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Current-voltage characteristics of resonant-tunneling structures often exhibit intrinsic bistabilities. In the
bistable region of theI-V curve one of the two current states is metastable. The system switches from the
metastable state to the stable one at a random moment in time. The mean switching timet depends exponen-
tially on the bias measured from the boundary of the bistable regionVth. We find full expressions fort
sincluding prefactorsd as functions of bias, sample geometry, and in-plane conductivity. Our results take
universal form upon appropriate renormalization of the threshold voltageVth. We also show that in large
samples the switching initiates inside, at the edge, or at a corner of the sample depending on the parameters of
the system.
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I. INTRODUCTION

Recent advances in experimental techniques have made
possible the study of fast stochastic processes such as dy-
namic current switching in resonant tunneling structures. The
electron transport in these devices has attracted a lot of at-
tention since the pioneering work of Tsu and Esaki.1 The
interest was further stimulated by the discovery of the phe-
nomenon of intrinsic bistability2–6 in double-barrier resonant
tunneling structuressDBRTSd. Other resonant tunneling
structures, such as superlattices, are also known to show
bistable behavior.7–10Recent experiments8–10established that
in the bistable region one of the current states is metastable,
and the switching to the stable state was studied. Both the
mean switching time and its distribution function were
measured.10

The existence of intrinsic bistability is well understood
theoretically.11–14 It was shown14 that in a certain range of

bias,Ṽth,V,Vth, for every value ofV the current can take
two different values, see Fig. 1. If one increases the bias

starting from any value belowṼth, the current follows the
upper branch of theI-V curve shown in Fig. 1 untilV reaches
Vth, where the current switches to the lower branch. On the
other hand, if one decreases the bias from the values greater
than Vth, the current follows the lower branch and then

switches to the upper branch atṼth.
The bistability can be understood by considering the po-

tential profile of the DBRTS schematically shown in Fig. 2.
If the levelE0 in the quantum well is below the bottom of the
conduction band of the left lead, tunneling into the well is
not possible, and the current through the heterostructure is
zero. In this case the charge in the wellQ=0. However, if a
nonzero chargeQ is added to the well, the levelE0 rises due
to the charging effects and may become higher than the bot-
tom of the conduction band of the left lead. Then, another
steady state of current is possible. In this state the current
into the well from the left lead is compensated by the current
out of the well through the right barrier. Thus, it is possible
to have two different current states at the same bias.sSee,
e.g., pointsM andS on theI-V curve, Fig. 1.d

The electric current in the device fluctuates, because the
electrons tunnel in and out of the well at random moments in
time. The resulting shot noise of current through the hetero-
structure gives rise to the metastability of some current
states. The two solid lines in Fig. 1 correspond to the most
probable values of current at a given bias. These two
branches are stable, i.e., anysmallfluctuation of current near
a solid line will decay with time, and the current will return

to its value at the solid line. The dashed line betweenṼth and
Vth corresponds to the unstable state. Here any deviation
from the dashed line which raises or lowers the current will
switch the system to the upper or lower stable current state,
respectively.

Qualitative understanding of the metastability can be
achieved by considering the system at a bias nearVth, e.g.,
point M on the upper branch of theI-V curve, Fig. 1. Then,
as one can see from Fig. 1, a relatively small fluctuation can
shift the current below the dashed line corresponding to the
unstable state. If that happens, the system switches to the
lower branch. The opposite process is much less probable,
since the distance from the lower branch to the dashed line is
much larger than that from the upper branch. Therefore, the
lower branch is stable, and the system remains in that state.

The dependence of the mean switching timet on the bias
was addressed theoretically in Ref. 15. It was shown that
near the threshold voltageVth the logarithm oft behaves as

FIG. 1. The I-V curve of the DBRTS. The bistable region is

present in the range of bias betweenṼth andVth. The bold dashed
line corresponds to the unstable current state.
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ln t ~ HsVth − Vd3/2, L ! r0,

Vth − V, L @ r0.
J s1d

Here L is the size of the sample,r0~s1/2sVth−Vd−1/4 is a
characteristic length scale, ands is the in-plane conductivity.
In small samples,L! r0, the current switches from the meta-
stable state to the stable one simultaneously over the entire
area of the device. On the other hand, in large samples,L
@ r0, the switching is initiated in a small critical region of
radiusr0. After the switching has occurred in that region, it
extends rapidly to the rest of the sample.

In this paper we show that if the sample is large, the
switching can initiate not only inside, but also at the edge of
the device. The latter process tends to be more efficient,
since the exponential in the respective expression fort is
smaller than in the case of switching far from the edges of
the samplesSec. Vd. On the other hand, the switching at the
edge can be initiated anywhere along the boundary of the
device, and thus the prefactor of the switching rate 1/t due
to these processes is proportional to the perimeter,L. Simi-
larly, the prefactor of the rate of switching inside the device
is proportional to the area,L2, which makes these processes
more efficient in larger samples.

We obtain analytically the full expressions fort, includ-
ing the pre-exponential factors. Apart from the dependence
on sample dimensions, the calculation of the prefactors re-
veals the nontrivial dependence of the threshold voltageVth
on the degree of disorder of the sample. Formal evaluation of
the prefactors in the case of nonuniform electron density in
the well results in ultraviolet divergences. Similar diver-
gences appear in quantum field theory, where they are elimi-
nated with the use of a renormalization procedure.16,17 The
application of a similar technique to our problem leads to the
renormalization of the threshold voltage which depends
strongly on the conductivity of the quantum wellsSecs.
IV A 2 and Vd. Upon this renormalization lnt in large

samples acquires logarithmic corrections to its linear voltage
dependence.

The paper is organized as follows. In Sec. II we obtain the
Fokker-Planck equation for tunneling in DBRTS which com-
pletely describes the electron transport in small samples.
This equation enables us to find a simple result for the mean
switching time in these samples. In Sec. III we derive the
Fokker-Planck equation for the case of large samples which
describes the dynamics of electron density in the well due to
both the diffusion in the plane of the well and tunneling
between the well and the leads. We use it to investigate the
effect of weak density fluctuations on the decay of meta-
stable current state in small samplessSec. IVd and to study
the switching in large samplessSec. Vd. The application of
our theory to the existing and future experiments is discussed
in Sec. VI.

II. FOKKER-PLANCK EQUATION FOR TUNNELING
IN DBRTS

The bistable current-voltage characteristic of DBRTS was
studied theoretically in Refs. 11–14. TheI-V curve shows the
dependence of theaveragecurrent on voltage applied to the
device. In addition, shot noise was studied in the regime of
small fluctuations.12–14 On the other hand, the switching be-
tween the branches of theI-V curve is caused by large fluc-
tuations of current. In this section we use the model of Ref.
14 to derive the Fokker-Planck equation for tunneling in
DBRTS, which accounts for these large fluctuations, and thus
describes the switching.

The model is illustrated in Fig. 2. The well is extended in
the x-y plane. The motion in thez direction in the well is
quantized, and the well is assumed to have only one resonant
level of energyE0. The two-dimensional wave vectors in the
well are denoted byq. The left and right leads are three-
dimensional; the wave vectors of electrons are denoted byk
and p, respectively. The conduction bands in the leads are
occupied up to the Fermi energyEF. In typical devicesE0 is
of the order ofEF; for definiteness we assumeE0.EF. The
temperatureT is assumed to be small compared toEF and
eV. The well is separated from the leads by two tunneling
barriers with the transmission coefficients much smaller than
unity.

In Ref. 14 the tunneling through the double barrier was
described quantum mechanically using the Breit-Wigner for-
mula. The level widths with respect to the decay to the right
and left leadsGL ,GR were eventually taken to be much
smaller than all other relevant energy scales. We make this
assumption from the beginning, and describe the electron
transport through the barriers using the sequential tunneling
approach. This method is an alternative to the use of the
Breit-Wigner formula. Unlike the latter, it cannot account for
the coherent tunneling through the well at largeGL,R. On the
other hand, at smallGL,R it enables us to discuss both the
I-V characteristic and the large fluctuations of current.18

In order to have a steady state of nonzero current in the
device, the electrochemical potential in the well should lie
between those in the left and right leads, i.e.,

FIG. 2. Schematic potential profile of the double-barrier reso-
nant tunneling structure. The structure consists of a quantum well
separated from two leads by tunneling barriers. The electrons with
three-dimensional wave vectorsk andp fill all the states up to the
Fermi energiesEF in the left and right leads, respectively. In the
quantum well the motion of electrons in thez direction is quantized,
and the electrons with two-dimensional transverse wave vectorsq
occupy all the states up to the Fermi energyEF

w. The inset shows the
potential profile at zero bias.
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eV+ EF . E0 + ef + EF
w . EF. s2d

Here EF
w="2qF

2 /2m is the Fermi energy in the well withm
being the effective mass. Then, in the limit of low tempera-
ture the inequalitiess2d dictate that the tunneling is possible
only in one direction, namely, from left to right, Fig. 2. The
probability to tunnel through a barrier is given by the Fermi
golden rule. The rates of electron tunneling into the wellJL
and out of the wellJR take the form

JL =
4p

"
o
qk

utkz
u2dqki

fks1 − fqddseV+ Eskzd − E0 − efd,

s3d

JR =
4p

"
o
qp

utpz
u2dqpi

fqdsE0 + ef − Espzdd. s4d

Here Eskd="2k2/2m; fk and fq are the Fermi occupation
numbers in the left lead and the quantum well, respectively.
In Eq. s4d we used the fact that the Fermi occupation num-
bers in the right leadfp=0 at energies aboveE0+ef, because
E0.EF. Expressionss3d ands4d include an additional factor
of 2, which accounts for electron spins. The matrix elements
tpz

stkz
d describe the transitions between the resonant level in

the well and the state withz component of the wave vector
pzskzd in the right sleftd lead. The conservation of the trans-
verse momentum is taken into account by Kronecker deltas.

To simplify the expression for the tunneling rates4d we
usedqpi

to remove the sum overpi. The remaining sum over
q of Fermi functionfq gives exactly the number of electrons
in the well with a given spinN/2. Then Eq.s4d reduces to

JR =
GR

"
N. s5d

HereGR is the level width with respect to tunneling into the
right lead. We define the level widths for the two possible
tunneling processes as

GL = 2po
kz

utkz
u2dseV+ Eskzd − E0 − efd, s6ad

GR = 2po
pz

utpz
u2dsE0 + ef − Espzdd. s6bd

To find JL we use the Kronecker delta to remove the sum
over k i in Eq. s3d, while the value ofkz

2=s2m/"2dsE0+ef
−eVd is fixed by the delta function. Atk =sq ,kzd andT→0
the sum overq of fks1− fqd can be easily evaluated, and
givessS/4pdskF

2 −kz
2−qF

2d under the conditions2d, whereS is
the area of the sample. Then, the expressions3d can be sim-
plified as follows:

JL =
GL

"
S Sm

p"2sEF + eV− E0 − efd − ND . s7d

Here we used the expressionN=SqF
2 /2p for the total number

of electrons in the well. Note that ateV.ef+E0 the level
width s6ad vanishes, and thusJL=0.

In the sequential tunneling approximation the average
number of electrons in the well can be determined from the
conditionJL=JR,

N =
Sm

p"2

GL

GL + GR
sEF + eV− E0 − efd. s8d

One cannot directly obtainN from Eq.s8d, since the potential
f depends on the number of electrons in the well. Consider-
ing the barriers as two capacitors, one finds from electrostat-
ics the following expression for the electric potential of the
well sFig. 2d:

f =
V

2
+

eN

2C
. s9d

Here we assumed for simplicity that the capacitances of the
left and right barriers are equal to each other, and denoted the
capacitance of each barrier asC.

One can obtain the current-voltage characteristic of the
DBRTS by repeating the following steps of Ref. 14. First,
one notices that the level widths are energy dependent,

GL = gL
ÎE0sE0 − eV+ efd, s10ad

GR = gR
ÎE0sE0 + efd, s10bd

where gL,R are dimensionless constants. SinceGL and GR
depend onf, they are also functions ofN. Therefore to find
N one must solve the pair of Eqs.s8d ands9d. The latter leads
to an equation onN, which has three solutions in the bistable
region. One of the solutions corresponds to the average num-
ber of electrons on the unstable branch, while the other two
correspond toN on the lower sN=0d and upper stable
branches. Upon substitution ofN into Eq. s5d one finds the
dependence of the average current on bias, i.e., the bistable
I-V curve,14 which is schematically shown in Fig. 1.

To account for the noise, we go one step further and write
the master equation for the time evolution of the distribution
function PsN,td of the number of electrons in the wellN. In
terms of the tunneling ratess3d and s4d, the master equation
for PsN,td takes the form

]

]t
PsN,td = PsN − 1,tdJLsN − 1d + PsN + 1,tdJRsN + 1d

− PsN,tdfJLsNd + JRsNdg. s11d

The first two terms on the right-hand side of Eq.s11d account
for the processes which increase the probability to haveN
electrons in the well, while the last term corresponds to the
opposite processes.

In this section we consider the samples of large in-plane
conductivity where the density in the well is uniform. There-
fore, in the steady state of nonzero current the total number
of particles in the well is proportional to the area of the
sample. The linear dimensions of the sample are assumed to
be large compared to the Bohr radius in the semiconductor.
Thus the total number of electrons in the well is large,N
@1, and one can expand Eq.s11d in 1/N. Keeping the terms
up to the second order, the master equation reduces19 to
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]

]t
PsN,td = −

]

]N
fAsNdPsN,tdg +

1

2

]2

]N2fBsNdPsN,tdg.

s12d

HereAsNd=JLsNd−JRsNd andBsNd=JLsNd+JRsNd. Equation
s12d is known as the Fokker-Planck equation, and is widely
used for the description of various stochastic processes, see,
e.g., Refs. 20,21.

The stationary solution of Eq.s12d can be easily obtained,

P0sNd =
const

BsNd
e−UsNd, UsNd = − 2E

0

N AsN8d
BsN8d

dN8, s13d

Ref. 20. The extrema of functionUsNd are determined by the
condition A;JL−JR=0, which we used above to find the
average current through the device. Therefore each extre-
mum of UsNd corresponds to one of the branches of the
I-V curve. Outside the bistable region the currentIsVd is
uniquely defined, andUsNd has a single minimum. In the
bistable regionUsNd has two minima and a maximum, which
correspond to the locally stable current branches and the un-
stable branch, respectivelysFig. 1d.

From the definitions ofA andB, it is clear that their ratio
is independent of the area of the sampleS. Using the expres-
sion s13d and the fact thatN~S, one can see thatU is lin-
early proportional toS. ThusUsNd is an extensive quantity,
and its dependence onN and S has the general form
UsN,Sd=Susnd, wheren=N/S is the electron density. Since
the area of the sample is large, we haveU@1. Therefore, the
distribution functionP0 is peaked sharply near the global
minimum of UsNd.

The experiments8–10 studying the switching between the
branches of theI-V curve are set up as follows. One starts at

V, Ṽth, Fig. 1, where only one value of current is possible.
In this caseUsNd has only one minimum, as shown sche-
matically by the dashed-dotted line in Fig. 3sad. If we in-

crease the bias up to some value slightly aboveṼth, the func-
tion UsNd will acquire a new minimum to the left of the old
one, see the dashed line in Fig. 3sad. This corresponds to the
appearance of the lower current branch of theI-V curve. The
new minimum is a local one, and the main peak of the dis-
tribution function is still centered at the old minimum. Thus,
the system remains on the upper branch of theI-V curve.
Further increasingV, we transformUsNd to the shape shown
schematically by the solid line in Fig. 3sad. Here the right
minimum ofUsNd is a local one, and if we leave the system
in this state for a sufficiently long time, it will eventually
switch to the left minimum. To switch from the local mini-
mum to the global one, the system must overcome the barrier
of height Ub, Fig. 3sad. From the form of the distribution
function s13d it is clear that this process takes a long time
t~expsUbd. To perform the measurement of the switching
time from the upper to the lower current branch, one in-
creases the bias to the chosen value over an interval of time
short compared tot, and then waits until the system switches
to the lower branch.

As the voltage approaches its threshold value, the maxi-
mum atNmax and the local minimum ofUsNd at Nmin sFig. 3d
move closer to each other, and at the threshold they coincide.
At this point one can define a threshold electron densitynth
;Nmax/S=Nmin/S. In the vicinity of n=nth and V=Vth the
function usnd can be approximated by a cubic polynomial,

usnd < − asn − nthd +
g

3
sn − nthd3 + uth, a = asVth − Vd.

s14d

Here the constantuth is the value ofu at n=nth andV=Vth.
To derive Eq.s14d microscopically, one has to consider

AsNd andBsNd on the upper branch of theI-V curve in the
vicinity of the thresholdVth. An analytical calculation ofIsVd
is possible14 if the dimensionless parameter

l =
me2

2p"2c
s15d

is small,l!1. Herec=C/S is the capacitance per unit area.
In Appendix A we extend this approach to findAsNd ,BsNd,
and the coefficients of expansions14d at l!1.

The expansions14d can be justified for anyl in the spirit
of the Landau theory of second-order phase transitions.22 The
potentialu is expected to be an analytic function ofn andV.
Thus,u can be expanded in Taylor series near the threshold,
with n−nth playing the role of the order parameter. Since the

FIG. 3. sad Generic behavior ofUsNd at different values of bias.
Outside the bistable regionUsNd has one minimumstop curved.
Inside the bistable region the functionUsNd has two minima and a
maximum, which correspond to the locally stable current branches
and the unstable branch, respectivelysmiddle and bottom curvesd.
sbd The sketch ofUsNd for the model of Fig. 1. Solid line corre-
sponds to a bias slightly belowVth, whereas dashed line depicts

UsNd for the bias slightly aboveṼth.
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local minimum and the maximum ofu coincide at the thresh-
old, both the first and second derivatives ofusnd vanish at
V=Vth and n=nth. Therefore, the expansion starts with the
third-order term. The sign ofg is not important; we choose
g.0, which corresponds to the behavior ofU near the right
minimum as shown in Fig. 3sad. At VÞVth, the linearasn
−nthd and quadratic12bsn−nthd2 terms are also present. Since
a=b=0 at V=Vth, we expecta~ sVth−Vd, b~ sVth−Vd. We
keep only the linear term in the expansion, because the
second-order term is quadratic in small parametern−nth, and
therefore is small compared to the linear one. In order foru
to have a local minimum atV,Vth, the coefficienta should
be positive.

Near the threshold the functionBsNd can be approximated
by a constant,

BsNthd = 2JR = 2GRNth/". s16d

In the case of constantB the Fokker-Planck equations12d
has been studied in detail. In particular, the exact expression
for the mean switching time can be obtained including the
prefactorsRef. 20, Sec. XIII.2d. In our notations it reads

t =
4p

BÎU9sNminduU9sNmaxdu
expsUbd. s17d

For the potentials14d one can easily find the barrier
height, Ub=4Sa3/2/3g1/2. The prefactor of Eq.s17d can be
also straightforwardly evaluated, and one obtains the follow-
ing expression for the mean switching time:

t =
2p

bÎag
expS4

3

SfasVth − Vdg3/2

g1/2 D , s18d

whereb=B/S is independent of the area of the sample. This
result obviously agrees with Eq.s1d for small samples
sL! r0d.

Expansions14d is quite generic, and similar theoretical
results were found in many different areas of physics.23–29In
particular, Eq.s12d is also used to describe the motion of a
Brownian particle in external potential, whereN plays the
role of the coordinate of the particle. Therefore, the loga-
rithm of the mean escape time of the Brownian particle from
a local minimum of potential is also expected to obey the
3/2-power law. Recently this behavior of the escape time
was confirmed experimentally for the optically trapped
Brownian particle.27

The lower branch of theI-V curve corresponds to the
situation where the level in the wellE0+ef is below the
bottom eV of the conduction band in the left lead. In this
caseJL;0 andB=−A=JR. Consequently, asN→0 we have
UsNd=2N, see Eq.s13d. Since N cannot be negative,U
reaches its minimum at the boundaryN=0 of the range of
allowed values ofN, where the derivativeU8sNdÞ0, Fig.
3sbd. The nonanalyticity ofUsNd near the left minimum does
not affect the calculation of the time of switching from upper
to the lower branch. Indeed, at a bias slightly belowVth, the
function UsNd is analytic near its maximum and the local
minimum fsolid line in Fig. 3sbdg, and the description of the
switching from the upper to the lower branch in terms of

Eqs. s14d and s17d is correct. However, the situation is dif-
ferent for the switching from the lower to the upper branch
of the I-V curve. To study this process, we decrease the bias

to the value slightly aboveṼth. The functionUsNd for this
case is depicted schematically by the dashed line in Fig. 3sbd.
HereUsNd is nonanalytic at its local minimum, and therefore
we cannot use expressionss14d and s17d for the switching
time. The nonanalytic behavior ofUsNd is a consequence of
crudeness of our model, in which the current on the lower
branch is exactly zero. On the other hand, the experimentally
measuredI-V curves show nonzero current on the lower
branch. Thus, in a more detailed model which accounts for
this nonzero current, the minimum corresponding to the
lower branch of theI-V curve will be reached at nonzeroN.
The discussion based on Eqs.s14d and s17d will then be
valid.

III. FOKKER-PLANCK EQUATION FOR TRANSPORT IN
DBRTS OF LARGE AREA

In Sec. II we studied the decay of a metastable state in
DBRTS under the assumption that the electron density in the
quantum well is uniform. Then the switching timet given by
Eq. s18d grows exponentially with the area of the sample.
Since electrons can tunnel at any point of the quantum well,
the tunneling process creates a nonuniform electron density.
On the other hand, the diffusion of particles in the well leads
to spreading of the charge across the sample. In small
samples the spreading is fast, and the density becomes uni-
form. In samples of large area the electron density may
change significantly before the charge spreads over the entire
well. In this case the switching between the two branches of
the I-V curve is initiated in a small part of the sample, and
the switching time is not exponential in the areaS.

In this section we generalize the Fokker-Planck equation
s12d to the case of nonuniform densitynsr d, wherer =sx,yd
is a position in the well. In subsequent sections this equation
will be used to study the decay of a metastable state in
DBRTS of large area.

A. Equation for distribution function of electron density in an
isolated quantum well

We begin by considering the simplest case of a quantum
well not coupled to the leads. At finite temperature the elec-
tron density in the well fluctuates and can be described by a
distribution functionPhnsr d ,tj. Here we derive the Fokker-
Planck equation for the distribution function of electron den-
sity due to the in-plane diffusion of electrons in the well. In
Sec. III B we add the tunneling through the barriers and ob-
tain the Fokker-Planck equation for DBRTS of large area.

We consider density fluctuations at length scales much
greater than the inelastic mean free path. These density fluc-
tuations are slow in comparison with the energy relaxation
time in the well. Therefore the system is in a local equilib-
rium, and the distribution of electrons at any point in the well
is given by a Fermi function. Note that the chemical potential
in this Fermi function is determined by the electron density,
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and therefore varies from point to point following the depen-
dencensr d.

Let us choose a time intervalDt much smaller than the
relaxation time forPhnsr d ,tj and large in comparison with
the collision time, so that the motion of electrons can be
treated as diffusive. Then one can write the following equa-
tion for the evolution of the distribution function:

Phnsr d,t + Dtj − Phnsr d,tj

=E E dr 1dr 2fPhnsr d + dn12sr d,tjWDtsr 1,r 2;nsr d

+ dn12sr dd − Phnsr d,tjWDtsr 2,r 1;nsr ddg. s19d

Heredn12sr d=dsr −r 1d−dsr −r 2d is the correction to the den-
sity nsr d due to the displacement of one electron from point
r 2 to r 1; the probability densityWDtsr 1,r 2;nsr dd describes
diffusion of an electron from a pointr 1 in the quantum well
to point r 2 during the time intervalDt. Since the diffusion
rate may depend on the electron density,WDt is a functional
of nsr d.

Expanding the first term on the right-hand side of Eq.s19d
up to the second order indn12sr d, one obtains the following
equation:

DPhn,tj =
1

2
E E dr 1dr 2FS d

dnsr 1d
−

d

dnsr 2d
D

3 fWDtsr 1,r 2;nd − WDtsr 2,r 1;ndg +
1

2
S d

dnsr 1d

−
d

dnsr 2d
D2

fWDtsr 1,r 2;nd + WDtsr 2,r 1;ndgGPhn,tj.

s20d

The probability densitiesWDt to diffuse from r 1 to r 2 and
back are not independent,

WDtsr 1,r 2;nde−m1/T = WDtsr 2,r 1;nde−m2/T. s21d

Here m1 and m2 are the electrochemical potentials at points
r 1 and r 2, respectively. For the case of elastic scattering by
impurities considered in Ref. 15 expressions21d directly fol-
lows from Eq.s8d of Ref. 15. Generalization of Eq.s21d to
arbitrary scattering mechanism is discussed in Appendix B.

In order to findm we need to account for the interactions
between electrons. We limit ourselves to the charging energy
approximation; the electron exchange and correlation effects
are neglected. Then at low temperaturesT!EF, the values of
the electrochemical potential are found by adding the elec-
trostatic potentiale2n/c to the Fermi energy,

m1,2=
e2

c̃
nsr 1,2d. s22d

Here the effective capacitance per unit areac̃ is defined by
e2/ c̃=e2/c+1/n, andn is the density of states in the well.

In short timeDt an electron can only diffuse over a short
distance, so thatum1−m2u!T. Therefore using Eq.s21d, one
can expand the expression in the curly brackets on the right-
hand side of Eq.s20d to the leading order insm1−m2d /T, and
with the help of Eq.s22d obtain

DPhn,tj =
1

2
E E dr 1dr 2F e2

c̃T
S d

dnsr 1d
−

d

dnsr 2d
D

3fnsr 1d − nsr 2dg + S d

dnsr 1d
−

d

dnsr 2d
D2G

3 WDtsr 1,r 2;ndPhn,tj. s23d

To proceed further we need an expression for the transi-
tion probability densityWDt. This quantity is affected by all
the relevant processes of electron scattering, such as elastic
scattering of electrons by impurities, electron-phonon and
electron-electron scattering. Instead of accounting for all
these processes explicitly, we expressWDt in terms of in-
plane conductivitys, which can in principle be measured
experimentally. Assuming that electron motion is diffusive,
we conclude that the average square of the distance traveled
by an electron during a short time interval is proportional to
Dt, i.e.,

E WDtsr 1,r 2;ndur 1 − r 2u2dr 2 = GDt. s24d

Here the constantG is proportional to the conductivity,G
=4Ts /e2, see Appendix C.

At small Dt the transition probability densityWDt can be
expanded as

WDtsr 1,r 2;nd = dsr 1 − r 2d +
TsDt

e2 ¹2dsr 1 − r 2d + ¯ .

s25d

The physical meaning of the first term in this expansion is
that electron remains at its initial positionr 1 at Dt=0. Thus
the second term is needed to account for the electron diffu-
sion. The coefficient in the second term is found by applying
the expansions25d to Eq. s24d.

Equations23d can be simplified significantly using expan-
sion s25d, and eventually takes the form

]

]t
Phn,tj = −

s

e2 E dr
d

dn
Se2

c̃
¹2n + T¹2 d

dn
DPhn,tj.

s26d

This is the Fokker-Planck equation for the evolution of the
distribution function of electron density. The first term in Eq.
s26d describes the spreading of the charge in the well,
whereas the second term accounts for the thermal noise.

It is instructive to substitute into Eq.s26d the equilibrium
distribution functionP0hnj. The latter has the Gibbs form
e−E/T, namely,
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P0hnj = expS−
1

T
E e2n2sr d

2c̃
drD .

Here the energy per unit area«=e2n2/2c̃ is chosen in a way
that reproduces the electrochemical potentialm=]« /]n in the
form s22d. It is easy to check thatP0hnj satisfies the Fokker-
Planck equations26d.

B. Combined Fokker-Planck equation for tunneling and
diffusion

In this section we obtain the combined Fokker-Planck
equation which incorporates both the tunneling through the
barriers and diffusion inside the well. We begin by general-
izing the tunneling Fokker-Planck equations12d to the case
of nonuniform electron density. This is accomplished by di-
viding the plane of the well into small pieces, so that the
density is uniform within each piece. In the absence of in-
plane diffusion, the distribution function of electron density
in the entire plane is given by the product of distribution
functions of its pieces,P=p jPjhNjj. Applying Eq. s12d to
each piece we obtain the following Fokker-Planck equation
for the distribution function of the entire quantum well,

]

]t
P = o

j

]

]Nj
S− AsNjd +

1

2

]

]Nj
BsNjdDP.

The functionsAsNjd and BsNjd are extensive quantities,
and it is convenient to rewrite them asAsNjd=DSasnd and
BsNjd=DSbsnd, whereDS is the area of each piece. Replac-
ing the sum with the integral over the area of the sample and
] /]Nj with the functional derivatived /dnsr jd, we find the
continuous form of this equation,

]

]t
Phn,tj =E dr

d

dn
S− asnsr dd +

1

2

d

dn
bsnsr ddDPhn,tj.

s27d

Let us now take into account the in-plane diffusion of
electrons, which was discussed in Sec. III A. Because the
tunneling and diffusion are independent processes, we can
add the right-hand sides of Eqs.s26d ands27d and obtain the
combined Fokker-Planck equation for DBRTS of large area,

]

]t
Phn,tj =E dr

d

dn
S− asnd +

1

2

d

dn
bsnd −

s

c̃
¹2n

− T
s

e2¹2 d

dn
DPhn,tj. s28d

This equation generalizes Eq.s26d to the case of a quantum
well coupled to the leads.

In the vicinity of the thresholdVth the functionbsnd can
be approximated by a constantb=bsnthd. In addition, one can
substitute 2a/b=2A/B=−u8snd, cf. Eq.s13d. At bias nearVth

the function usnd is given by the approximate expression
s14d, and Eq.s28d can be rewritten as

]

]t
Phn,tj =

b

2
E dr

d

dn
S− a + gsn − nthd2

− 2h¹2n +
d

dn
DPhn,tj, s29d

where we definedh=s / c̃b. In Eq. s29d we omitted the term
proportional to the temperature, since it is negligible at low
T. sThe exact criterion is discussed in Appendix D.d Thus
from now on we study only the effect of the shot noise due to
the tunneling of electrons at high biaseV@T, whereas the
thermal noise is neglected.

The stationary solution of Eq.s29d is found by setting the
left-hand side to zero,

P0hnj = e−Fhnj,

Fhnj =E drS− asn − nthd +
g

3
sn − nthd3 + hs¹nd2D .

s30d

The functionalFhnj has two contributions: the first two terms
account for the tunneling, and the remaining term is due to
the in-plane diffusion.

C. Dimensionless Fokker-Planck equation

For the following discussion it is convenient to param-
etrize the electron densitynsr d in terms of a dimensionless
function zsrd that vanishes at the minimum ofusnd,

nsr d = nmin − 2Îa

g
zsr /r0d, s31ad

r0 =
Îh

sagd1/4 =Î s

c̃bÎag
. s31bd

Here the density at the minimumnmin=nth+Îa /g can be
easily found from Eq.s14d. The Fokker-Planck equations29d
in terms ofzsrd takes the form

]Phz,tj
]t

= bÎgaE dr
d

dz
S− ¹r

2z+ z− z2 +
1

U0

d

dz
DPhz,tj,

s32d

where

U0 =
8ha

g
. s33d

The stationary solutionP0 of Eq. s32d is given by

P0hzj = e−F, F = U0E drS s¹rzd2

2
+

z2

2
−

z3

3
D . s34d

One can see that the characteristic value of the functional
F is given byU0, whereas the characteristic sizer0 plays the
role of a typical length scale of stochastic fluctuations of
electron densitynsr d.
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IV. DECAY OF THE METASTABLE STATE IN EXTENDED
SAMPLES

In Sec. II we obtained the expression for the mean switch-
ing time in DBRTS under the assumption of uniform electron
density in the well. This assumption is valid only if the di-
mensions of the sample are small compared to the length
scaler0 of the density fluctuations, Eq.s31bd. If the sample is
large, the fluctuations of electron density must be taken into
account.

In Sec. III we obtained the Fokker-Plank equations29d
which describes the time evolution of the distribution func-
tion of electron density. Unlike Eq.s12d for the case of uni-
form density, this equation has an infinite number of vari-
ables, since the density is different at every point.

The most general form of the multidimensional Fokker-
Planck equation is

]Psx,td
]t

= LPsx,td,

L = − o
i

]

]xj
Kisxd + o

i,j

]2

]xi ] xj
Dijsxd. s35d

Assuming that the system has a metastable state, one can
consider its domain of attractionV. The domain boundary
]V is a separatrix of the drift fieldK . The mean time of the
first passage out of the domainV has been found in Refs.
30,31. For the process described by Eq.s35d the mean
switching time is obtained as doubled mean first-passage
time31 and takes the form

t = −

2E
V

ddxP0sxd

o
i
E

]V

dSio
j

DijsxdP0sxd ]fsxd
]xj

. s36d

Here P0 is the stationary solution of Eq.s35d. The form
function fsxd is a stationary solution of the adjoint equation,

L†fsx,td = o
j
SKjsxd + o

i

Dijsxd
]

]xi
D ] fsxd

]xj
= 0. s37d

In addition, fsxd is defined to vanish at the boundary]V and
reachfsxd.1 well insideV.

In subsequent sections we use the expressions36d to find
the mean time of current switching in double-barrier struc-
tures.

A. Mean switching time in small samples

In samples with linear dimensions small compared withr0
the density fluctuations are weak. In this section we study
their effect on the mean switching time. We will show that
even these weak fluctuations can result in significant change
of t.

1. Evaluation of the mean switching time

In order to bring the Fokker-Planck equations32d to the
form s35d we presentzsrd as an expansion

zsrd = o
i=0

`

xifisrd, s38d

where fisrd are the normalized eigenfunctions of the
Laplace operator, −¹r

2fisrd=eifisrd. In particular f0srd
=r0/ÎS ande0=0. Since there is no current flowing through
the boundaries of the sample, the eigenfunctions must satisfy
the boundary conditionsn̂ ·=fisrduboundary=0, wheren̂ is a
unit vector normal to the boundary. Thex0 coordinate corre-
sponds to the average electron density in the well, whereas
the other coordinates describe small fluctuations of the den-
sity. The eigenvaluesei are numbered in order of increasing
magnitude,e1, r0

2/S@1.
To obtain thex representation of the Fokker-Planck equa-

tion we substitute the expansions38d into Eq. s32d and find

L = bÎgaFo
i=0

`
]

]xi
Ssei + 1 − 2f0x0dxi +

1

U0

]

]xi
D

+
]

]x0
f0x0

2 + o
i,j ,k=1

`

ji jk
]

]xi
xjxkG , s39d

where

ji jk =E drfisrdf jsrdfksrd.

The stationary solutionP0=e−F in terms of xi can be
found by substituting expressions38d into Eq.s34d. Then the
functionalF takes the form

Fhxj = U0S1

2o
i=0

`

sei + 1 − 2f0x0dxi
2 +

2f0x0
3

3

−
1

3 o
i,j ,k=1

`

ji jkxixjxkD . s40d

One can easily verify that exps−Fhxjd solves the Fokker-
Planck equation withL given by Eq.s39d.

The stationary probability densityP0 is sharply peaked at
the minimum of the functionalF, i.e., at zsrd=0sx=0d.
Therefore, keeping terms up to the second order inxi in
expansions40d, we can evaluate the integral in the numerator
of Eq. s36d in Gaussian approximation,

E
−`

`

p
i=0

`

dxiPhxj = p
i=0

` Î 2p

U0sei + 1d
. s41d

In a multidimensional case in order to switch from the
metastable state the system must pass from the local mini-
mum of F to its global minimum. The switching process is
dominated by the paths which go through the vicinity of the
lowest saddle point separating the domains of attraction of
metastable and stable states. The boundary of the domainV
lies exactly at the saddle point and is orthogonal to the di-
rection of the steepest descent.

The integral in the denominator of Eq.s36d is dominated
by the saddle point ofF. The latter is found from the condi-
tion dF /dz=0. This equation has an obvious solutionzssrd
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=1. In x representation it corresponds tox0=1/f0 and xi
=0 for i ù1. Expanding expressions40d near this point up to
the second order inxi we approximateF near the saddle
point by

Fhxj . U0F 1

6f0
2 −

1

2
Sx0 −

1

f0
D2

+
1

2o
i=1

`

sei − 1dxi
2G .

s42d

In small samplese1.1, and thereforeF has only one un-
stable directionx0, whereas all other directions are stable.
One can see from Eq.s42d that in this approximation the
boundary]V is the planex0=1/f0.

Since the boundary]V is orthogonal to thex0 direction,
the sum overi in the denominator of Eq.s36d reduces to a
single term with i =0. Comparing Eqs.s35d and s39d one
finds thatDij =sbÎga /U0ddi j . Noting thatDij is diagonal, the
sum overj also reduces to the only term withj =0.

To find ]f /]x0 one needs to solve Eq.s37d. Noting that
e0=0 and using Eq.s39d, we can write the adjoint equation
s37d near the saddle point as

FU0Sx0 −
1

f0
D +

]

]x0
G ] f

]x0
= 0. s43d

Solving this equation, we obtain

] f

]x0
= −Î2U0

p
e−sU0/2dfx0 − s1/f0dg2. s44d

Here the prefactor was found using the fact thatf =1 inside
the domainV si.e., at x0→−`d and f =0 at the domain
boundaryx0=1/f0.

Using Eqs.s42d and s44d we can evaluate the integral in
the denominator of Eq.s36d in Gaussian approximation.
Then dividing the numerators41d by this integral, we find the
following expression for the mean switching time:

t̃ = tY0. s45d

Heret is the switching times18d obtained without the inclu-
sion of density fluctuations. The latter gives rise to the renor-
malization factor

Y0 = p
i=1

` Îei − 1

ei + 1
. s46d

To estimate the productY0 we assume a rectangular geom-
etry of the sample with lengthL and width w. Then the
eigenvaluesei are given by

ei = enm= p2r0
2Sm2

L2 +
n2

w2D , s47d

wheren,m are non-negative integers.
In small samplesenm@1 and the expression for lnY0 can

be expanded as

ln Y0 . − o
n,m=0

8
1

enm
= −

1

p2r0
2 o

n,m=0
8

1
m2

L2 + n2

w2

, s48d

where the prime in the sum means that the term withn=m
=0 is excluded.

The infinite sum in Eq.s48d is logarithmically divergent.
However, since the diffusion picture is only valid at distances
greater than the mean free pathl, the wave vectors of the
density fluctuations cannot32 exceedl−1. Therefore, we need
to cut the sum off atmøL / l andnøw/ l.

At L,w,ÎS the sums48d can be approximated by a
two-dimensional integral and yields

ln Y0 . −
S

2pr0
2ln

ÎS

l
. s49d

Note, that although in small samples the areaS is small com-
pared tor0

2, the effect of density fluctuations may become
significant atl !ÎS.

In the case of strip geometry,w!L, we separate the sum
into two parts, withn=0 andn.0. The first part gives the
sum of 1/m2 which can be explicitly evaluated and results in
a small contributionL2/6r0

2!1 to lnY0. In the second part
we approximate the sum overm by the integral with an in-
finite upper limit. Then neglecting terms,sL / r0d2, we obtain
the sum of 1/n. Cutting off this sum as discussed above, we
find

ln Y0 . −
Lw

2pr0
2ln

w

l
. s50d

For simplicity, from now on we will consider samples
with w,L,ÎS.

2. Renormalization of threshold voltage

Using Eqs.s18d, s45d, and s49d we find the following
expression for the mean switching time in small samples:

t̃ =
2p

bÎag
expS4

3

SfasVth − Vdg3/2

g1/2 −
SÎgasVth − Vd1/2

2ph
ln

ÎS

l
D .

s51d

The second term in the exponential of Eq.s51d represents the
corrections49d due to the density fluctuations.

Let us consider the regime when the magnitude of this
term is larger than unity, but still small compared to the first
term in the exponential of Eq.s51d. Then this correction can
be interpreted as a shift of the threshold voltage in formula
s18d. Indeed, substitutingVth→Vth+dVth, with the shift

dVth = −
1

4p

g

ah
ln

ÎS

l
, s52d

into Eq.s18d and expanding it up to the first order indVth we
reproduce the results51d. In experiments the threshold volt-
age Vth is not knowna priori. If one treats it as a fitting
parameter, Eqs.s18d and s51d are equivalent up to the first
order indVth.

The last term in the exponential of Eq.s51d formally di-
verges atl →0. Similar divergences have been studied in
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quantum field theory in the problem of the decay of the false
vacuum.16,17,33–37According to Eq.s14d, the shifts52d of the
threshold voltage is equivalent to adding a linear term
−adVthsn−nthd to the integrand of the functionals30d. This
corresponds to the standard in quantum field theory method
of renormalization of action.16,17 Such renormalization pro-
cedure removes all the divergences.

The origin of the renormalization of the threshold voltage
can be understood as follows. The “action”F describes the
so-calledf3 field theory in two dimensions, wheref;sn
−nthd is a scalar field. An alternative approach to the renor-
malization of this scalar field theory is to integrate out the
fast modesfF corresponding to large wave vectors, while
keeping only slow modesfS with small wave vectors in the
actionF. One can find that the averaging offF

2 gives the sum
of inverse eigenvalues of Laplace operator identical tos48d,
so that the termsg /3df3 after the integration over the fluc-
tuations of the fast modes gives rise togkfF

2lfS=−adVthfS.
Physically this renormalization corresponds to the averaging
of the switching rate over fluctuations of the electron density
n in the well with characteristic scales between the mean free
path and the sample size.

Due to the renormalization of the threshold voltage the
parametera is modified asa→a+adVth. Therefore, the
quantities which depend ona, such thatt and r0, are also
renormalized. More precise expression fort is given by Eq.
s18d upon substitution of the renormalizeda into it. On the
other hand, the small corrections to the prefactor oft due to
the renormalization are more challenging to observe experi-
mentally, and for comparison with experiment they can be
ignored.

V. MEAN SWITCHING TIME IN LARGE SAMPLES

So far we studied samples of small areaS! r0
2. We found

that the switching occurs when the electron density at the
saddle point is uniform, because the diffusion processes are
fast and they smooth out all density variations. In large
samples,S@ r0

2, the diffusion is slower, and the system can
reach the critical density in a small part of the well. After the
switching occurs in that part, the switching process spreads
rapidly throughout the entire well. In this section we study
the switching time due to these nucleation processes.

To find the expression for the mean switching timet in
large samples we need to obtain the minimum and the saddle
points of the functionalF in Eq. s34d. They can be found
using the conditiondF /dz=0, i.e.,

− ¹2z+ z− z2 = 0. s53d

The boundary conditions for Eq.s53d should account for the
fact that there is no current flowing through the boundaries
of the sample. Since the current is proportional to the density
gradient=n, according to Eq.s31ad these boundary condi-
tions take the form

un̂ · = zuboundary= 0, s54d

wheren̂ is a unit vector normal to the boundary. The trivial
solution zsrd=0 gives the minimum of the functionalFhzj,

while the saddle points can be found as nontrivial solutions
zssrd of Eq. s53d.

A. Nucleation processes in very large samples

Let us consider the switching in an infinite sample,S
→`. Due to the symmetry of the problem, the solutions of
Eq. s53d should be azimuthally symmetric. Placing the origin
of the coordinate system at the center of the switching region
and writing Eq.s53d in polar coordinates, we find

zs9srd +
1

r
zs8srd − zssrd + zs

2srd = 0. s55d

This equation should be solved with the boundary condition
zssrd=0 at r→`, since otherwiseFhzsj~S, and the switch-
ing timet~eFhzsj will be infinite atS→`. One can show that
this condition is consistent with Eq.s54d, that is zs8s`d=0.
Indeed, Eq.s53d can be interpreted as a Schrödinger equation
for a particle in potential −zs, i.e., −s¹2+zsdzs=−zs. There-
fore, zssrd has the meaning of an eigenfunction of a bound
state; its asymptotic behavior at large distances iszs

→e−r /Îr, so thatzs8s`d=0. The nontrivial solution of Eq.
s55d with the boundary condition described earlier can be
obtained numerically. The result is shown in the inset of Fig.
4.

The main exponential dependence of mean switching time
ti in an infinite sample is given byeFhzsj. Substituting the
numerical result forzssrd into Eq. s34d, one finds15

ti = ti
* expS8z

hasVth − Vd
g

D , s56d

where the numerical constant

z =E drS s¹zsd2

2
+

zs
2

2
−

zs
3

3
D < 7.751. s57d

Equations56d is the counterpart of the results18d derived
for small samples,S! r0

2. Because of the dependence ofr0 on
V, see Eqs.s14d and s31bd, both types of behavior can be

FIG. 4. The sketch of the density profile at the saddle pointzssrd
corresponding to the solution of Eq.s53d with the boundary condi-
tions s54d. The precise radial dependencezssrd obtained by solving
Eq. s55d numerically is shown in the inset.
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observed in a single device by tuning the bias. At the cross-
over, r0

2,S, the two results coincide.
The problem of stochastic current switching is similar to

the problem of finding the probability of spontaneous decay
of a metastable vacuum near a Peierls transition point ins1
+1d dimensional scalar field theory. The latter problem was
solved in Ref. 37, and the exponential factor in the result for
the decay time is analogous to Eq.s56d. On the other hand,
the prefactor of the decay time is essentially different from
ti

* , since we study the shot noise described by the classical
Fokker-Planck equation, while the false vacuum decay prob-
lem is inherently quantum mechanical.

1. Evaluation of the prefactor

In a finite sample the switching can occur anywhere in the
well, hence the prefactor of the switching rateti

−1 must be
proportional to the areaS. Thus, whileti has a large expo-
nential, Eq.s56d, its prefactorti

* is proportional to 1/S and
can be small in large samples. Therefore, to fully understand
the switching one needs to findti

* .
The time evolution of distribution functionPhz,tj in large

samples is given by the Fokker-Planck equations32d. To
evaluate the prefactor of the mean switching time we again
use the expressions36d. The procedure is similar to the one
for small samples described in Sec. IV A. However, the in-
tegration in Eq.s32d is now over a large sample, and there-
fore the density at the saddle point becomes nonuniform, Fig.
4. This significantly complicates the evaluation of the pref-
actorti

* .
We evaluate both integrals in Eq.s36d in Gaussian ap-

proximation. As in Sec. IV A the integral in the numerator of
Eq. s36d is dominated by the minimum ofFhzj and is given
by the expressions41d. The denominator ofs36d is domi-
nated by the saddle point. Presentingzsrd near the saddle
point aszsrd=zssrd+ ṽsrd, we obtain the expansion ofFhzj
in the form

Fhzs + ṽj = Fhzsj +
U0

2
E dr ṽsrds− ¹r

2 − 2zs + 1dṽsrd.

s58d

It is convenient to evaluate the integral in Eq.s58d by
expanding

ṽsrd = o
n,m

x̃nmf̃nmsrd, s59d

wheref̃nmsrd are the normalized solutions of the eigenvalue
problem

f− ¹r
2 − 2zssrd + 1gf̃nmsrd = l̃nmf̃nmsrd. s60d

The boundary conditions for this equation are given by Eq.
s54d.

Equations60d can be interpreted as a Schrödinger equa-
tion for a particle in the attractive potential −2zs with energy

l̃nm−1. Since the potential is azimuthally symmetric, we can
separate the variables asf̃nmsrd=QnmsqrdCmswd. The solu-
tions for the azimuthal partCmswd are given bye±imw. Below

it will be convenient to use their real combinations, cosmw
and sinmw, and introduce the following notations:C0swd
=1/Î2p, Cmswd=scosmwd /Îp for m=1, 2, …, andCmswd
=ssinmwd /Îp for m=−1, −2,… .

Substituting the expansions59d into Eq. s58d and using
the orthonormality condition for the eigenfunctions, we find

Fhx̃j = Fhzsj +
U0

2 o
n=0

`

o
m=−`

`

l̃nm x̃nm
2 . s61d

The discussion leading to Eq.s61d did not rely on the
assumption of large sample size. In the case of small samples

Eq. s61d reproduces the expansions42d, if one identifiesl̃
=e−1. This relation is easily understood by noticing that in
small samples the density at the saddle point iszssrd=1.
Comparing the definition ofe given in the paragraph after
Eq. s38d with Eq. s60d, where we substitutezs=1, we repro-

ducel̃=e−1.
The form of Eq.s61d suggests that in the case of large

samples it is more convenient to evaluate the integral in the
denominator of Eq.s36d using variablesx̃nm rather thanxnm.
Since the eigenfunctionsfnm and f̃nm are normalized, the
expansion coefficientsx̃nm are related to coefficientsxnm of
expansions38d via an orthogonal transformation. The Jaco-
bian of this transformation equals unity, and therefore the
integration overpdxnm in the denominator of Eq.s36d can be
replaced by the integration overpdx̃nm.

In order to evaluate the integral in the denominator of Eq.
s36d in the x̃ representation, we need to find the eigenvalues

l̃nm of Eq. s60d. All l̃nm are positive with the exception of

one negative eigenvalue,l̃00,0, and two zero eigenvalues,

l̃0,1= l̃0,−1=0. Numerical solution of Eq. s60d yields

l̃00<−1.648. This negative eigenvalue is associated with un-
stable deviation fromzs corresponding to the motion over the
saddle point. In Eq.s36d the boundary]V of the domain of
attraction of the metastable state is orthogonal to thex̃00 di-
rection, so that the integration in the denominator is per-
formed only over the positive and zero modes. Since each

positive l̃nm corresponds to a Gaussian integral, the integra-
tion over them is straightforward. The integration over the
zero modes is more challenging; to perform it we first need
to understand their physical meaning.

The existence of two zero eigenvalues is due to the trans-
lational invariance of the functionalFhzj with respect to any
shift of the center of the switching region in the plane of the
quantum well. The two zero eigenvalues correspond to two
orthogonal to each other directions in the plane along which
such a shift can be performed. Indeed, a small shiftDr of the
center of switching region results in the following small
change in the saddle point density:

zssr + Drd − zssrd =
]zs

]rx
Drx +

]zs

]ry
Dry. s62d

One can check by differentiating Eq.s53d with respect torx,y
that the derivatives]zs/]rx,y are solutions of Eq.s60d with

l̃=0. Furthermore, ]zs/]rx=zs8srdcosw and ]zs/]ry
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=zs8srdsinw, so the azimuthal quantum numbers correspond-
ing to zero modes arem= ±1 in our notations. Thus we con-
clude that]zs/]rx,y=c0f̃0,±1srd, wherec0 is a constant.38

Substituting these expressions for]zs/]rx,y into Eq. s62d
and comparing it with the expansions59d, we find that the
coefficients corresponding to zero modes arex̃0,±1=c0Drx,y.
Thus the integral over the zero modesx̃0,1 andx̃0,−1 amounts
to the integration over the possible positions of the center of
the switching region in the sample,

E dx̃0,1E dx̃0,−1= c0
2E dsDrxd E dsDryd = z

S

r0
2 . s63d

Here the constantc0 was found using azimuthal symmetry of
zs and the fact that the eigenfunctionsf̃nmsrd are normalized,

c0
2 =E S ]zs

]rx
D2

dr =
1

2
E f¹zssrdg2dr = z. s64d

The relation between the last integral and the constantz de-
fined by Eq.s57d is proven in Appendix E.

To find the denominator of Eq.s36d in the x̃ representa-
tion we also needDij and ]f /]x̃00. They can be obtained
from the x̃ representation of the Fokker-Planck equation for
large samples. Substitutingzsrd=zssrd+ ṽsrd with ṽ in the
form s59d into Eq. s32d and using the orthonormality condi-
tion for the eigenfunctionsf̃nmsrd, we obtain the Fokker-

Planck equationṖ=LP with

L = bÎga o
n,m

S ]

] x̃nm

l̃nmx̃nm+
1

U0

]2

] x̃nm
2 D . s65d

Here we neglected the terms of higher orders inx̃nm. One can
easily check that the solution of the stationary Fokker-Planck
equationLP0=0 is P0=e−F with F given by the Gaussian
approximations61d.

Comparing Eqs.s35d and s65d we conclude thatDij

=sbÎga /U0ddi j . To find ]f /]x̃00 we need to solve Eq.s37d
with L given by s65d, that is

S− l̃00x̃00 +
1

U0

] f

] x̃00
D ] f

] x̃00

= 0. s66d

Solving it with the conditionsf =1 inside the domainV si.e.,
at x̃00→−`d and f =0 at the domain boundaryx̃00=0, we find

that at the saddle point]f /]x̃00=−s2ul̃00uU0/pd1/2.
Substituting Eq.s41d for the numerator of Eq.s36d, and

Eqs. s61d and s63d along with the expressions forDij and
]f /]x̃00 into the denominator of Eq.s36d we reproduce the
result s56d with the prefactor given by

ti
* .

p2

4Îul̃00uzbSa2
Y-, Y- = p

n,m
-Î l̃nm

lnm
. s67d

Here the productY- excludes the factors corresponding to

the three nonpositive eigenvaluesl̃nm. The coefficientslnm
denote the parameters 1+ei used in Sec. IV A. They coincide
with the eigenvalues of the Schrödinger equations60d in the
absence of the attractive potential −2zssrd.

To evaluate the infinite productY- we need to find the
continuous spectrum of Eq.s60d. The radial part off̃nm os-
cillates as a function ofr with the wave vectorqn. The phase
of these oscillations atr→` is shifted bydmsqnd due to the
scattering in the attractive potential −2zs. The eigenvalues of
the continuous spectrum are expressed in terms of these scat-
tering phase shifts as follows:

l̃nm= 1 +qn
2 . 1 +Spn

R
D2S1 −

dmspn/Rd
pn

D2

. s68d

This result is derived for a round sample of dimensionless
radiusR@1; the derivation and the expression for the phase
shifts dm are given in Appendix F. The expression for the
eigenvalueslnm is given by Eq.s68d with dm=0.

It is convenient to calculate the logarithm ofY-, thereby
transforming the product overn andm to a sum. Taking the
large sample limit,R→`, we replace the sum overn by an
integral over q=pn/R. Then expanding the integrand in
small parameterdm/n, we find

ln Y- . −
1

p
E

0

` S o
m=−`

`

dmsqdD q dq

1 + q2 . s69d

To investigate the convergence of the integral we need to
evaluate the sum of the phase shifts at largeq. This is ac-
complished with the help of the following “Friedel sum
rule:”

U o
m=−`

`

dmsqdU
q→`

= 2z s70d

proven in Appendix F. The asymptotic behaviors70d of the
phase shifts implies that the integral in Eq.s69d diverges
logarithmically atq→`. This ultraviolet divergence signals
that Y- is determined by a large wave vector cutoff or,
equivalently, by some short distance scale. An analogous di-
vergence appeared in the prefactor of the mean switching
time in small samples, Sec. IV A. There we have shown that
this short distance cutoff is of the order of the mean free path
l. Following the same recipe, we cut off the integral in Eq.
s69d at q, r0/ l, and with logarithmic accuracy find

ln Y- . −
2z

p
lnS r0

l
D . s71d

Substituting this result into Eq.s67d, we obtain the prefactor

ti
* ,

1

bSa2S l

r0
D2z/p

. s72d

This expression completely describes the parametric depen-
dence of the prefactor of the mean switching time in large
samples. On the other hand, because of the ultraviolet diver-
gence ofY-, the numerical coefficient inti

* cannot be deter-
mined without detailed treatment of charge transport at short
length scales.39

2. Renormalization of threshold voltage in large samples

Expressions72d for the prefactorti
* implies that in large

samples the switching rateti
−1 diverges atl →0. In Sec.
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IV A 2 we encountered the same problem while considering
small samples. There it was shown that the dependence oft
on the mean free path can be absorbed into the definition of
the threshold voltageVth. Following the same renormaliza-
tion technique, one can shift the threshold voltageVth by the
amount

dVth = −
1

4p

g

ah
ln

r0

l
, s73d

chosen in such a way that the resulting correction to the
exponential in Eq.s56d cancelsY- in the prefactorti

* , see
Eqs. s67d and s71d. The renormalized result for the mean
switching time then takes the form

ti ,
1

bSaR
2 expS8zhaR

g
D, aR = a + adVth. s74d

This expression is equivalent to Eqs.s56d ands72d up to the
correction in the prefactorti due to the substitutiona→aR.

The characteristic length scaler0 is sensitive to the posi-
tion of the threshold voltage, so its value must be renormal-
ized. Since the size of the critical nucleus anddVth are
coupled to each other, Eq.s73d, they should be evaluated
self-consistently,

rR =
Îh

fsa + adVthdgg1/4, s75ad

dVth = −
1

4p

g

ah
ln

rR

l
. s75bd

To find dVth one can solve the system of equationss75d it-
eratively starting withrR=r0. The results73d then should be
understood as the first iteration of Eq.s75bd.

Upon the substitution of the shifts75bd into Eq. s74d, the
logarithm of the switching timeti acquires an additional
logarithmic dependence on voltage due to the bias-dependent
renormalization ofVth. This dependence is physically mean-
ingful and can, in principle, be tested experimentally. How-
ever, these corrections to the voltage dependences56d of ti
are small, and to the leading order lnti is still linear in volt-
age.

B. Nucleation near sample boundaries

In Sec. V A we studied the nucleation processes in very
large samples assuming that the switching initiates far from
the boundariessi.e., at distances significantly greater thanr0d.
In this section we show that the switching can be more ef-
fective when it is initiated near the boundaries of the sample
and evaluate the mean switching time for such processes.

1. Nucleation at a smooth edge

To study the nucleation near an edge which is smooth on
the scaler0, we model the sample by a half-plane and set up
the coordinate system so thatrx is the coordinate along the
boundary andry is positive inside the half-plane. Then the
boundary conditions54d takes the formzry

8 srx, +0d=0. If we
place the center of the saddle-point solutionzs shown in Fig.

4 on the edge of the sample, the resulting function

zesrx,ryd = zssfsrx − rx
s0dd2 + ry

2g1/2d s76d

automatically satisfies not only Eq.s53d but also the bound-
ary condition. Therefore, the expressions76d gives the
saddle-point density for the half-plane.

One can argue that there are no other saddle-point solu-
tions for edge switching. Indeed, suppose that we have a
solution z̃srx,ryd of Eq. s53d for a half-plane. Then we can
define the functionzsrx,ryd in the entire plane, so thatz
= z̃srx,ryd for ry.0, and z= z̃srx,−ryd for ry,0. By con-
structionzsrx,ryd satisfies Eq.s53d at ryÞ0. However, this
procedure does not guarantee that the derivativezry

8 is con-
tinuous at ry=0; as a result]2z/]ry

2 may have a delta-
function contribution. More specifically,zsrx,ryd satisfies the
equation

− ¹2z+ z− z2 = − 2z̃ry
8 srx, + 0ddsryd. s77d

If in addition z̃srx,ryd satisfies the boundary conditions54d,
i.e., z̃ry

8 srx, +0d=0, Eq. s77d coincides with Eq.s53d every-
where in the plane. Then by constructionzsrx,ryd=zssrd, and
thereforez̃srx,ryd is given by a half of the saddle-point so-
lution zs shown in Fig. 4 with its center on the boundary of
the half-plane. Thus, there are no saddle-point solutions for
edge switching excepts76d.

The main exponential dependence of the mean switching
time t is given byeFhzsj. In the definitions34d of Fhzj the
integral is taken over the area of the sample. In the case of
switching far from the boundaries it is over an entire plane,
while for the edge switching this integral is over a half-plane.
ThereforeF is reduced by a factor of 2 compared to the case
of switching far from the boundaries. Thus, instead of Eq.
s56d, the expression fort at the edge takes the form

te = te
* expS4z

hasVth − Vd
g

D . s78d

The evaluation of the prefactorte
* is similar to the one for

the switching in the middle of a large sample, Sec. V A 1. In
that case we found two types of modes for the azimuthal part
of the eigenfunctionsf̃nmsrd of Eq. s60d, namely, sinmw and
cosmw. At the edge only the eigenfunctions proportional to
cosmw are consistent with the boundary conditionzry

8 srx,
+0d=0 on the dimensionless densityz. In the notations of
Sec. V A 1 these modes correspond tom=0, 1, 2,… .

The functionalFhzj is invariant with respect to the shifts
of densityzsrx,ryd along the edge of the sample. ThusFhzj
has a single zero modex̃01; it corresponds to the eigenfunc-
tion with the azimuthal part cosw. Integration over the zero
mode, in analogy with Eq.s63d, is performed as

E dx̃01 =Îz

2

P
r0

, s79d

whereP is the perimeter of the sample.
To evaluate the prefactor we again use formulas36d. Ex-

pressions41d for the numerator and the formulas forDij and
]f /]x̃00 in large samples are still applicable, as they were
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obtained in a way independent of the exact form of the
saddle-point density. Following the procedure of Sec. V A 1,
we find the prefactorte

* in the form

te
* =

p3/2Y9

Î2zul̃00ubg1/4a5/4P
, Y9 = p

n,mù0
9Î l̃nm

lnm
, s80d

cf. Eq. s67d. The definition ofY9 assumes that the factors

corresponding to the two lowest eigenvalues,l̃00 andl̃01, are
excluded.

In the productY9 the quantum numberm changes from 0
to `, while in Y- the same product is from −̀to `. Thus

using the fact thatl̃nm andlnm are even functions ofm, we
obtain

ln Y9 .
1

2
ln Y- . −

z

p
lnS r0

l
D , s81d

see Eq.s71d.
Similarly to Eq. s72d we find the prefactor oft for the

edge switching

te
* ,

1

bPg1/4a5/4S l

r0
Dz/p

. s82d

Note that due to the ultraviolet divergence ofY9 we can
evaluatete

* only up to an undetermined constant.
Performing the same renormalizations73d of the threshold

voltage as in Sec. V A 2, one can eliminate the explicit de-
pendencelz/p of the prefactor on the mean free path and
obtain the following expression for the mean switching time
at the edge:

te ,
1

bPg1/4aR
5/4expS4zhaR

g
D . s83d

The exponent in Eq.s83d is a factor of 2 smaller than the
exponent oft for the switching far from the boundaries, Eq.
s74d. Far from the threshold the exponential factor is domi-
nant, and therefore edge switching is more efficient. To de-
termine which switching mechanism is more efficient near
the threshold, one needs to take into account the depen-
dences of the prefactors in Eqs.s74d ands83d on the dimen-
sions of the device.

2. Nucleation in a corner

In Sec. V B 1 we considered the processes of switching
initiated near a smooth edge of the sample. In samples with
pronounced corners, such as the devices of square or trian-
gular shape, there is also a possibility of nucleation in a
corner. As we will show, such processes may be more effi-
cient than the nucleation in the interior and at the edges of
the sample.

We consider a corner of angleu,p. Similarly to the dis-
cussion in the beginning of Sec. V B 1, one can show that the
saddle-point solutionzssrd centered at the corner both solves
the equations53d and satisfies the boundary conditions54d.

The subsequent consideration is similar to the one for the
switching at a smooth edge of a large sample, Sec. V B 1. At

u,p the functionalFhzj does not possess translational sym-
metry with respect to the shifts ofzsrd, and therefore there
are no zero modes. Due to the boundary conditions54d the
allowed modes of the azimuthal part of the eigenfunction
f̃nmsrd of Eq. s60d are cosspmw /ud. Then instead of Eqs.
s78d and s80d, we obtain

tc =
2pY8

Îul̃00ubÎga
expS4uzha

pg
D, Y8 = p

n,mù0
8Î l̃nm

lnm
.

s84d

Here l̃nm are the eigenvalues of Eq.s60d with the boundary
conditionss54d, which take the forms]f̃nm/]wduw=0,u=0 for
the corner switching. Unlike in Secs. V A 1 and V B 1, here

at n@1 the eigenvaluesl̃nm are given by Eqs.s68d andsF4d
with m replaced bypm/u. The productY8 excludes the fac-

tor corresponding to the negative eigenvaluel̃00.
Following closely the calculations of Secs. V A 1 and

V B 1, one can find the prefactor oftc, and the expression for
the mean switching time takes the form

tc ,
1

bÎga
S l

r0
Duz/p2

expS4uzha

pg
D . s85d

One might expect that atu→p this result should coincide
with Eqs. s78d and s82d describing the edge switching. On
the other hand, the prefactors for the edge and corner switch-
ing are qualitatively different, since the latter does not de-
pend on the perimeterP. This is due to the fact that atu

,p there is no zero mode, i.e., alll̃nm exceptl̃00 are posi-

tive. At u→p the eigenvaluel̃01→0, which corresponds to
the appearance of a zero mode. In this case one needs to
apply the same procedure as in Sec. V B 1, which will lead
to the results82d for the prefactor.

Performing the same renormalizations73d of Vth as in
Secs. V A 2 and V B 1, we find the expression for the mean
switching time at a corner of angleu,

tc ,
1

bÎgaR

expS4uzhaR

pg
D . s86d

Note that atu,p the exponent oft for the corner switching
is smaller than that for both interior and edge switching. This
makes corner switching more efficient far from the threshold.

VI. DISCUSSION

In the preceding sections we studied the mean timet of
switching from the metastable to the stable current state in
double-barrier resonant-tunneling structures. We calculated
both the exponentials and prefactors oft for switching in the
small sample regimefEq. s18dg and for the interior, edge, and
corner switching in the large sample regimefEqs.s74d, s83d,
ands86d, respectivelyg. In this section we discuss the depen-
dence of the mean switching time on voltage for different
structural parameters of DBRTS.

We concentrate on the case of round samples, such as the
ones used in the recent experiments.9,10 As we have shown,
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when the voltageV is tuned close to the threshold, the size of
critical nucleusr0 is large compared to the radius of the
sampleL, and the device is in the small sample regime. If the
voltage is far fromVth, the device is in the large sample
regime,L@ r0. In a typical experimentt is measured in a
single device for different values of bias. We will therefore
assume that all structural parameters and the size of the
sample are fixed, and discuss the switching time as a func-
tion of voltage. For comparison with experiment we will not
distinguish betweenrR andr0 in this section, since the loga-
rithmic in voltage corrections due to the renormalization of
the threshold voltageVth are more challenging to observe.

Our approach is valid as long as the exponents in the
expressions for the switching time, Eqs.s18d, s56d, ands78d
are much greater than unity. To check when these conditions
are satisfied, it is convenient to write the exponent in Eq.
s56d as

8zha

g
= S d

r0
D4

. s87d

Here we introduced a new characteristic length scale

d ; S8zh3

g2 D1/4

s88d

and applied the definition ofr0 given by Eq.s31bd. Note that
the length scaled depends on structural parameters of the
device, but not on the sample size or bias.

Similarly, the exponent of the switching times18d in a
small sample can be expressed in terms ofd and r0 as

4Sa3/2

3g1/2 =
p

6z

L2

r0
2S d

r0
D4

, s89d

where we used the fact that in round samplesS=pL2. This
exponent is much greater than unity atr0! sLd2d1/3. On the
other hand, the regime of small sample is defined by the
condition r0@L. Therefore, it exists only in sufficiently
small samples,L!d. In this case close to the threshold there
is a region of 3/2-power law behaviors18d. As voltage tuned
further away fromVth si.e., at r0!Ld, it crosses over to the
region of linear voltage dependence of lnt for the regime of
large sample, see solid line in Fig. 5sad.

In large round samples the mean switching timet is given
by t−1=ti

−1+te
−1. Therefore, to find the slope of linear seg-

ment of the curve in Fig. 5sad, one must compare the rates of
switching in the interior and at the edge. Using Eqs.s74d and
s83d, the ratio of the rates can be expressed as

te
−1

ti
−1 ,

d

L
expF1

2
S d

r0
D4

− 3 ln
d

r0
G . s90d

At L!d this result shows that the switching always occurs at
the edge rather than in the interior of the sample.

To summarize, we found that in samples of radiusL!d
starting at voltage differencesVth−Vd corresponding tor0

,sLd2d1/3, one first observes the region of 3/2-power law
dependences18d of ln t. Then, assVth−Vd increases, follows

the region of linear dependences83d corresponding to the
switching at the edge in the regime of large sample, see solid
line in Fig. 5sad.

At L@d the system is never in the small sample regime.
In this case the dependence of lnt on voltage is linear, but it
may be due to either interior or edge switching. According to
Eq. s90d, at r0&d and very largeL interior switching domi-
nates. At very smallr0 the exponential in Eq.s90d becomes
very large, and therefore the switching takes place at the
edge. The crossover voltageV* between these two regions of
linear dependence can be determined from the condition
te

−1=ti
−1 applied to Eq.s90d,

V* < Vth −
2h2

gad4ln
L

d
. s91d

Thus, in these large samples the interior switchings74d
dominates betweenV* andVth, whereas at voltage belowV*

the edge switchings83d prevails. The dependence of lnt on
voltage forL@d is shown schematically in Fig. 5sbd by solid
line.

If the sample size is of orderd, the dependence of lnt on
voltage can be obtained from the dependences shown in Fig.
5sad and Fig. 5sbd. At L,d the region of 3/2-power law
dependence in Fig. 5sad and the interior switching region in
Fig. 5sbd disappear. Thus, atL,d one can only observe the
region of linear voltage dependence corresponding to the
edge switching.

In samples with pronounced corners the dependence of
ln t on voltage is different due to the possibility of corner
switching. The mean switching timet in these samples is

FIG. 5. Schematic dependence of the logarithm of the mean
switching timet on voltage.sad In round samples atL!d, close to
the threshold there is a region of 3/2-power law dependence of lnt,
followed by the region of linear dependence corresponding to the
switching at the edge in the regime of the large sample. In samples
with pronounced corners the region of linear dependence corre-
sponds to the switching at the sharpest cornersdashed lined. sbd At
L@d, two regions of different linear behavior corresponding to the
switching in the interior and at the edge of the large round sample
are present. In samples with pronounced corners these two regions
are followed by an additional region of linear voltage dependence
corresponding to the switching at the corner of smallest angleu
shown by dashed line. The slope of this linear dependence is
smaller by a factor ofp /u than that of edge switching.
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given by t−1=ti
−1+te

−1+tc
−1. At L!d an analysis similar to

that for round samples shows that the region of linear depen-
dence corresponds to the switching at the sharpest corner,
Eq. s86d. This dependence is illustrated by dashed line in Fig.
5sad. At L@d, the two regions of interior and edge switching
are followed by an additional region corresponding to the
switching at the sharpest corner assVth−Vd becomes large,
see dashed line in Fig. 5sbd.

Depending on the ratio ofL and d two qualitatively dif-
ferent voltage dependences of lnt are expected. To see
whether it is possible to observe them experimentally, we
make a crude estimate of the parameterd. Substitutingh
=s / c̃b into Eq. s88d and using the estimates ofg and B
found in Appendix A, we get

d ,
1
În

S "s

e2TR
D3/4STL

TR
D1/2

. s92d

To obtain this expression the capacitance of the device per
unit area was estimated asc,e2n/EF, and the energy of the
level in the wellE0 was assumed to be of the order ofEF.
The electron densityn in the well is typically of the order of
231011cm−2. The transmission coefficientsTL,R of the left
and right barriers can be varied in the range from 1 to 10−4,
whereas the conductivity measured in units ofe2/" varies
from 1 to 100. AssumingTL,TR, the low bound d
,20 nm is achieved ats,e2/" and TL,R,1. The upper
boundd,600 mm is achieved by substituting the maximum
value of the conductivity and the minimum value of the
transmission coefficient. These estimates show that both the
cases ofL!d and L@d are experimentally achievable in
modern DBRTS, as the sample sizes range from 1 to
103 mm.

The available experimental data10 confirm that the depen-
dence of the mean switching time on voltage is indeed ex-
ponential. Based on Eq.s92d we estimated,10 mm, which
is somewhat smaller than the radius of the sampleL
=60 mm. Thus, one should expect the logarithm of the mean
switching time to behave as shown in Fig. 5sbd. sThe switch-
ing timet is referred to as therelocationtime in Ref. 10.d On
the other hand, it was observed in Ref. 10 that lnt bends
upwards, which suggests thatL!d, see Fig. 5sad. One of the
possible explanations can be that this experiment was per-
formed in superlattices, rather than in DBRTS studied in this
paper, which makes our estimate ofd unreliable. To test our
theory in more detail, it would be interesting to carry out
similar measurements oft in several samples of different
size but with the same structural parameters. This will ensure
that both dependences depicted schematically in Fig. 5sad
sL!dd and Fig. 5sbd sL@dd will be observed. In addition,
the exponential dependence in Ref. 10 is not very pro-
nounced, sincet varies by only one order of magnitude. This
suggests thatt was measured rather close to the threshold,
and therefore the data captures only the initial part of either
linear dependence for interior switchingfFig. 5sbdg or
3/2-power law dependence, Fig. 5sad. To observe the entire
bias dependence shown in Fig. 5sad or Fig. 5sbd, a measure-
ment oft in a wider range of voltage is needed.
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APPENDIX A: CALCULATION OF COEFFICIENTS A AND
B IN EQ. (12)

In this appendix we find the functionsAsNd andBsNd in
Eq. s12d in the vicinity of the threshold. We will assume that
the parameters15d is small,l!1. It will be convenient here
to considerA and B as functions of the electron densityn
rather thanN=nS.

Let us write the expression forA=JL−JR near the thresh-
old. On the upper branch of theI-V curve, the level in the
well lies within the conduction band in the left lead; from
Eq. s9d we obtain eV/2+e2N/2C+E0.eV. On the lower
branch, the level is below the bottom of the conduction band
in the left leadeV/2+E0,eV, so that no current can flow
through the well andN=0. Therefore, in the bistable region

eV−
e2N

2C
,

eV

2
+ E0 , eV. sA1d

At l!1, it follows from Eq. s8d that e2N/2C is small in
comparison withEF andE0. One can then see from Eq.sA1d
that E0.eV/2, and Eq.s9d results inef.eV/2. Then from
Eq. s10bd we find GR=Î2gRE0. The expressions7d for the
rateJL can also be simplified. Forl!1 andgL,gR, to first
order inl the expression in the square brackets of Eq.s7d is
sSm/p"2dEF. Using Eqs.s5d, s7d, and s10ad with all the
above simplifications, close to the thresholdA=JL−JR can be
approximated as

Asn,Vd =
gL

"
ÎE0SE0 −

eV

2
+

e2n

2c
D Sm

p"2EF −
Î2gRE0

"
nS.

sA2d

The densityn on the metastable and unstable branches of
the I-V curve is found by solving the equationAsn,Vd=0,
which reduces to the quadratic equation,

Se2n

2c
D2

− Sl
gL

gR
D2 EF

2

2E0
Se2n

2c
D + Sl

gL

gR
D2 EF

2

2E0
SeV

2
− E0D = 0.

sA3d

At the threshold the two solutions forn coincide. This con-
dition enables us to find the threshold voltage and density

Vth =
2E0

e
S1 +

l2

8

gL
2

gR
2

EF
2

E0
2D , sA4d

nth =
l2

2
SgL

gR
D2 c

e2

EF
2

E0
. sA5d
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Using Eqs. s16d and sA5d, and the fact that near the
threshold GR=Î2gRE0, we find the value ofBsnd at the
threshold

Bsnthd = Î2l21

"

gL
2

gR

C

e2EF
2 . sA6d

Using Eqs.sA4d and sA5d we expandAsn,Vd given by
Eq. sA2d in Taylor series nearsnth,Vthd up to the first nonva-
nishing terms inn−nth and V−Vth, respectively. At the
thresholdAsnd=0 has only one solution, i.e., the first deriva-
tive with respect ton equals to zero, and therefore we need to
expand up to the second order inn. The result can be pre-
sented as

Asnd = −
Bsnthd

2
f− a + gsn − nthd2g, sA7ad

a =
2

l2SgR

gL
D2E0

EF
2 esVth − Vd, sA7bd

g =
2

l4SgR

gL
D4Se2

c
D2E0

2

EF
4 . sA7cd

Since dU/dN=−2A/B, the coefficientsa and g coincide
with those used in Eq.s14d.

Assuming rectangular potential profile in the well, param-
etersgL,R can be estimated in terms of the transmission co-
efficients of the barriers asgL,R=TL,R/p.

APPENDIX B: DERIVATION OF EQ. (21) FROM THE
DETAILED BALANCE PRINCIPLE

Let us consider two very close to each other pointsr 1 and
r 2 in the well. The system is in a local equilibrium, and the
electron distributions are given by Fermi functions. We as-
sume electrons to be sufficiently well coupled to the lattice,
so that the temperatureT is the same everywhere in the quan-
tum well. Then the probabilities of diffusion between these
two points are given by

WDtsr 1,r 2;nd = o
i j

Wij f is1 − f jd = o
i j

Wij f i f je
se j−m2d/T,

WDtsr 2,r 1;nd = o
i j

Wji f js1 − f id = o
i j

Wji f i f je
sei−m1d/T.

sB1d

Here i and j label the energy levels at positionsr 1 and r 2,
respectively; f is jd are the Fermi functions, andWij is the
probability of transition from occupied leveli to unoccupied
level j .

In equilibrium the transition rates satisfy the detailed bal-
ance condition

Wije
−ei/T = Wjie

−e j/T. sB2d

Our system is away from equilibrium, since the electro-
chemical potentialmsr d varies with the electron densitynsr d.
However, expressionsB2d is still applicable for the relevant

electron scattering processes. For example, in the case of
elastic scattering by impuritiesei =e j, and Wij =Wji due to
time reversal symmetry, so that Eq.sB2d holds. Furthermore,
one can easily check that for electron-phonon scattering ex-
pressionsB2d is also valid, because the phonons are not sen-
sitive to the change in electrochemical potential.

Strictly speaking in the presence of electron-electron scat-
tering expressionsB2d is incorrect. If electron during the
transition from statei to j scatters off an electron at position
r 18, the latter moves to positionr 28. Then one finds an addi-
tional factor of expfsm18−m28d /Tg on the right-hand side of
Eq. sB2d. However, because the electron-electron interaction
is screened, the distancer 28−r 18 is of the order of the screen-
ing length in the well. The change ofm at such short dis-
tances is small compared to the temperature, and thus Eq.
sB2d is still approximately correct.

Applying expressionsB2d to Eqs. sB1d we obtain Eq.
s21d. Since during a short time intervalDt an electron can
only diffuse over a short distance, the above proof is suffi-
cient for the purposes of Sec. III A.

As an additional remark, let us show that the expression
s21d also holds at larger distances. We consider the probabil-
ity density Wtsr i ,r f ;nd of diffusion from point r i to a rela-
tively distant pointr f. Let us divide the time intervalt into N
small intervalsDt= t /N. ThenWt can be represented in terms
of WDt in the following way:

Wtsr i,r f ;nd = p
k=1

N E WDtsr k,r k+1;nddr k+1,

wherer 1=r i and r N+1=r f. The distances between the points
r k and r k+1 are small, so that the expressions21d is appli-
cable. Since at small distancesDm!T, we can expand Eq.
s21d up to the linear terms inDm /T. Using this expansion we
can rewrite each integrand in the above expression in terms
of WDtsr k+1,r k;nd. Then evaluating the product overk we
obtain Eq.s21d. This completes the prove.

APPENDIX C: CALCULATION OF CONSTANT G IN
EQ. (24)

In this appendix we find the constantG in Eq. s24d for an
arbitrary scattering mechanism. This is accomplished by ex-
pressingG in terms of conductivitys.

If a small electrochemical potential gradient is applied in
the x direction, it gives rise to an electric current,

J = − Lys
]

]x
Sm

e
D , sC1d

whereLy is the width of the sample.
Let us find the expression for the current alongx axis at

x=0 in terms of the transition probability densityWDt. It is
given by the difference in the number of electrons crossing
the linex=0 from left to right and in the opposite direction in
unit time, namely,
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J =
e

Dt
E

0

Ly

dy1E
0

Ly

dy2E
−`

0

dx1E
0

`

dx2

3fWDtsr 1,r 2;nd − WDtsr 2,r 1;ndg. sC2d

In equilibrium, i.e., at]m /]x=0, the expression for the dif-
ference of probability densities in the second line of Eq.sC2d
vanishes. Away from equilibrium it can be found by using
the “detailed balance” expressions21d,

WDtsr 1,r 2;nd − WDtsr 2,r 1;nd .
m1 − m2

T
WDtsr 1,r 2;nd.

Expandingm1−m2.sx1−x2d]m /]x, one can see that the lin-
earized form of Eq.sC2d reproduces Eq.sC1d with the con-
ductivity given by

s =
e2

LyTDt
E

0

Ly

dy1E
0

Ly

dy2E
−`

0

dx1E
0

`

dx2

3sx2 − x1dWDtsr 1,r 2;nd. sC3d

It is important to note that this expression is taken in the
limit ]m /]x=0, so thatWDt in Eq. sC3d is an equilibrium
quantity. ThereforeWDt depends only on the distance be-
tween r 1 and r 2, i.e., WDtsr 1,r 2;nd=WDtsur 1−r 2u ;nd. Then
substituting new variablesx=x2−x1 and u=sx1+x2d /2 into
the integral in Eq.sC3d, and integrating overu, we find

s =
e2

2LyTDt
E

0

Ly

dy1E
0

Ly

dy2E
−`

`

dx

3 x2WDtsÎx2 + sy1 − y2d2;nd.

Changing the variables toy=y1−y2 and v=sy1+y2d /2,
and using the fact thatedv=Ly, we obtain

s =
e2

4TDt
E dr r2WDtsur u;nd. sC4d

Finally, comparing Eqs.s24d and sC4d we find G
=4Ts /e2.

APPENDIX D: STATIONARY SOLUTION OF EQ. (28)
NEAR THE THRESHOLD

In this appendix we discuss the stationary solutionPshnj
of the Fokker-Planck equations28d near the threshold. At
bias nearVth function bsnd can be approximated by a con-
stantb=bsnthd. Then the equation forPshnj takes the form

Su8snd +
d

dn
− 2h¹2n − T

2s

e2b
¹2 d

dn
DPshnj = 0. sD1d

Hereh=s / c̃b and 2a/b=2A/B=−u8snd, cf. Eq. s13d.
It is convenient to presentPshnj in terms of a functional

Fshnj, such thatPshnj=exps−Fshnjd. Then Eq.sD1d takes the
following simple form:

−
2sT

e2b
¹2ysr d + ysr d = fsr d, sD2d

where we introducedysr d=dFs/dn and fsr d=u8snd−2h¹2n.

Solution of this equation is given by

ysr d =E dr 8fsr 8dGsr − r 8d, sD3d

whereG is presented in terms of the modified Bessel func-
tion K0 as

Gsr d =
1

2prT
2K0sr/rTd, rT =Î2sT

e2b
. sD4d

At low T the characteristic sizerT of the Green’s function
G is very small, so thatG can be approximated by a
d-function. Then Eq.sD3d greatly simplifies,

d

dn
Fshnj = u8snsr dd − 2h¹2nsr d. sD5d

The solution of this equation reproduces Eq.s30d.
The exact criterion for validity of Eq.sD5d is given by the

condition rT! r0, where r0 is the characteristic size of the
function −u8snd+2h¹2n, see Eq.s31bd. After substitution of
the parameters of the problem from Eqs.s31bd andsA7d this
criterion takes the form

T ! l2s1 + ldSgL

gR
D3 EF

3

E0
3/2ÎesVth − Vd

. sD6d

To estimate the right-hand side ofsD6d we take the pa-
rametersl,1, EF,E0, esVth−Vd&EF and gL,gR. Then
the criterionsD6d reduces toT!EF. Therefore, one can ne-
glect the temperature term in Eq.s28d unless the structure is
strongly asymmetrical, so thatgL!gR.

APPENDIX E: PROPERTIES OF THE SADDLE-POINT
SOLUTION zs„r…

In this appendix we derive several relations between inte-
grals involving zssrd. Our goal is to express the integrals
es¹zsd2dr andezsdr in terms ofz defined by Eq.s57d.

Integrating Eq.s53d over the infinite plane and using the
fact thatzssrd decays rapidly at larger, we find

E zsdr =E zs
2dr. sE1d

To express the integral in Eq.s64d in terms of the constant
z, we transform it as

E s¹zsd2dr = −E zs¹
2zsdr = −E zs

2dr +E zs
3dr,

sE2d

where we used Eq.s53d to obtain the second line ofsE2d.
To express one of the integrals in the second line of Eq.

sE2d in terms of the other, we take advantage of the azi-
muthal symmetry of the saddle-point solution. Multiplying
Eq. s55d by r2zs8 and integrating overr, we find
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Ur2zs8
2

2
U

0

`

+E
0

`

r2 d

dr
Szs

3

3
−

zs
2

2
Ddr = 0.

The first term in this equation vanishes, sincezs~e−r at r
→`. The second term can be simplified by integration by
parts, resulting in

E zs
3dr =

3

2
E zs

2dr. sE3d

Using Eqs.s57d and sE1d–sE3d we find the following ex-
pressions for the integrals in Eqs.s64d and sF6d:

E s¹zsd2dr = 2z, E zsdr = 4z. sE4d

APPENDIX F: SOLUTIONS OF EQ. (60)

In this appendix we find the eigenvalues of continuous
spectrum of the Schrödinger equations60d. We consider a
round sample of dimensionless radiusR=ÎS/pr0

2 with the
critical fluctuation situated in the center. Note that since we
are interested in the case of large samples, the size of the
critical fluctuation is small compared to the sample size, i.e.,
R@1.

The potential −2zssrd is azimuthally symmetric, so it is
convenient to solve equations60d in polar coordinates. Sepa-
rating the variables in asf̃nmsrd=QnmsrdCmswd, we can
write the equation for the radial part as follows:

S−
d2

dr2 −
1

r

d

dr
+

m2

r2 − 2zssrdDQnmsrd = qnm
2 Qnmsrd,

sF1d

whereqnm
2 ; l̃nm−1. This equation is subject to two bound-

ary conditions:Qnmsrd is finite at the origin andQnm8 sRd=0.
Let us first consider an infinite sample. In the absence of

the attractive potential −2zs, the finite at the origin solutions
to Eq. sF1d are the Bessel functions of the first kindJmsqrd.
Their asymptotic behavior atr→` is

Jmsqrd .Î 2

pqr
cosFqr −

p

2
Sm+

1

2
DG . sF2d

In the presence of the attractive potential the asymptotic
form of the radial part of the eigenfunction modifies as fol-
lows:

Qmsrd .Î 2

pqr
cosFqr −

p

2
Sm+

1

2
D + dmsqdG . sF3d

Heredmsqd is the scattering phase shift due to the attractive
potential.

For our purposes we only need the expression fordm at
large wave vectorsq. At q@1 the phase shiftsdm!1, and
can thus be found in Born approximation,

dmsqd = pE
0

`

zssrdJm
2 sqrdr dr, sF4d

see also Eq.s14d in Ref. 40. Note thatdm is indeed small at
q@1, becauseJm

2 ~1/q.
In a finite sample the wave vectorsqnm are quantized.

Using the asymptotic formsF3d and the boundary condition
Qnm8 sRd=0, we find

qnm=
p

R
Sñ −

dmsqnmd
p

D , sF5d

whereñ is given byn+1/4 if m is even, and byn+3/4 if m
is odd, withn being a non-negative integer. Then the eigen-
valuesl̃nm are given by 1+qnm

2 . We use this result in Sec.
V A 1 to calculatepnl̃nm. This product is dominated by the
factors with largeqnm. Therefore in Eq.s68d we approximate
ñ by the radial quantum numbern and the argument of
dmsqnmd by pn/R.

In addition, in Sec. V A 1 we need an expression for the
sum of the phase shiftssF4d over the azimuthal quantum
numbersm. On the right-hand side of Eq.sF4d only the
Bessel functionsJmsqrd depend onm. Since the sum of
Jm

2 sqrd over m equals unity,41 we find

o
m=−`

`

dm = pE
0

`

zssrdr dr = 2z. sF6d

We used Eq.sE4d to express the above integral in terms of
the constantz.

This result can also be derived by means of the Friedel
sum rule which states that the sum of the phase shifts on the
left-hand side of Eq.sF6d is given bypN, whereN is the
average number of levels in the attractive potential
U=−2zssrd. Since the two-dimensional density of states
n2=1/4p, we find

N =
1

4p
E 2zssrddr. sF7d

Combining this expression with the Friedel sum rule we re-
produce the resultsF6d.
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