z�. To find the
expression for F in the vicinity of its minimum, it is conve-
nient to use Fourier expansion

z�	� =
x0

��
+ �

i=1

�

xi�i�	�, �i�	� =� 2

�
cos��i

�
		 .

�21�

Substituting this expansion into Eq. �6�, we find that up to
quadratic in xi terms,

F�x� =
U1

2 �
i=0

�

�ixi
2, �22�

where we defined �i��i /��2+1. Using this expression for
F, one can easily evaluate the integral in the numerator of
Eq. �17�,

�
−�

�

�
i

dxie
−F�x� = �

i

� 2�

U1�i
. �23�

The integral in the denominator of Eq. �17� is dominated
by the saddle point zs�	� of the functional F�z�. To find the
expression for F in the vicinity of the saddle point it is con-
venient to expand z�	� near zs�	� as

z�	� = zs�	� + �
i=0

�

x̃i�̃i�	� . �24�

Here �̃i�	� are the normalized solutions of the eigenvalue
problem

�−
d2

d	2 − 2zs�	� + 1	�̃i�	� = �̃i�̃i�	� , �25�

with the boundary conditions

�̃i��0� = 0, �̃i���� = 0. �26�

Substituting Eq. �24� into F�z� given by Eq. �6�, and ex-
panding near x̃=0 up to the second order in x̃i, we find

F�x̃� = U1I��� +
U1

2 �
i=0

�

�̃ix̃i
2, �27�

where the first term is given by Eq. �13�.
Expression �27� implies that it is convenient to calculate

the integral in the denominator of Eq. �17� in terms of vari-
ables x̃i. Since the expansion coefficients x̃i are related to xi
by orthogonal transformation, the integrals over xi in the de-
nominator of Eq. �17� can be replaced by those over x̃i.

To calculate the integral in the denominator of Eq. �17�
we also need to find Dij and �f /�x̃j. They can be obtained
from the x̃-representation of the Fokker-Planck equation
�20�. The adjoint to the operator L of Eq. �20� in the
x̃-representation can be written as

L† = �
i=0

� �− �̃ix̃i
�

�x̃i

+
1

U1

�2

�x̃i
2	 . �28�

Here the terms of higher orders in x̃i were neglected.
In the denominator of Eq. �17� the boundary �� is or-

thogonal to the unstable direction x̃0 on the saddle. There-
fore, the sum over i reduces to the only term i=0. Using the
definition of Dij we find from Eq. �28� that Dij =U1

−1�ij. The
sum over j then reduces to a single term j=0, and we need to
find only the derivative �f /�x̃0, which is given by Eq. �18� in
x̃-representation. The latter equation takes the form

�− �̃0x̃0 +
1

U1

�

�x̃0
	 �f

�x̃0

= 0. �29�

Since the saddle point is unstable in the x̃0-direction, the

eigenvalue �̃0 is negative. Thus Eq. �29� can be solved with
the boundary conditions f =1 at x̃0→−� and f =0 at the do-
main boundary x̃0=0 required by the definition of f�x̃�, cf.

Eq. �18�. As a result, we obtain �f /�x̃0=−�2��̃0�U1 /��1/2 at
the saddle point.

Substituting Eqs. �23� and �27� into Eq. �17� we express
the switching time in a strip-shaped device �s as

�s = �s
*eU1I���, �s

* =
�0

*

���̃0�
� �̃1

�1
�s, �30�

where

�s = �
i=2

� � �̃i

�i
. �31�

Thus the evaluation of the prefactor of the switching time
reduces to solving the eigenvalue problem �25�,�26�.

1. Very long strip

We first consider the limit of a very long strip, ��1.
Then the saddle point zs�	� is given by Eq. �11�, so Eq. �25�
takes the form

�−
d2

d	2 −
3

cosh2�	/2�
+ 1	�̃i�	� = �̃i�̃i�	� . �32�

The eigenvalue problem �32� with boundary conditions �26�
is solved analytically in the Appendix. In particular, we find
that the discrete spectrum consists of two bound states with

eigenvalues �̃0=−5/4 and �̃1=3/4. At finite � the continu-
ous spectrum is discretized according to

�̃i = 1 + ��i

�
	2�1 −

���i/��
�i

	2

, �33�

where the scattering phase shift ��q� has the form

��q� = �
n=1

3

arctan
n

2q
. �34�

To evaluate �s it is convenient to take the logarithm of
Eq. �31�, thereby converting the infinite product to a sum. In
the limit �→�, we find
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ln �s = −
1

�
�

0

� q��q�
1 + q2dq =

1

2
ln

2

15
. �35�

Using this result for �s and the fact that in a long strip �1
→1, we find the mean time of switching in a very long strip

�e =
�2

5
�0

* exp�3U1

5
	 . �36�

It is important to note that the above calculation accounts
for only one of two equivalent saddle points in a strip-shaped
device. Indeed, the saddle point fluctuation �11� is positioned
near the left end of the sample, 	=0. Alternatively, the den-
sity fluctuation could occur at the right end of the device.
This possibility is formally described by considering the
saddle point zs��−	�. Since the two types of processes are
equivalent, the total rate of switching at both ends of the
device is 2 /�e.

2. Strip of arbitrary length

Another regime in which analytical expression for �s can
be obtained is that of ���. In this case the saddle-point
density is uniform, zs�	�=1. Substituting it into Eq. �25� we

find �̃i=�i−2. Then expressions �30� and �31� simplify sig-
nificantly, and the prefactor of �s becomes

�s
* = �0

*�
i=1

� ���i�2 − �2

��i�2 + �2 .

Evaluating the infinite product we obtain

�s
* = �0

*� sin �

sinh �
. �37�

This result generalizes the formula �3� for the switching time
in short devices, ��1, to the case of any ���.

For a strip of finite length ���, the saddle point density
zs�	� is given by Eqs. �9� and �10�. In this case the eigenval-

ues �̃i are obtained by solving numerically the eigenvalue
problem �25� with boundary conditions �26� for a given �.
Substituting them into expressions �30� and �31� we find the
switching time. The result for the prefactor of �s as a func-
tion of � is shown in Fig. 3.

Let us discuss the behavior of the prefactor at �=�. At
��� the functional F�z� has only the uniform saddle point
zs�	�=1, whereas at ��� there are two saddle points, the
uniform one and the 	-dependent one, see Fig. 2�a�. These
two saddle points merge at �=�. Formally, this gives rise to

the fact that �̃1 vanishes at �=�, and therefore, the prefactor
�s

*=0. We believe that the prefactor remains nonzero at �
=�; however, the evaluation of the prefactor in this case
requires a more careful treatment than the Gaussian approxi-
mation used in this paper. We leave this problem for future
work.

It is worth mentioning that the nonmonotonic behavior of
the prefactor, see Fig. 3, does not result in nonmonotonic
dependence of the switching time on sample length �. The
reason is that the prefactor �s

* is multiplied by the very large
exponential �see Eqs. �12� and �13� and Fig. 2�b�� which

monotonically grows with �. Therefore, expression �12�
with the prefactor �s

* and exponent �13� is monotonic every-
where except for the very narrow region �−3/U1
���.
As discussed in the previous paragraph, a more accurate
evaluation of the prefactor is required to evaluate the prefac-
tor near �=�, and we expect that it would restore the mono-
tonicity of � as the function of �.

C. Nucleation inside long strips and in rings of large
circumference

Apart from the ends of a strip, nucleation can occur inside
the sample. Such processes are most important in ring-
shaped samples, which have no ends. Thus to study interior
switching we model the sample by a strip with periodic
boundary conditions. In the following it will be convenient
to consider a strip of length 2� with boundary conditions
z�−��=z���, z��−��=z����.

To obtain the switching time we first need to find the
saddle point of F�z�. In the mechanical analogy used in Sec.
III �see also the inset of Fig. 2�a�� the periodic boundary
conditions for the saddle-point equation correspond to a full
period of oscillations of the particle, rather than half period
as in the case of nucleation at the ends in Sec. IV B. One
such solution is given by zs��	�� on the interval −��	��,
where zs�	� is defined by Eqs. �9� and �10�, see also Fig. 2�a�.
�Additional solutions are obtained by shifts zs�	�→zs�	
+�	�.� To find the exponent of the switching time, we need
to calculate F�zs� using Eq. �6�. Since the saddle-point solu-
tion zs��	�� is a symmetric function on the interval −��	
��, the integral in F�zs� is doubled compared to that of end
switching. Thus the time of the switching inside the strip
takes the form

�r = �r
*e2I���U1, �38�

cf. Eq. �30�.
The calculation of the prefactor �r

* is similar to the one for
the switching at an end of the strip �Sec. IV B�. As in Sec.

FIG. 3. Prefactor �s
* of the mean switching time in units �0

* vs
the dimensionless length of the strip �. At ��� the prefactor is
given by Eq. �37�, whereas above � it is calculated numerically. At
�→� the prefactor approaches �2/5 in agreement with Eq. �36�.
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IV B it is convenient to evaluate the denominator of Eq. �17�
by expanding z�	�, Eq. �24�, where �̃i�	� are again the eigen-
functions of Eq. �32�, but now with periodic boundary con-
ditions

�̃i�− �� = �̃i���, �̃i��− �� = �̃i���� . �39�

The eigenvalue problem �32�,�39� is solved in the Appendix.
The discrete spectrum consists of one negative eigenvalue

�̃0=−5/4, one zero eigenvalue �̃1=0, and �̃2=3/4; all other
eigenvalues are positive and belong to the quasicontinuous

spectrum, �̃i�1 for i�2. In the denominator of Eq. �17� the
integration over the amplitudes x̃2 , x̃3 , x̃4 , . . . of the modes
with positive eigenvalues is easily performed in Gaussian
approximation. The integration over the amplitude x̃1 of the
zero mode is less trivial.

Let us discuss the physical origin of the zero mode. The
functional F�z� is translationally invariant on a ring, and
therefore, F�zs� does not change if the saddle-point solution
is shifted, zs�	�→zs�	+�	�. In other words, the deformation
�zs=�	zs��	� does not affect F. On the other hand, according

to Eqs. �24� and �27� the deformation �zs= x̃1�̃1�	� of the

saddle-point solution does not change F either, because �̃1
=0. Since the zero mode is unique, we conclude

�	zs��	� = x̃1�̃1�	� . �40�

Then it follows that32 zs��	�=c1�̃1�	�. The constant c1 can be
found from the normalization condition for the eigenfunc-
tions �̃i�	�,

c1 =�� �zs��	��2d	 . �41�

Using Eq. �40� and the relation zs��	�=c1�̃1�	�, the integral
over the amplitude x̃1 of the zero mode takes the form

� dx̃1 = c1� d��	� = 2c1� . �42�

Expressions for �f /�x̃0 and Dij were obtained in Sec. IV
independently of the exact form of the saddle-point density
and are, therefore, still applicable. Substituting expression
�23� for the numerator of Eq. �17� and using Eq. �42� in the
denominator, we find

�r
* =

���0
*

�2��̃0��1c1��U1

� �̃2

�2
�r. �43�

Here the infinite product �r is similar to �s evaluated in Sec.

IV B, Eq. �31�, but with the eigenvalues �i and �̃i calculated
with periodic boundary conditions �39�. It is shown in the
Appendix that at ��1 the quasicontinuous spectrum of the
eigenvalue problem �32�,�39� is still given by Eq. �33�, but
becomes doubly degenerate. Therefore, in the limit of an
infinite strip the product �r can be found as

�r = �s
2 = 2

15 , �44�

cf. Eq. �35�. Also, substituting expression �11� for zs�	� into
Eq. �41� we find c1=�6/5 at ��1. Upon substitution of
these results into Eq. �43� the mean time of switching inside
a long strip takes the form,

�i =
��

15�

�0
*

�U1

exp�6U1

5
	 , �45�

where U1 and �0
* are given, respectively, by Eqs. �7� and �15�,

and �=L /2r0. To obtain the exponent we used the fact that
the integral I=3/5 at ��1.

In the case of a device of strip geometry, switching can be
initiated both at the ends and inside the sample. The expo-
nent of �i is a factor of 2 larger than the exponent of �e �see
Eq. �36��, which makes the switching at the ends generally
more favorable. On the other hand, the rate 1 /�i is propor-
tional to the strip length L. Therefore, in very long strips
interior switching denominates.

D. Nucleation in rings of arbitrary circumference

Expression �45� was obtained in the limit L�r0. In this
section we discuss the case of a ring of finite circumference
L
r0. We will consider separately the cases L�2�r0 and
L�2�r0. We will use the expression �38� for the exponential
of the switching time, which was obtained for an arbitrary
circumference of the ring.

Let us start with the case L�2�r0. In dimensionless units
it corresponds to the problem of a ring with the circumfer-
ence 2��2�. Similarly to the case of a strip of length �
��, see Sec. IV B 2, the saddle-point density is uniform,

zs�	�=1, and from Eq. �25� we obtain �̃i=�i−2. Analogously
to the result �30�,�31� for the strip geometry the prefactor
takes the form

�r
* =

�0
*

���̃0�
�
i=1

� � �̃i

�i
. �46�

Since the boundary conditions for the ring are periodic, Eq.
�25� has two types of solutions, cos��i	 /�� and sin��i	 /��.
The two solutions have the same eigenvalues for any i�0,

and thus all eigenvalues except for �̃0 are doubly degenerate.
Repeating calculations similar to those for Eq. �37�, we find

�i
* = �0

* sin �

sinh �
. �47�

This expression is similar to the result �37� for the strip of
length ���. The absence of the square root in the right-
hand side of Eq. �47� is due to the double degeneracy of the
eigenvalues.

At ��� one needs to solve the eigenvalue problem �25�
with nonuniform saddle point zs�	�, Eqs. �9� and �10�, which
can be done numerically. Then one substitutes the eigenval-

ues �̃i into Eq. �43� to find the prefactor �r
*. As we found in

the Appendix, in the limit �→� the three lowest eigenval-

ues �̃i are nondegenerate whereas the rest of them are doubly
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degenerate, because the potential −2zs�	� is then reflection-
less. Unexpectedly, our numerical calculation shows that the
same property holds for any ���. Then similar to Eq. �44�
we find �r=�s

2, where �s defined by Eq. �31� was computed
in Sec. IV B 2. The prefactor �i

* above �=� is plotted as a
function of � in Fig. 4. One can see in Fig. 4 that at �
→� the prefactor approaches 0 as 1/� in agreement with
Eq. �45�.

Contrary to the case of a strip, see Fig. 3, the prefactor �r
*

does not vanish as � approaches � from above. This is due

to the fact that at �→� small �̃2 in the numerator of Eq.
�43� is compensated by small c1 in the denominator. To see
this let us consider the saddle point solution close to �=�.
At �=�+� with ��1 this saddle point can be expanded up
to its second harmonic as

zs = 1 + �0 + �1 cos��	/�� + �2 cos�2�	/�� , �48�

where �0=−�1
2 /2, �2=�1

2 /6, and �=5��1
2 /12. Then from Eq.

�41� we obtain c1=���1, and calculating �̃2 up to second

order in �1 we find �̃2=5�1
2 /3. As a result the ratio ��̃2 /c1 in

Eq. �43� remains finite, and the prefactor at �→�+ takes the
form

�r
* =

�5

2�6 sinh �

�0
*

�U1

. �49�

Similar to the case of a finite strip, the singular behavior
of �r

* near �=� is an artifact of Gaussian approximation. We
expect that a more careful treatment will show that the pref-
actor remains nonzero and continuous at �=�.

V. DISCUSSION

We have studied the mean time � of switching from the
metastable to the stable state in one-dimensional double-
barrier resonant tunneling structures. We calculated both the

exponentials and prefactors of � for the strip and ring geom-
etries of the sample. In this section we discuss the behavior
of the mean switching time in a strip-shaped sample depend-
ing on the distance from the threshold and the structural
parameters of DBRTS.

In the very vicinity of the threshold the exponent of the
mean switching time is of order unity and the metastable
state decays very rapidly. As the voltage V is tuned further
inside the bistable region, the decay time becomes exponen-
tially long. Our results are applicable in this regime. Thus the
exponents in the expressions for the switching time in the
regime of short strip, Eq. �3�, and in the regime of long strip,
Eqs. �36� and �45�, must be much greater than unity. To
check whether these conditions are satisfied, it is convenient
to introduce a bias-independent characteristic length

d  r0�3U1

5
	1/5

= �24

5

w�3

�2 	1/5

�50�

chosen in such a way that the exponent in Eq. �36� takes the
simple form �d /r0�5.

The exponent of the mean switching time in the short-
strip regime �Eq. �3�� can be expressed in terms of d and r0
as

4Lw�3/2

3�1/2 =
5

18

L

r0
� d

r0
	5

. �51�

This exponent is much greater than unity at r0� �Ld5�1/6.
Since the regime of short strip is defined by r0�L, it is
present only if L�d. In this case, starting at voltage differ-
ence Vth−V corresponding to r0
�Ld5�1/6, there is a region
of 3/2-power law dependence of ln � corresponding to the
short-strip regime. Then, as Vth−V reaches the value corre-
sponding to r0
L, follows the region of 5/4-dependence of
ln � for the long-strip regime, see Fig. 5�a�.

In the latter case the switching can be initiated either in-
side or at each of the two ends of the sample. Summing the
rates of these processes we find

1

�
=

2

�e
+

1

�i
. �52�

To determine the type of 5 /4-dependence that can be ob-
served in the regime of long strip, r0�L, one should com-
pare the rates of switching inside and at the ends of the strip.
Using Eqs. �36� and �45�, the ratio of the rates �e

−1 and �i
−1

can be expressed as

�e
−1

�i
−1 


d

L
exp�� d

r0
	5

−
7

2
ln

d

r0
� . �53�

Using this expression we conclude that at L�d the switching
always initiates at the ends rather than inside the strip. Thus
the region of 5/4-dependence is described by Eq. �36�.

At L�d there is no region corresponding to the regime of
a short strip. One can only observe 5/4-power law depen-
dence of ln � corresponding to the long-strip regime. Analyz-
ing Eq. �53� one can see that at L�d there are two distinct
regions of 5 /4-power law dependences. At r0
d and very
large L the switching initiates inside the strip. At very small

FIG. 4. Prefactor �r
* of the mean switching time in units �0

* /�U1

vs the dimensionless circumference of the ring 2� above �=�. The
dotted line shows the asymptote �� /15� of �r

* at �→�, see Eq.
�45�.
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r0 the exponential in Eq. �53� becomes very large, and there-
fore, the switching takes place at the ends. The voltage V1

*, at
which the crossover between these two regions occurs, is
given by the condition �i

−1=�e
−1 applied to Eq. �53�,

V1
* � Vth −

�2

�ad4�ln
L

d
	4/5

. �54�

Thus we conclude that in the case of L�d, starting at V
corresponding to r0
d, one first observes 5/4-power law
dependence of ln � on voltage corresponding to the switching
inside the strip, then at V below V1

* follows the region of
5/4-dependence corresponding to the switching at the ends,
see Fig. 5�b�.
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APPENDIX: EIGENFUNCTIONS AND EIGENVALUES OF
EQ. (32)

In this Appendix we find the eigenfunctions of discrete
spectrum and the phase shifts of continuous spectrum of Eq.

�32�, as well as the respective eigenvalues �̃i. In order to
solve Eq. �32� one needs to diagonalize the Hamiltonian

Hm = −
d2

d	2 −
m�m + 1�

4 cosh2�	/2�
, �A1�

with m=3.

The eigenstates of the Hamiltonian �A1� can be obtained
using an algebraic technique called supersymmetric quantum
mechanics, see Refs. 33–35. We begin by introducing the
raising and lowering operators

a± = �
d

d	
+

m

2
tanh

	

2
. �A2�

Hamiltonians Hm and Hm−1 can be expressed in terms of a+

and a− as

Hm = a+a− −
m2

4
, �A3a�

Hm−1 = a−a+ −
m2

4
. �A3b�

Let us consider the function ��	�=1/coshm�	 /2�. It sat-
isfies the condition a−��	�=0, and therefore, � is an eigen-
function of the Hamiltonian Hm with eigenvalue �=−m2 /4.
Since ��	� has no zeros, it describes the ground state of Hm.
Thus we find the ground-state wave function and energy

�0
�m��	� =���m +

1

2
	

2����m�
1

coshm�	/2�
, �0

�m� = −
m2

4
.

�A4�

Applying the raising operator a+ to Hm−1�i
�m−1�

=�i
�m−1��i

�m−1� we find that a+�i
�m−1� are eigenfunctions of

Hamiltonian Hm with eigenvalues �i
�m−1�. Upon appropriate

normalization we obtain

�i
�m��	� =

1

��i−1
�m−1� + m2/4

a+�i−1
�m−1�, �i

�m� = �i−1
�m−1�.

�A5�

Conversely, by acting with a− on Hm�i
�m�=�i

�m��i
�m� with i

�0, one finds that a−�i
�m� are eigenfunctions of Hamiltonian

Hm−1 with eigenvalues �i
�m�. Therefore, we conclude that in

addition to its ground-state eigenvalue �0
�m� given by �A4�,

the spectrum of Hm consists of all the eigenvalues of Hm−1.
Using Eqs. �A4� and �A5� one can derive the eigenfunc-

tions and eigenvalues of Hm from those of Hm−1 and vice
versa. To illustrate this, let us consider the Hamiltonian H0
=−�d /d	�2. Its eigenfunctions are e±iq	, and the spectrum is
given by �q

�0�=q2, where q is an arbitrary real wave number.
Then using Eq. �A5� we can find the eigenstates of Hamil-
tonian H1. The continuous spectrum is obviously �q

�0�, and its
normalized eigenfunctions are

�q
�1��	� =

1
�2��q2 + 1/4�

�−
d

d	
+

1

2
tanh

	

2
	eiq	. �A6�

The ground-state wave function and eigenvalue of H1 are
given by Eq. �A4� with m=1.

Applying the same technique two more times we find the
bound states of H3,

FIG. 5. �a� Logarithm of the mean switching time � vs voltage at
L�d. Near the threshold there is a region of 3/2-power law depen-
dence of ln � �regime of short strip�, then follows the region of
5/4-dependence corresponding to the switching at the ends in the
regime of long strip. �b� Logarithm of the switching time � vs
voltage at L�d. Close to the threshold one first observes
5/4-power law behavior corresponding to the interior switching,
then at voltage below V1

* follows the region of 5/4-dependence
corresponding to switching at the ends.
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�0
�3��	� =

�15

4�2

1

cosh3�	/2�
, �0

�3� = −
9

4
, �A7�

�1
�3��	� =

�15

2�2

sinh�	/2�
cosh3�	/2�

, �1
�3� = − 1, �A8�

�2
�3��	� =

�3

�2 cosh
	

2

−
5�3

4�2 cosh3 	

2

, �2
�3� = −

1

4
.

�A9�

The eigenfunctions of continuous spectrum of H3 are given
by

�q
�3��	� =

1
�2��q2 + 9/4��q2 + 1��q2 + 1/4�

�−
d

d	
+

3

2
tanh

	

2
	

��−
d

d	
+ tanh

	

2
	�−

d

d	
+

1

2
tanh

	

2
	eiq	. �A10�

Noting that H3 coincides up to a constant with the Hamil-
tonian of Eq. �32�, we conclude that �̃i�	�=�i

�3��	�. There-
fore, the discrete spectrum of Eq. �32� has three eigenvalues,

�̃0 = − 5
4 , �̃1 = 0, �̃2 = 3

4 . �A11�

The continuous spectrum of Eq. �32� is �̃q=1+q2. The
asymptotics of its eigenfunctions �A10� can be expressed in
terms of the scattering phase shifts ��q� in the following way

�̃q�	� →
i sgn q
�2�

eiq	e±i��q�, 	 → ± � . �A12�

Here the absence of the reflected wave illustrates the fact that
the Hamiltonian Hm describes scattering in reflectionless
potential.36 Comparing Eqs. �A10� and �A12� one can see
that the phase shifts are given by Eq. �34�.

For the evaluation of the prefactor of the switching time
we need to study a finite system. In Sec. IV C we consider
the system of length 2� with periodic boundary conditions
�39�. At ��1 the eigenfunctions of discrete spectrum of Eq.
�32� with the boundary conditions �39� are given by Eq.
�A11�. The quasicontinuous spectrum of a large finite system
can be obtained by applying periodic boundary conditions
�39� to the eigenfunctions �̃q in the asymptotic form �A12�.
As a result we find the wave number quantization

ql =
�l − ��ql�

�
, �A13�

where l is an integer. Because the phase shift �34� is an odd
function of q, it follows from Eq. �A13� that q−l=−ql. There-
fore, the eigenfunctions with wave numbers ql and q−l have

the same eigenvalue �̃=1+ql
2. Thus the quasicontinuous

spectrum of Eq. �32� with periodic boundary conditions �39�
is doubly degenerate. The two real solutions with the same

�̃q can be represented as even and odd combinations of �̃q

and �̃−q.
Transcendental equation �A13� can be solved using itera-

tion procedure. At ��1 it is sufficient to perform only the

first iteration. Substituting the result into �̃i=1+qi
2 we obtain

Eq. �33�.
In Sec. IV B we consider the system of length � with the

boundary conditions �26�. All solutions of this problem can
be obtained from the solutions of the problem with the
boundary conditions �39�. Indeed, any even solution of the
eigenvalue problem �32� with the boundary conditions �39�
satisfies the conditions �26�. Therefore, from Eqs. �A7�–�A9�
and �A11� one concludes that the discrete spectrum consists
of two eigenvalues −5/4 and 3/4. Because only even com-
binations �̃q�	�+ �̃q�−	� �̃q�	�− �̃−q�	� satisfy the condi-
tions �26�, the quasicontinuous spectrum is nondegenerate
and given by Eq. �33�.
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