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Abstract

This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the
plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic
simulations of the probe are compared to the circuit model results. The perturbing effects of the disc

cavity in which the probe operates are also found.
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Model for Resonant Plasma Probe

1 INTRODUCTION

A model is constructed for the quarter wave resonator probe shown in Figure 1.

l

h

2a

Figure 1. Geometry of quarter wave probe resonator.

2 TRANSMISSION LINE MODEL

A one dimensional transmission line model is used [1]. The transverse dimension is modeled in terms
of cross sectional per unit length circuit parameters. The transmission line equations for time dependence
e−iωt are

dV

dz
= −ZI

Z = Zw − iωL

dI

dz
= −Y V
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l

Lt

Rrad

Ct

z

Figure 2. Transmission line circuit model for resonant probe.

Y = G− iωC
The transmission line parameters L and C for a two wire line can be found in the literature [1] and are
given in the two sections below on the termination inductance and capacitance. The impedance per unit
length of the two wires at high frequencies is

Zw ∼ Zs/ (πa)

Zs = (1− i)Rs

Rs = 1/ (σδ)

δ =
p
2/ (ωμσ)

The conductance per unit length of the dielectric medium (the plasma) can be found by inserting the
complex permittivity

ε = ε0 + iε00

associated with the plasma collision frequency into C.

2.1 Loads

The load circuit model we have in mind is shown in Figure 2. The end load conditions are

I (0) = −YtV (0) = Yt
1

Y

dI

dz
(0)

Yt = Gt − iωCt

ZtI ( ) = V ( ) = − 1
Y

dI

dz
( )
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Zt = Zwh− iωLt
The load parameters Lt and Ct represent the inductance of the “short” and the capacitance of the “open”
terminations. The internal impedance Zwh accounts for the penetration of the wire at the “shorted” end.
The load conductance Gt can be found by inserting the complex permittivity associated with the plasma
collision frequency into Ct.

2.2 Transmission Line Solution

Elimination of the voltage in the transmission line equations gives

µ
d2

dz2
+ γ2

¶
I = 0

where the propagation constant is

γ =
√
−ZY ≈ k

µ
1 +

i

2

Zw
ωL

¶µ
1 +

i

2

G

ωC

¶
and the wave number is taken as

k = ω
√
LC = ω

p
μ0ε

0

The general solution is

I (z) = I (0) cos (γz) +
1

γ

dI

dz
(0) sin (γz)

The condition at the “open” end (assuming the same complex permittivity, which accounts for the loss
parameters G and Gt, is used in the region surrounding the transmission line and at the “open” end) is

dI

dz
(0) =

Y

Yt
I (0) =

C

Ct
I (0)

and thus the current can be written as

I (z) /I (0) = cos (γz) +
1

γ
(C/Ct) sin (γz)

The condition at the “shorted” end

dI

dz
( ) = −Y ZtI ( ) = −Y Z

Zt
Z
I ( ) = γ2

Zt
Z
I ( ) ≈ γ2

Lt
L

µ
1 + i

Zwh

ωLt
− i

Zw
ωL

¶
I ( )

gives

cos (γ )− γ (Ct/C) sin (γ )

sin (γ ) + γ (Ct/C) cos (γ )
= γ (Zt/Z)

This is the equation for the resonant frequency.
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2.3 Plasma Parameters

The dielectric parameters are given in terms of plasma frequency and collision frequency. The complex
permittivity of a simple plasma is [2]

ε = ε0

"
1−

ω2p/ω
2

1 + iωeff/ω

#
or in terms of the complex components

ε0 = ε0

Ã
1−

ω2p
ω2 + ω2eff

!

ε00 = ε0

Ã
ω2pωeff/ω

ω2 + ω2eff

!
where the plasma frequency is

ω2p =
ne2

mε0
and the effective collision frequency is ωeff . The electron density is n, e is the electron charge, and m is
the electron mass.

3 INDUCTIVE TERMINATION

The procedure is to use a formula for the static inductance of a rectangular loop. One half this value is
differenced by subtraction of the inductance per unit length of a two wire transmission line times the length.
This difference forms the estimate for the terminating inductance of the “shorted” end of the resonator.
Using Grover [3] for the inductance of a rectangular loop of perfectly conducting wire with small radius a
and dimensions 2 and h

Lloop =

μ0
π

∙
h ln (2h/a) + 2 ln (4 /a) + 2

p
h2 + 4 2 − hArcsinh

µ
h

2

¶
− 2 Arcsinh (2 /h)− 2 (h+ 2 )

¸
, 2 , h >> a

We approximate with 2 >> h

Lloop ∼
μ0
π
[h ln (2h/a) + 2 ln (h/a)− 2h] , 2 >> h

Taking one half this inductance for the static resonator geometry and subtracting the transmission line
inductance per unit length

L =
μ0
π
Arccosh

µ
h

2a

¶
∼ μ0

π
ln (h/a) , h >> 2a
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times

Lt =
1

2
Lloop − L ∼ h

μ0
2π
[ln (2h/a)− 2]

4 CAPACITIVE TERMINATION

The procedure is to estimate the static capacitance of a long or semi-infinite two wire line charged to a
potential difference. The iterative procedure is a static version of that used to solve the problem of a thin
cylindrical antenna [4]. The two conductor capacitance per unit length, times the length, is subtracted to
yield the terminating capacitance of the “open” end of the resonator. The potential is (we use the thin wire
kernel here)

φ =
1

4πε

Z
0

⎡⎣ 1q
ρ2+ + (z − z0)2

− 1q
ρ2− + (z − z0)2

⎤⎦ q (z0) dz0
where

ρ± =

q
(x∓ h/2)2 + y2

The integral equation for the charge density is then found by setting φ = ±V/2 on the wire surface. We let
→∞

2πεV =

Z ∞
0

⎡⎣ 1q
a2 + (z − z0)2

− 1q
h2 + (z − z0)2

⎤⎦ q (z0) dz0
Now to develop an approximate solution we first write

2πεV = q (z)

Z ∞
0

⎡⎣ 1q
a2 + (z − z0)2

− 1q
h2 + (z − z0)2

⎤⎦ dz0

+

Z ∞
0

⎡⎣ 1q
a2 + (z − z0)2

− 1q
h2 + (z − z0)2

⎤⎦ [q (z0)− q (z)] dz0

Using

Z
0

dz0q
a2 + (z − z0)2

= Arcsinh
µ
− z

a

¶
+Arcsinh

³z
a

´
gives

2πεV = q (z) [ln (h/a)−Arcsinh (z/h) +Arcsinh (z/a)]
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+

Z ∞
0

⎡⎣ 1q
a2 + (z − z0)2

− 1q
h2 + (z − z0)2

⎤⎦ [q (z0)− q (z)] dz0

For small a we can write this as

2πεV ∼ Ωq (z)− q (z)
h
ln
³
z/h+

p
z2/h2 + 1

´
− ln (2z/h)

i

+

Z ∞
0

⎡⎣ 1

|z − z0| −
1q

h2 + (z − z0)2

⎤⎦ [q (z0)− q (z)] dz0

where we define

Ω = 2 ln (h/a)
An iterative solution is obtained by assuming Ω is large

q (z) /V ∼ 2πε
Ω

∙
1 +

1

Ω

n
ln
³
z/h+

p
z2/h2 + 1

´
− ln (2z/h)

o

+
1

Ω2

n
ln
³
z/h+

p
z2/h2 + 1

´
− ln (2z/h)

o2

− 1

Ω2

Z ∞
0

⎧⎨⎩ 1

|z − z0| −
1q

h2 + (z − z0)2

⎫⎬⎭
(
ln

Ã
z0/h+

p
z02/h2 + 1

z/h+
p
z2/h2 + 1

!
− ln (z0/z)

)
dz0

+ · ··]
The leading term is the transmission line capacitance per unit length

q0/V = C
where

C =
πε

Arccosh
¡
h
2a

¢ ∼ πε

ln (h/a)
, h >> 2a

The next term can be integrated to give the leading terminating capacitance

Ct ∼
2πε

Ω2

Z ∞
0

n
ln
³
z/h+

p
z2/h2 + 1

´
− ln (2z/h)

o
dz

∼ 2πhε
Ω2

Z ∞
0

n
ln
³
u+

p
u2 + 1

´
− ln (2u)

o
du

Letting

u+
p
u2 + 1 = s

16



1

2
(s− 1/s) = u

du =
1

2

¡
1 + 1/s2

¢
ds

gives

Ct ∼
2πhε

Ω2
lim
U→∞

"
1

2

Z U+
√
U2+1

1

ln (s)
¡
1 + 1/s2

¢
ds− U {ln (2U)− 1}

#
Using

Z U+
√
U2+1

1

ln (s)
¡
1 + 1/s2

¢
ds =

³
U +

p
U2 + 1

´n
ln
³
U +

p
U2 + 1

´
− 1
o
+ 1−

³
U +

p
U2 + 1

´−1 n
ln
³
U +

p
U2 + 1

´
+ 1
o
+ 1

gives

Ct ∼
2πhε

Ω2

To include the next term we write it as

Ct ∼
2πhε

Ω2
(1 + Ce/Ω)

where

hCe ∼
Z ∞
0

n
ln
³
z/h+

p
z2/h2 + 1

´
− ln (2z/h)

o2
dz

−
Z ∞
0

Z ∞
0

⎧⎨⎩ 1

|z − z0| −
1q

h2 + (z − z0)2

⎫⎬⎭
(
ln

Ã
z0/h+

p
z02/h2 + 1

z/h+
p
z2/h2 + 1

!
− ln (z0/z)

)
dz0dz

or

Ce ∼
Z ∞
0

n
ln
³
u+

p
u2 + 1

´
− ln (2u)

o2
du

−
Z ∞
0

Z ∞
0

⎧⎨⎩ 1

|u− u0| −
1q

1 + (u− u0)2

⎫⎬⎭
(
ln

Ã
u0 +

√
u02 + 1

u+
√
u2 + 1

!
− ln (u0/u)

)
du0du

Carrying the first of these out using integration by parts
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Z U

0

n
ln
³
u+

p
u2 + 1

´
− ln (2u)

o2
du =

n
ln
³
U +

p
U2 + 1

´
− ln (2U)

o2
U

−2
Z U

0

n
ln
³
u+

p
u2 + 1

´
− ln (2u)

oµ u√
u2 + 1

− 1
¶
du

=
n
ln
³
U +

p
U2 + 1

´
− ln (2U)

o2
U

−2
n
ln
³
U +

p
U2 + 1

´
− ln (2U)

o³p
U2 + 1− U − 1

´

+2

Z U

0

µ
1√

u2 + 1
− 1

u

¶³p
u2 + 1− u− 1

´
du

=
n
ln
³
U +

p
U2 + 1

´
− ln (2U)

o2
U

−2
n
ln
³
U +

p
U2 + 1

´
− ln (2U)

o³p
U2 + 1− U − 1

´

+2

Z U

0

½
2− 2u√

u2 + 1
− 1√

u2 + 1
− 1

u
√
u2 + 1

+
1

u

¾
du

=
n
ln
³
U +

p
U2 + 1

´
− ln (2U)

o2
U

−2
n
ln
³
U +

p
U2 + 1

´
− ln (2U)

o³p
U2 + 1− U − 1

´

+2
n
2U − 2

p
U2 + 1−Arcsinh (U) + ln

³
1 +

p
U2 + 1

´
+ 2− ln 2

o
In the limit U →∞

Z ∞
0

n
ln
³
u+

p
u2 + 1

´
− ln (2u)

o2
du = 4 (1− ln 2)

Using the symmetry

Z ∞
0

Z ∞
0

⎧⎨⎩ 1q
ν2 + (u− u0)2

− 1q
1 + (u− u0)2

⎫⎬⎭nln³u0 +pu02 + 1
´
− ln (2u0)

o
du0du

=

Z ∞
0

Z ∞
0

⎧⎨⎩ 1q
ν2 + (u− u0)2

− 1q
1 + (u− u0)2

⎫⎬⎭nln³u+pu2 + 1
´
− ln (2u)

o
du0du

and noting that
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Z U

0

⎧⎨⎩ 1q
ν2 + (u− u0)2

− 1q
1 + (u− u0)2

⎫⎬⎭ du0

= Arcsinh
µ
U − u

ν

¶
+Arcsinh

³u
ν

´
−Arcsinh (U − u) +Arcsinh (u)

Z ∞
0

⎧⎨⎩ 1q
ν2 + (u− u0)2

− 1q
1 + (u− u0)2

⎫⎬⎭ du0 = − ln ν +Arcsinh
³u
ν

´
+Arcsinh (u)

∼ 2 ln (2u/ν) , u→∞
we see that the integrals are convergent. The difference of the two sides shows that the second integral
vanishes. Note that the limit ν → 0, after the difference of the two sides is taken, produces the required
absolute value. Thus

Ce = 4 (1− ln 2)
and finally

Ct ∼ hC
1

Ω
[1 + 4 (1− ln 2) /Ω]

C ∼ 2πε/Ω

Ω = 2 ln (h/a)
A numerical calculation with = 5 cm, h = 3 mm, a = 0.3 mm gives Ct = ε (1.10 mm) whereas the formula
gives Ct = ε (1.1257 mm). This is an error of only 2.3%.

5 RESONANT FREQUENCY

Now we assume that

Ct/C <<

γCt/C << 1
and take

t = + Ct/C
The resonant condition then can approximately be written as
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cot (γ t) ≈ γ (Zt/Z) ≈ γ
Lt
L

∙
1 + i

Zw
ωL

µ
hL

Lt
− 1
¶¸

The preceding termination parameters are

Lt/L =
h

2

∙
1− 2

Ω
(2− ln 2)

¸

L =
μ0
2π
Ω

Ct/C =
h

Ω

∙
1 +

4

Ω
(1− ln 2)

¸

C = 2πε/Ω

Ω = 2 ln (h/a)

For the moment we ignore the loss terms γ → k and find

cot (k t) ≈ k
Lt
L
≈ k

h

2

∙
1− 2

Ω
(2− ln 2)

¸

t = +
h

Ω

∙
1 +

4

Ω
(1− ln 2)

¸
If we take a = 0.125 mm, h = 3 mm, and = 25 mm we find

t = 25.56 mm

cot (k t) ≈ kLt/L ≈ k (0.88 mm)

k = k0 −∆k

k0 t = π/2

cot (k t) ≈ ∆k t ≈ (k0 −∆k)Lt/L

∆k ( t + 0.88 mm) ≈ k0 (0.88 mm) =
π

2
(0.88 mm) / t

∆k ≈ k0Lt/L

t + Lt/L
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kr ≈
k0 t

t + Lt/L
≈ π/2

+ Ct/C + Lt/L
Thus the effect of both loads is a simple lengthening of the structure.

f = 2.8346 GHz
Without loads

k = π/2

f = 2.9979 GHz
equal to a 5.4% downshift in frequency. Note that Lt alone would give 2.89237 GHz and Ct alone would
give 2.9322 GHz. Now we need to add the loss terms and the shift due to the plasma.

6 RADIATION LOSSES

The radiation losses are estimated by first finding the magnetic vector potential from the current
distribution [5]

A (r) = μ0

Z
V

J (r0)
eik|r−r

0|
4π |r − r0|dV

0

Here we neglect the small loss part of the plasma permittivity and take

k = ω
p
μ0ε

0

We note that collision losses are included in the transmission line admittance per unit length (as well as the
“open” terminating admittance) in ε00. If the imaginary part of the permittivity becomes sizable compared
to the real part we would expect the collisional losses to dominate over the radiation. On the other hand, if
collisional losses and radiation losses are both small perturbational effects, we would expect that the two
loss contributions can be added separately.

Thus there are two components of the vector potential

Az (x, y, z) =
μ0
4π

Z
0

I (z0)

⎡⎣ eik
√
(x−h/2)2+y2+(z−z0)2q

(x− h/2)
2
+ y2 + (z − z0)2

− eik
√
(x+h/2)2+y2+(z−z0)2q

(x+ h/2)
2
+ y2 + (z − z0)2

⎤⎦ dz0

Ax (x, y, z) = −
μ0
4π

I ( )

Z h/2

−h/2

eik
√
(x−x0)2+y2+(z− )2q

(x− x0)2 + y2 + (z − )2
dx0

where we have approximated the “shorted” end as having constant current and taken the load current
I ( ) to be directed toward the −x direction. Now we will approximate the current distribution along the
transmission line to be the quarter wave form
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I (z) /I (0) = cos (γz) +
1

γ
(C/Ct) sin (γz)

I (z) /I ( ) =

∙
cos (k0z) +

1

k0
(C/Ct) sin (k0z)

¸
I (0) /I ( )

I (z0) ≈ I ( ) sin (k0z
0) = I ( ) sin

µ
πz0

2

¶
We are interested in the far zone field. Thus we approximate the potentials as

Az ∼
μ0
4πr

I ( )

Z
0

sin (k0z
0)
h
eik(r−(h/2) sin θ cosϕ−z

0 cos θ) − eik(r+(h/2) sin θ cosϕ−z
0 cos θ)

i
dz0

∼ −iμ0e
ikr

2πr
I ( ) sin {k (h/2) sin θ cosϕ}

Z
0

sin (k0z
0) e−ikz

0 cos θdz0

∼ −μ0e
ikr

4πr
I ( ) sin {k (h/2) sin θ cosϕ}

Z
0

h
ei(k0−k cos θ)z

0 − e−i(k0+k cos θ)z
0
i
dz0

∼ i
μ0e

ikr

4πr
I ( ) sin {k (h/2) sin θ cosϕ}

∙
ei(k0−k cos θ) − 1
(k0 − k cos θ)

+
e−i(k0+k cos θ) − 1
(k0 + k cos θ)

¸
Now taking k0 → k and subsequently k → π/ (2 ) (if the plasma sheath is large enough to substantially
change the propagation constant along the transmission line, then we need to carry this radiation integral
out without this further approximation, which can be done in terms of sine and cosine integrals)

Az ∼ i
μ0e

ikr

4πr
I ( ) (h/2) sin θ cosϕ

∙
eik (1−cos θ) − 1
(1− cos θ) +

e−ik (1+cos θ) − 1
(1 + cos θ)

¸
Similarly

Ax ∼ −
μ0
4πr

I ( )

Z h/2

−h/2
eik(r−x

0 sin θ cosϕ− cos θ)dx0

∼ −μ0e
ik(r− cos θ)

4πr
I ( )

Z h/2

−h/2
e−ikx

0 sin θ cosϕdx0

∼ −μ0e
ik(r− cos θ)

2πr
I ( )

sin {k (h/2) sin θ cosϕ}
k sin θ cosϕ

∼ −μ0e
ik(r− cos θ)

2πr
I ( )

h

2
where we have assumed that kh/2 << 1 and the final form is that associated with a small dipole. The far
zone fields are found from

H =
1

μ0
∇×A ∼ i

k

μ0
er ×A

E =
i

ωε
∇×H ∼ − k

ωε
er ×H ∼ −iωer × er ×A = iωAt
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where At denotes transverse components. The Poynting vector is

S =
1

2
E ×H∗

and in the far zone

Sr ∼
1

2μ0
ωker · [At × (er ×A∗t )] =

1

2μ0
ωk |At|

2 =
1

2μ0
ωk
³
|Aθ|2 + |Aϕ|2

´
Using the unit vector relations

ex = er sin θ cosϕ+ eθ cos θ cosϕ− eϕ sinϕ

ez = er cos θ − eθ sin θ
the spherical form of the potential (ignoring Ar) is

Aθ ∼ Ax cos θ cosϕ−Az sin θ

∼ −μ0e
ik(r− cos θ)

2πr
I ( )

h

2
cos θ cosϕ− i

μ0e
ikr

4πr
I ( ) (h/2) sin2 θ cosϕ

½
eik (1−cos θ) − 1
(1− cos θ) +

e−ik (1+cos θ) − 1
(1 + cos θ)

¾

∼ −μ0e
ik(r− cos θ)

2πr
I ( )

h

2
cos θ cosϕ

−iμ0e
ikr

4πr
I ( ) (h/2) cosϕ

n
eik (1−cos θ) (1 + cos θ) + e−ik (1+cos θ) (1− cos θ)− 2

o

∼ −μ0e
ik(r− cos θ)

2πr
I ( )

h

2
cos θ cosϕ− i

μ0e
ik(r− cos θ)

2πr
I ( ) (h/2) cosϕ

©
cos (k ) + i sin (k ) cos θ − eik cos θ

ª

∼ eik(r− cos θ)

2πr
(h/2)μ0I ( )

£
(−1 + sin (k )) cos θ − i cos (k ) + ieik cos θ

¤
cosϕ

Aϕ ∼ −Ax sinϕ ∼
μ0e

ik(r− cos θ)

2πr
I ( )

h

2
sinϕ

The power radiated is now found by integrating over the sphere at infinity

P =

Z 2π

0

Z π

0

Srr
2 sin θdθdϕ

=
1

2μ0
ωk

Z 2π

0

Z π

0

|Aθ|2 r2 sin θdθdϕ+
1

2μ0
ωk

Z 2π

0

Z π

0

|Aϕ|2 r2 sin θdθdϕ
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=
1

8π
ωμ0k |I ( )|

2 (h/2)2
Z 1

−1

¯̄
(−1 + sin (k ))u− i cos (k ) + ieik u

¯̄2
du

+
1

8π
ωμ0k |I ( )|

2 (h/2)2
Z 1

−1
du

=
1

8π
ωμ0k |I ( )|

2
(h/2)

2

Z 1

−1

h
(−1 + sin (k ))2 u2 − 2 (−1 + sin (k ))u sin (k u) + 1 + cos2 (k )− 2 cos (k u) cos (k )

i
du

+
1

4π
ωμ0k |I ( )|

2
(h/2)

2

=
1

4π
ωμ0k |I ( )|

2 (h/2)2

∙
1 +

1

3
(−1 + sin (k ))2 − 2 (−1 + sin (k ))

½
− 1
k
cos (k ) +

1

k2 2
sin (k )

¾
+ 1 + cos2 (k )− 2

k
sin (k ) cos (k )

¸
Letting k = π/2− v

P =
1

4π
ωμ0k |I ( )|

2 (h/2)2

"
1

3
4 sin4 (v/2) + 4 sin2 (v/2)

(
− 1

(π/2− v)
sin v +

1

(π/2− v)
2 cos v

)
+ 2 + sin2 v − 1

(π/2− v)
sin (2v)

#

∼ 1

2π
ωμ0k |I ( )|

2
(h/2)

2

µ
1− 2

π
v

¶
, v << 1

Using the approximation v = π/2− k << 1

P ∼ 1

2π
ωμ0k |I ( )|

2 (h/2)2
2

π
k

This is then used to find the quality factor or can be included in the circuit model as a lossy element. For
example, we could set

P =
1

2
Rrad |I ( )|2

to obtain

Rrad ∼
1

π

p
μ0/ε

0 (kh/2)2
2

π
k

This can be inserted as a perturbing series element at z = to account for radiation.
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Zt

Rrad

Zin

I( )l

Figure 3. Lumped circuit model at “shorted” termination.

7 CIRCUIT MODEL

It is convenient to derive the circuit model at the “shorted” end of the resonator, as shown in Figure 3.
The capacitance Ct at the end z = 0 can be transformed to the position z = by means of the distributions

I (z) = I (0)

∙
cos (γz) +

1

γ
(Y/Yt) sin (γz)

¸

V (z) = − 1
Y

dI

dz
= I (0)

1

Y
[γ sin (γz)− (Y/Yt) cos (γz)]

γ =
√
−ZY

to give the input impedance element

Zin = −V ( ) /I ( ) =
γ

Y

cos (γ )− γ (Yt/Y ) sin (γ )

sin (γ ) + γ (Yt/Y ) cos (γ )
= −Z

γ

cos (γ )− γ (Yt/Y ) sin (γ )

sin (γ ) + γ (Yt/Y ) cos (γ )
This impedance element is in series with Rrad and Zt. Resonance is achieved when

Im [Zin (ωr) + Zt (ωr)] = 0
An approximation to this condition, ignoring losses, was discussed previously. The quality factor can be
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found by setting

|Im [Zin (ωr +∆ωr) + Zt (ωr +∆ωr)]| = Re [Zin (ωr) + Zt (ωr) +Rrad (ωr)]
where

Q =
ωr
2∆ωr

Using a Taylor approximation

|Im [Zin (ωr +∆ωr) + Zt (ωr +∆ωr)]| ≈ |Im [Z0in (ωr) + Z0t (ωr)]|∆ωr
Let us ignore all loss terms on the right side of this equation so that we can write

Zin → i
k

ωC

cos (k )− k (Ct/C) sin (k )

sin (k ) + k (Ct/C) cos (k )
≈ i
p
L/C cot (k t)

where

t = + Ct/C

Zt → −iωLt
so that

Im [Z0in (ωr) + Z0t (ωr)] ≈ Im
∙
i
p
L/C

d

dω
cot
³
ω
√
LC t

´
− iLt

¸
ωr

= −L t csc
2
³
ωr
√
LC t

´
− Lt

Using the resonant condition

cot
³
ωr
√
LC t

´
≈ ωr

√
LC

Lt
L

this can be written as

− Im [Z 0in (ωr) + Z0t (ωr)] ≈

⎧⎨⎩1 +
Ã

ωrLtp
L/C

!2⎫⎬⎭L t + Lt

The real parts are (we are ignoring all terms that are quadratic in the loss elements)

γ =
√
−ZY ≈ k

µ
1 +

i

2

Zw
ωL

¶µ
1 +

i

2

G

ωC

¶
≈ k

µ
1 +

i

2

Rs

πaωL
+

i

2

ε00

ε0

¶

cos (γ ) ≈ cos
∙
π

2

µ
1 +

i

2

Rs

πaωL
+

i

2

ε00

ε0

¶¸
≈ −iπ

4

µ
Rs

πaωL
+

ε00

ε0

¶

sin (γ ) ≈ sin
∙
π

2

µ
1 +

i

2

Rs

πaωL
+

i

2

ε00

ε0

¶¸
≈ 1 +O

"µ
i

2

Rs

πaωL
+

i

2

ε00

ε0

¶2#
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Y = −iωC
µ
1 + i

G

ωC

¶
= −iωC

µ
1 + i

ε00

ε0

¶

Re [Zin] = Re

∙
γ

Y

cos (γ )− γ (Yt/Y ) sin (γ )

sin (γ ) + γ (Yt/Y ) cos (γ )

¸

Re [Zin (ωr) + Zt (ωr) +Rrad (ωr)] ≈ Rs (ωr)
h

πa
+Rrad (ωr)+

Re

⎡⎣ipL/C

µ
1 +

i

2

Rs

πaωL
− i

2

ε00

ε0

¶ −iπ4 ³ Rs
πaωL +

ε00

ε0

´
−
³
1 + i

2
Rs

πaωL +
i
2
ε00

ε0

´
(kCt/C)

1− i (kCt/C)
π
4

¡
Rs

πaωL +
ε00

ε0

¢
⎤⎦
ωr

≈ Rs (ωr)
h

πa

µ
1 +

Ct

hC

¶
+Rrad (ωr)+

π

4

n
1 + (krCt/C)

2
o½Rs (ωr)

πakr
+

ε00

ε0

p
L/C

¾
If we ignore terms that are quadratic in Ct/ (hC)

Re [Zin (ωr) + Zt (ωr) +Rrad (ωr)] ≈
π

4

½
Rs (ωr)

πakr
+

ε00

ε0

p
L/C

¾
+Rs (ωr)

h

πa
+Rrad (ωr)

The first term in the braces is the wire loss along the transmission line, the second term in braces is the
dielectric loss in the plasma along the transmission line, the third term is the wire loss along the “short”,
and the final term is radiation loss. The frequency shift is then

∆ωr ≈
π
4

n
Rs(ωr)
πakr

+ ε00

ε0

p
L/C

o
+Rs (ωr)

h
πa +Rrad (ωr)½

1 +
³
ωr
√
LCLt/L

´2¾
L t + Lt

The resonant frequency is approximately

kr = ωr
√
LC = ωr

p
μ0ε

0 ≈ π/2

+ Ct/C + Lt/L

and the quality factor is

Q =

π
4

p
L/C

∙
1 +

³
ωr
√
LCLt/L

´2¸
π
4

n
Rs(ωr)
πakr

+ ε00

ε0

p
L/C

o
+Rs (ωr)

h
πa +Rrad (ωr)

Dropping the small quadratic term in the short inductance finally gives

Q =
π
4

p
L/C

π
4

n
Rs(ωr)
πakr

+ ε00

ε0

p
L/C

o
+Rs (ωr)

h
πa +Rrad (ωr)

Note that the transmission line characteristic impedance (without the loss terms) is
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p
L/C ≈

p
μ0/ε

0 1

π
ln (h/a)

The first term of the denominator is the loss along the wires of the transmission line, the second term is the
loss resulting from plasma collisions along the transmission line, the third term is the loss along the wire at
the short and the final term is the radiation loss.

8 THIN PLASMA SHEATH

Now if there is a thin layer of radius b surrounding the wire, for which the medium is nearly free space,
the effect can be included by modifying the capacitance per unit length of the transmission line

1/C ≈ ln (h/b)
πε0

+
ln (b/a)

πε0
where ε0 is the permittivity of free space. To include the plasma losses we define the admittance per unit
length by

1/Y ≈ ln (h/b)−iωπε +
ln (b/a)

−iωπε0
When the excitation frequency is high compared to the plasma and collision frequencies the effect is quite
small.

We ignore this sheath at the “shorted” end since the voltage and electric field are small in this region.
At the “open” circuit end the electric field is large and we modify the terminating capacitance to

Ct ∼ C
h

Ω0
[1 + 4 (1− ln 2) /Ω0]

Ω0 = 2

∙
ln (h/b) +

ε0

ε0
ln (b/a)

¸
In terms of the admittance

Yt ∼ Y
h

Ω0
[1 + 4 (1− ln 2) /Ω0]

8.1 Multipole Moment Solution

A check can be easily made regarding the use of the approximate formula

1/C ≈ 1

πε0
Arccosh

µ
h

2b

¶
+
ln (b/a)

πε0
≈ ln (h/b)

πε0
+
ln (b/a)

πε0
(1)

when the plasma is lossless. A multipole approach was previously used to model a dielectric coated wire
above a ground plane [8]. Symmetry can be used to relate the case of a wire above a ground plane to
the two wire line problem discussed here. Multipoles are used to represent the potential function with
unknowns gn and bgn
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φ = − q

2πε0
ln (ρ) +

∞X
n=1

(b/ρ)n gn
2πε0

cos (nϕ)

+
q

2πε0
ln (ρ0)−

∞X
n=1

(−b/ρ0)n gn
2πε0

cos (nϕ0) , ρ > b

= − qdr

2πε0
ln (b) +

∞X
n=1

gdrn
2πε0 (b/ρ)n

cos (nϕ)− bq
2πε0

ln (ρ) +
∞X
n=1

(b/ρ)
n bgn

2πε0
cos (nϕ)

+
q

2πε0
ln (ρ0)−

∞X
n=1

(−b/ρ0)n gn
2πε0

cos (nϕ0) , ρ < b

where

−π < ϕ ≤ π

ρ0 =

q
(x− h)2 + y2 =

p
ρ2 − 2hρ cosϕ+ h2

ϕ0 = arctan

µ
y

x− h

¶
= arctan

µ
ρ sinϕ

ρ cosϕ− h

¶

=

∙
π − arctan

µ
ρ |sinϕ|

h− ρ cosϕ

¶¸
sgn (ϕ)

where the arctan in the final equation is taken to lie between 0 and +π/2 (if ϕ = 0 or π we take ϕ0 = π)

π/2 < ϕ0 ≤ π or − π < ϕ0 < −π/2
Note that the potential on the ground plane is zero. Now setting the voltage equal to φ = V on ρ = a < b
gives

V = − qdr

2πε0
ln (b) +

∞X
n=1

gdrn
2πε0 (b/a)n

cos (nϕ)− bq
2πε0

ln (a) +
∞X
n=1

(b/a)
n bgn

2πε0
cos (nϕ) (2)

+
q

2πε0
ln (ρ0)−

∞X
n=1

(−b/ρ0)n gn
2πε0

cos (nϕ0)

where

ρ0 =
p
a2 − 2ha cosϕ+ h2

ϕ0 = arctan

µ
a sinϕ

a cosϕ− h

¶
=

∙
π − arctan

µ
a |sinϕ|

h− a cosϕ

¶¸
sgn (ϕ)

Continuity of the potential at ρ = b gives
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− q

2πε0
ln (b) +

∞X
n=1

gn
2πε0

cos (nϕ) = − qdr

2πε0
ln (b) +

∞X
n=1

gdrn
2πε0

cos (nϕ)− bq
2πε0

ln (b) +
∞X
n=1

bgn
2πε0

cos (nϕ)

Because this must hold over the entire circumference we can equate the summands

q = qdr + bq
gn = gdrn + bgn

Next we equate the normal component of the displacement at ρ = b

−q −
∞X
n=1

ngn cos (nϕ)

+q
b

ρ0
∂ρ0

∂ρ
+
∞X
n=1

n (−b/ρ0)n gn
∙
b

ρ0
∂ρ0

∂ρ
cos (nϕ0) + b

∂ϕ0

∂ρ
sin (nϕ0)

¸

=
∞X
n=1

n (ε0/ε
0) gdrn cos (nϕ)− (ε0/ε0) bq − ∞X

n=1

n (ε0/ε
0) bgn cos (nϕ)

+q (ε0/ε
0)

b

ρ0
∂ρ0

∂ρ
+
∞X
n=1

n (−b/ρ0)n gn (ε0/ε0)
∙
b

ρ0
∂ρ0

∂ρ
cos (nϕ0) + b

∂ϕ0

∂ρ
sin (nϕ0)

¸
(3)

where

∂ρ0

∂ρ
= (ρ− h cosϕ) /

p
ρ2 − 2hρ cosϕ+ h2

∂ϕ0

∂ρ
=

−h sinϕ
ρ2 − 2hρ cosϕ+ h2

and on ρ = b

ρ0 =
p
b2 − 2hb cosϕ+ h2

ϕ0 = arctan

µ
b sinϕ

b cosϕ− h

¶
=

∙
π − arctan

µ
b |sinϕ|

h− b cosϕ

¶¸
sgn (ϕ)

∂ρ0

∂ρ
= (b− h cosϕ) /

p
b2 − 2hb cosϕ+ h2

b
∂ϕ0

∂ρ
=

−hb sinϕ
b2 − 2hb cosϕ+ h2
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Solid curve is multipole model
Large dot is free space formula
Dash curve is simple fit

h = 4b

Figure 4. Calculation for proximity effect between cylindrical arms on the capacitance per unit length
of the resonator as a function of the normalized permittivity ε0 of the plasma. The solid curve includes a
series of multipole moments, yielding an exact (two-dimensional) representation for the cylindrical arms, the
dashed curve is the simple series combination of the symmetrical homogeneous plasma sheath (free space
permittivity) and the exterior plasma dielectric, and the large dot is the free space plasma value. The
center-to-center spacing between arms is h, the sheath has radius b, and the perfect conductor has radius a.

b

ρ0
∂ρ0

∂ρ
=

b (b− h cosϕ)

b2 − 2hb cosϕ+ h2

If we truncate the series at n = N we have 2N + 2 unknowns (qdr, q, gn, and gdrn ). The constant V is set
and bq and bgn are related by the above equations. If we match (2) and (3) at the points

ϕ = mπ/N , m = 0, 1, ..., N
we then have 2N + 2 equations in 2N + 2 unknowns. The capacitance per unit length in the two wire line
problem is found from

2C = q/V

Figures 4 and 5 show a comparison of the multipole model (solid curves), the first equality on the right
of the simple series combination (1) (dash curves), and the formula C/ε0 = π/Arccosh

¡
h
2a

¢
(for ε0 = ε0)

(shown as the large dots).

Notice that the series form (1) (the dashed curves in the graphs) is an accurate approximation
throughout the graph. It turns out that for ε0 → ε0 and h > 2b the second equality in (1) is even closer to
the multipole solution than the first equality, shown in the figures (indeed for the homogeneous sheath with
a = 0.0625 mm, b = 0.3625 mm, h = 3 mm, and ε0/ε0 = 0.95 the ratio of the capacitance found from the
multipole solution to the second formula in (1) is 1.0002). Note in the first graph that if a = 0.0625 mm,
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Figure 5. Comparison of the multipole capacitance per unit length and the simple series combination of
the homogeneous sheath and plasma regions for a wider spacing.
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b = 10a = 0.625 mm, h = 4b = 2.5 mm, which is near the dimensions of the resonator, replacing the linear
profile sheath by a homogeneous sheath. Also in the second graph b = 5a = 0.3125 mm, and h = 8b = 2.5
mm, also near the dimensions of the resonator. We conclude from this comparison that the series form
(1) which has been used in both the sheath circuit models above, and the thin wire algorithm for the
simulations below, is a very accurate approximation in these resonators.

8.2 Inhomogeneous Sheath

If the plasma density is assumed to have a continuous radial profile centered about the wire we can
easily derive an effective capacitance. The radial electric field is taken locally as minus the gradient of the
scalar potential

Eρ = −
∂φ

∂ρ
where the divergence of the electric displacement Dρ = εEρ vanishes

1

ρ

∂

∂ρ

∙
ρε (ρ)

∂φ

∂ρ

¸
= 0

Thus integration gives

φ = − q

2π

Z ρ

a

dρ0

ρ0ε (ρ0)
where we have chosen the integration constants to produce zero potential on the wire and to represent
a total charge per unit length on the wire q. Let us assume that the radial sheath profile becomes the
homogeneous plasma beyond radius b from the wire. Then the voltage at radius b is negative and equal to
φ (b). If the plasma is lossless with real permittivity ε = ε0 (ρ), then the local capacitance per unit length
Cb is the ratio of the charge to the potential difference

1/Cb =
1

2π

Z b

a

dρ

ρε0 (ρ)
and the capacitance per unit length is then

1/C ≈ ln (h/b)
πε0 (b)

+ 1/Cb

If collisional losses are present then we take the local admittance per unit length to be

1/Yb =
1

π

Z b

a

dρ/ρ

−iωε (ρ)
and the admittance per unit length

1/Y =
ln (h/b)

−iωε (b)π + 1/Yb

At the “open” circuit end the terminating capacitance is modified to
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Ct ∼ C
h

Ω0
[1 + 4 (1− ln 2) /Ω0]

Ω0 = 2

"
ln (h/b) + ε0 (b)

Z b

a

dρ

ρε0 (ρ)

#
In terms of the admittance

Yt ∼ Y
h

Ω0
[1 + 4 (1− ln 2) /Ω0]

8.2.1 linear profile

A linear profile ε (ρ) = ε0 + {ε (b)− ε0} (ρ− a) / (b− a) gives

1/Yb =
−1

−iωπ {bε0 − aε (b)} / (b− a)
as

Z b

a

dρ/ρ

ρ− as
=

−1
−iωπ {bε0 − aε (b)} / (b− a)

Z b

a

∙
1

ρ− as
− 1

ρ

¸
dρ

=
ln (b/a)− ln (b− as) + ln (a− as)

−iωπ {bε0 − aε (b)} / (b− a)
where

as = {bε0 − aε (b)} / {ε0 − ε (b)}
and proper care must be taken about the branch of the logarithm when as is complex (absolute values can
be used when as is real).

Note that in the lossless case we can equate 1/C to ln (h/be) / (πε0) + ln (be/a) / (πε0) or

ln (h/b) / (πε0) +
ln (b/a)− ln |b− as|+ ln |a− as|

π (bε0 − aε0) / (b− a)
= ln (h/be) / (πε

0) + ln (be/a) / (πε0)

or

ln (b/a)− ln |b− as|+ ln |a− as|
π (bε0 − aε0) / (b− a)

= ln (b/a) / (πε0) +
1

π

µ
1

ε0
− 1

ε0

¶
ln (b/be) ≈ 2.400/ (πε0)

ε0 = 0.95ε0

as = (bε0 − aε0) / (ε0 − ε0) ≈ 12.0625
to determine an equivalent homogeneous layer radius be ≈ b/2.1 ≈ 0.315 mm. This is only slightly smaller
than the average that was used 0.3625 mm and accounts for the slight downward shift observed for the
homogeneous sheath relative to the linear profile sheath.
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9 RECEIVING CIRCUIT

The receiving circuit also causes changes in resonant frequency and quality factor. Suppose we take the
resonator to be connected to the measurement circuit by attaching a loop along the “shorted” end which
feeds into a coax connection to the measurement device. Let us assume that the coax and measurement
device (which is matched to the coax) have a Rm = 50 ohm input impedance. The coupling mechanism is
inductive. We assume that the effective radius of the joined wires is ae. The terminating self inductance of
the resonator is thus modified to

Lt → L1 ≈ h
μ0
2π
[ln (2h/ae)− 2]

The mutual inductance of the receiving circuit is approximately

M ≈ h
μ0
2π
ln (c/ae)

The voltage at the load is then

V ( ) = −iω [L1I ( ) +MI2]
where I2 is the current in the measurement circuit. In the measurement circuit we can write

(Rm − iωL2) I2 − iωMI ( ) = 0
where L2 is the self inductance of the measurement loop. For a rectangular measurement loop, the self
inductance L2 can be estimated by using the formula for Lloop in the preceding inductance section, where
the loop dimensions 2 and h, and wire radius a are modified for the measurement loop. To correct this
formula for different wire radii on the measurement loop, we choose the radius a in Lloop to match, say, the
top and bottom legs, and then add a term wireμ0 ln (awire/a) / (2π) for each leg that has a different radius,
where wire is the length of the leg and awire is the corresponding radius. Using this to eliminate I2 we find

Zt → V ( ) /I ( ) = −iωL1 +
ω2M2

Rm − iωL2

9.1 Voltage Drive

One of the simplest excitations of the resonator is a voltage source located at the center of the short
circuit. We now summarize all the preceding formulas for the calculations in this case.

Suppose we take this drive to be V0 so that the end condition becomes

V ( ) = − 1
Y

dI

dz
( ) = V0 +

µ
Rrad + h

Zs
2πa
− iωLt

¶
I ( )

I ( ) /I (0) = cos (γ ) +
1

γ
(C/Ct) sin (γ )

dI

dz
( ) /I (0) = −γ sin (γ ) + (C/Ct) cos (γ )
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Figure 6. Illustration of a coaxial inductive pickoff of resonator current.
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where we have added the internal impedance of the short section of wire. Thus

Rrad + h
Zs
2πa
− iωLt +

γ

Y

∙
−γ sin (γ ) + (C/Ct) cos (γ )

γ cos (γ ) + (C/Ct) sin (γ )

¸
= −V0/I ( )

Z = Zw − iωL

Y = G− iωC
The transmission line parameters L and C have already been given. The impedance per unit length of the
two wires at high frequencies is

Zw ∼ Zs/ (πa)

Zs = (1− i)Rs

Rs = 1/ (σδ)

δ =
p
2/ (ωμσ)

The conductance per unit length of the dielectric medium (the plasma) can be found by inserting the
complex permittivity

ε = ε0 + iε00

γ =
√
−ZY

ε = ε0

"
1−

ω2p/ω
2

1 + iωeff/ω

#

ε0 = ε0

Ã
1−

ω2p
ω2 + ω2eff

!

ε00 = ε0

Ã
ω2pωeff/ω

ω2 + ω2eff

!

ω2p =
ne2

mε0
L ∼ μ0

π
ln (h/a) , h >> 2a

Lt ∼ h
μ0
2π
[ln (2h/a)− 2]

Ct ∼ hC
1

Ω
[1 + 4 (1− ln 2) /Ω]
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Figure 7. Eamples of resonant frequency and quality factor from circuit model, and from EIGER simula-
tions, as a function of plasma electron density. The plasma is lossless but the resonator wire is silver.

C ∼ 2πε/Ω

Ω = 2 ln (h/a)

k = ω
p
μ0ε

0

Rrad =
1

2π

p
μ0/ε

0 (kh/2)2

∙
1 +

1

3
(−1 + sin (k ))2 − 2 (−1 + sin (k ))

½
− 1
k
cos (k ) +

1

k2 2
sin (k )

¾
+ 1 + cos2 (k )− 2

k
sin (k ) cos (k )

¸

∼ 1

π

p
μ0/ε

0 (kh/2)2
2

π
k , k → π/2

This can be inserted as a perturbing series element at z = to account for radiation.

The metal conductivities were take from linear interpolation of the resistivity tables in [6] to 20o C.
The magnetic permeability of Nickel for small amplitude signals was taken from [7] near 4 GHz.

38



4.0 4.1 4.2 4.3
f (GHz)

0.0

0.2

0.4

0.6

|I(
0)

|/V
0 

(S
)

PEC wire
Lossy Wire (silver)
Lossy Wire Lossless Plasma (fp = 0.9 GHz)
Lossy Wire Lossy Plasma (fp = 0.9 GHz, fc = 1 GHz)
Lossy Wire Lossy Plasma (fp = 0.9 GHz, fc = 10 GHz)
Lossy Wire Lossy Plasma (fp = 0.9 GHz, fc = 0.1 GHz)
Lossy Wire Lossy Plasma (fp = 0.9 GHz, fc = 0.01 GHz)

Circuit Model For Resonator

Figure 8. Variation of drive current divided by drive voltage with frequency near the resonance for various
plasma collision frequencies and a silver resonator. The case of a perfectly conducting wire without a plasma
and the case of a silver wire without a plasma are also shown.
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Figure 9. Variation of ratio of drive current to voltage near the resonance is shown for various resonator
metals. The plasma is assumed lossess.
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Figure 10. Variation of ratio of drive current to voltage near the resonance is shown for both homogeneous
and linear profile plasma sheaths surrounding the silver resonator arms. The case of a perfectly conducting
wire without a plasma and the case of a silver wire without a plasma are also shown.

The case of a plasma sheath is now treated. The homogeneous sheath uses

1/Y ≈ ln (h/b)−iωπε +
ln (b/a)

−iωπε0

Ω0 = 2

∙
ln (h/b) +

ε0

ε0
ln (b/a)

¸

Yt ∼ Y
h

Ω0
[1 + 4 (1− ln 2) /Ω0]

The inhomogeneous linear sheath ε (ρ) = ε0 + {ε (b)− ε0} (ρ− a) / (b− a) uses

1/Y =
ln (h/b)

−iωε (b)π + 1/Yb

1/Yb =
ln (b/a)− ln (b− as) + ln (a− as)

−iωπ {bε0 − aε (b)} / (b− a)
where

as = {bε0 − aε (b)} / {ε0 − ε (b)}
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As discussed above the slight shift to the right for the curves with the linear profile sheath as compared to
the homogeneous sheath is caused by the fact that the equivalent radius of the linear profile 0.315 mm is
slightly smaller than the homogeneous sheath 0.3625 mm.

10 SIMULATIONS

This section summarizes simulation results performed using the code EIGER which is part of the
EMPHASIS code suite.

10.1 Thin Wire Algorithm

To handle inhomogeneous plasma sheaths, which are thin compared to the wire-to-wire spacing, we
decided to use the thin wire algorithm. This algorithm takes the form

E> (a, s) +∆ZC
∂2

∂s2
I −∆ZLI = −Einc (s)

where s is a distance coordinate along the wire, a is the wire radius, the incident field at the wire center is
Einc and the scattered field is

E> (ρ, s) =
i

ωμ0ε

³
∇∇+ k

2
´
·
Z

eikR

4πR
I (s0) ds0

with ρ the perpendicular distance from the wire

R =

q
ρ2 + (s− s0)2

and complex wavenumber

k
2
= ω2μ0ε

The vector current I is the scalar current times a unit vector along the wire direction es. The parameters
∆ZL and ∆ZC describe the properties of the sheath around the wire as well as properties of the wire. The
unknowns are the wire currents In at points along the wire (which are linearly interpolated between points).

10.2 Thin Wire Parameters

For a surface impedance Zs on the wire (representing conductive losses) we take

∆ZL =
Zs
2πa

For a homogeneous plasma sheath with permittivity ε0 and radius b we take the correction to the capacitive
impedance per unit length to be

∆ZC =
1

2π

∙
1

−iωε0
− 1

−iωε (b)

¸
ln (b/a)

Similarly for an inhomogeneous sheath
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Figure 11. Magnitude of electric field in plane between resonator arms from EIGER simulation.

∆ZC =
1

2
/Yb −

1

2π

1

−iωε (b) ln (b/a)
where

1/Yb =
1

π

Z b

a

dρ/ρ

−iωε (ρ)
A linear profile ε (ρ) = ε0 + {ε (b)− ε0} (ρ− a) / (b− a) gives

1/Yb =
−1

−iωπ {bε0 − aε (b)} / (b− a)
as

Z b

a

dρ/ρ

ρ− as
=
ln (b/a)− ln (b− as) + ln (a− as)

−iωπ {bε0 − aε (b)} / (b− a)
where

as = {bε0 − aε (b)} / {ε0 − ε (b)}
and proper care must be taken about the branch of the logarithm when as is complex (absolute values can
be used when as is real).

10.3 Examples

Several examples are compared here between the formulas in preceding sections of the report and the
simulations discussed above. The length was taken to be = 17 mm. The spacing was taken to be h = 3
mm. The wire diameter was taken to be 2a = 0.125 mm.
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Figure 12. Magnitude of electric field in plane perpendicular to resonator arms from EIGER simulation.
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Figure 13. Variation of drive current divided by drive voltage from EIGER simulations with frequency
near the resonance for various plasma collision frequencies and a silver resonator. The case of a perfectly
conducting wire without a plasma and the case of a silver wire without a plasma are also shown.
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Lossless Plasma
n = 1010 / cm3 (fp = 0.9 GHz)

Figure 14. Variation of ratio of drive current to voltage from EIGER simulations near the resonance is
shown for various resonator metals. The plasma is assumed lossess.
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Dashed Curves have Inhomogeneous
Linear Profile Sheath to b = 0.6625 mm

Figure 15. Variation of ratio of drive current to voltage from EIGER simulations near the resonance is
shown for both homogeneous and linear profile plasma sheaths surrounding the silver resonator arms. The
case of a perfectly conducting wire without a plasma and the case of a silver wire without a plasma are also
shown. The sheath in these simulations was put into the EIGER code by means of the thin wire algorithm
parameters.
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10.3.1no plasma and perfectly conducting wire

The case where there is no plasma and the wire is perfectly conducting was run first. The resonant
frequency formula

ωr
√
μ0ε0 ≈

π/2

+ Ct/C + Lt/L
gives fr = ωr/ (2π) = 4.064 GHz, where Lt/L ≈ [1− 2 (2− ln 2) /Ω]h/2 ≈ 1 mm and Ct/C ≈
[1 + 4 (1− ln 2) /Ω]h/Ω ≈ 0.45 mm, Ω = 2 ln (h/a). The simulation gave fr = 4.076 GHz (a difference of
0.3%). Note that the λ/4 = frequency is 4.409 GHz (8.2% high), so that the two end elements Ct and Lt
have corrected most of the frequency shift from this value.

The quality factor formula is

Q =
π

4

p
L/C

Rrad (ωr)
Note that the transmission line characteristic impedance is

p
L/C ≈

p
μ0/ε0

1

π
ln (h/a)

This formula gives Q ≈ 202, where Rrad (ωr) ∼
p
μ0/ε0 (kh/2)

2
(2/π) k /π ≈ 1.804 ohms,

p
L/C ≈ 464.23

ohms. The simulation gave Q = 214.

10.3.2no plasma and lossy wire

The case of the lossy wire with the conductivity of silver σ = 6.3× 107 S/m (at 20o C [6]) is now given.
The surface resistance at the resonant frequency Rs (ωr) =

p
ωrμ0/ (2σ) ≈ 0.01596 ohms. The quality

factor is then

Q =
π
4

p
L/C

Rs (ωr)
³

1
4kra

+ h
πa

´
+Rrad (ωr)

This gives Q ≈ 130. The simulation then gave Q = 145 and the resonant frequency shifted to fr = 4.0695
GHz.

10.3.3lossless plasma and lossy wire

The case where a collisionless plasma is present with density n = 1010/cm3 and plasma frequency
ω2p = ne2/ (mε0) or fp = ωp/ (2π) = 0.898 GHz is now treated. The permittivity is ε0/ε0 = 1− ω2p/ω

2 and
then the resonant frequency is

ωr
p
μ0ε

0 =
q¡

ω2r − ω2p
¢
μ0ε0 ≈

π/2

+ Ct/C + Lt/L
The formulas now give fr ≈ 4.16 GHz. The simulation gives fr = 4.1675 GHz.

The quality factor is again
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Q =
π
4

p
L/C

Rs (ωr)
³

1
4kra

+ h
πa

´
+Rrad (ωr)

p
L/C ≈

p
μ0/ε

0 1

π
ln (h/a)

This formula gives Q ≈ 131, where ε0/ε0 ≈ 0.9534 and Rrad (ωr) ∼
p
μ0/ε

0 (kh/2)2 (2/π) k /π ≈ 1.845
ohms, Rs (ωr) ≈ 0.01615 ohms,

p
L/C ≈ 475.44 ohms, kra ≈ 0.005321. The simulation gave Q = 154. The

larger discrepancy in the quality factor here can be explained by the fact that the formula above fixed
the permittivity of the plasma at the resonant frequency. The simulation allowed the permittivity to vary
with frequency. At the 3dB point the variation in permittivity acted to detune the resonance further from
the observation frequency (if the simulation is run with the permittivity fixed at the resonant value the
discrepancies are similar to previous cases).

10.3.4lossless plasma and lossy wire with homogeneous sheath

Now we assume we have a free space ε0 sheath of diameter 2b = 0.25 mm. The resonant frequency is
approximately

ωr
√
LC ≈ π/2

+ Ct/C + Lt/L
The transmission line parameters with the sheath are

L ∼ μ0
π
ln (h/a) , h >> 2a

C ≈ πε0

ln (h/a) + (ε0/ε0 − 1) ln (b/a)
The inductance end correction remains the same but the capacitance end correction is now slightly changed
to

Ct/C ∼
h

Ω0
[1 + 4 (1− ln 2) /Ω0]

Ω0 = 2

∙
ln (h/b) +

ε0

ε0
ln (b/a)

¸
To approximate the resonant frequency we first assume that Ct/C is unchanged.

s
μ0ε0ω

2
p (1/X − 1) ln (h/a)

ln (h/a)−X ln (b/a)
≈ π/2

+ Ct/C + Lt/L
= ωp

√
c1μ0ε0

1− (1 + c1)X + c1X
2 ln (b/a) / ln (h/a) = 0

X = ω2p/ω
2
r

We find c1 = 20.463 and 1− 21.463X + 3.664X2 = 0, and X = 5.811, 0.04697. Using only the smaller root
(since the other would affect the value of Ct/C) fr = 4.14 GHz. The simulation gave fr = 4.15 GHz.
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The quality factor is again

Q =
π
4

p
L/C

Rs (ωr)
³

1
4kra

+ h
πa

´
+Rrad (ωr)

Using the above values ε0/ε0 ≈ 0.953, kra ≈ 0.005294,
p
L/C ≈ 477.54 ohms, Rrad (ωr) ≈p

μ0/ε
0 (kh/2)2 (2/π) k /π ≈ 1.818 ohms, Rs (ωr) ≈ 0.01611 ohms. Thus Q ≈ 133. The simulation gave

Q = 153.

10.3.5slightly lossy plasma and lossy wire

The case where there is collisional damping but not enough to distort the current distribution along the
resonator is covered by the full quality factor formula

Q =
π
4

p
L/C

π
4

n
Rs(ωr)
πakr

+ ε00

ε0

p
L/C

o
+Rs (ωr)

h
πa +Rrad (ωr)

ε0 = ε0

Ã
1−

ω2p
ω2 + ω2eff

!

ε00 = ε0

Ã
ω2pωeff/ω

ω2 + ω2eff

!
Suppose we take n = 1010/cm3 or fp = 0.898 GHz and feff = 1 GHz. The resonant frequency

ωr
p
μ0ε

0 =

vuutÃω2r − ω2rω
2
p

ω2r + ω2eff

!
μ0ε0 ≈

r³
ω2r − ω2p + ω2pω

2
eff/ω

2
r

´
μ0ε0 ≈

π/2

+ Ct/C + Lt/L

We solve this approximately to find fr ≈ 4.155 GHz, ε0/ε0 ≈ 0.956, Rs (ωr) ≈ 0.01614 ohms,
Rrad (ωr) ≈ 1.844 ohms,

p
L/C ≈ 474.79 ohms, kra ≈ 0.005322, ε00/ε0 ≈ 0.0111. Thus Q ≈ 53.4. The

simulation gave Q = 58.6 and resonant frequency fr = 4.163 GHz.

10.3.6lossy plasma and lossy wire with homogeneous plasma sheath

The complex dielectric constant is

ε = ε0

"
1−

ω2p/ω
2

1 + iωeff/ω

#
The admittance per unit length is

1/Y ≈ ln (h/b)−iωπε +
ln (b/a)

−iωπε0
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−iωε0π/Y ≈ ln (h/a) +
ln (h/b)

¡
ω2p/ω

2
¢

1 + iωeff/ω − ω2p/ω
2

For small ω2p/ω
2

Y ≈ −iωε0π/ ln (h/a)
"
1−

ln (h/b)
¡
ω2p/ω

2
¢
/ ln (h/a)

1 + iωeff/ω

#
which can be written as

Y = G− iB
If we take the parameters of the preceding example we see that ln (h/b) / ln (h/a) ≈ 0.82 and we would not
expect a large change in Q or resonant frequency from the preceding case. The simulation gave Q = 57.4
and fr = 4.147 GHz.

11 PLASMA INHOMOGENEITIES ALONG RESONATOR
LENGTH

We now perform a couple of modifications to see the effect of variations in plasma density along the
resonator length. Let us take the plasma to exist in a cylindrical region of radius ρp = 3 mm, and length
p = 8.5 mm.

11.1 Open End

We first consider the block to be centered at the open end of the resonator. We assume that the
transmission line parameters are modified in this region to be those associated with the plasma and that
the parasitic capacitance at the end is also associated with the plasma. Thus the transmission line has a
discontinuity at z = p/2. The current at the open end region z < p/2

I (z) = I (0) cos (γz) +
1

γ

dI

dz
(0) sin (γz)

γ =
√
−ZY

The condition at the “open” end (assuming the same complex permittivity, which accounts for the loss
parameters G and Gt, is used in the region surrounding the transmission line and at the “open” end) is

dI

dz
(0) =

Y

Yt
I (0)

Yt ∼ hY
1

Ω
[1 + 4 (1− ln 2) /Ω]

Ω = 2 ln (2h/a)
The current near the shorted end is
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I (z) = I ( ) cos (γ0 (z − )) +
1

γ0

dI

dz
( ) sin (γ0 (z − ))

γ0 =
√
ZiωC

Z = Zw − iωL

Zw = Zs/ (πa)

L =
μ0
π
Arccosh

µ
h

2a

¶
∼ μ0

π
ln (h/a) , h >> 2a

C =
πε0

Arccosh
¡
h
2a

¢ ∼ πε0
ln (h/a)

, h >> 2a

Y =
−iωπε

Arccosh
¡
h
2a

¢ ∼ −iωπε
ln (h/a)

, h >> 2a

The condition near the shorted end with voltage drive V0 is

V ( ) =
1

iωC

dI

dz
( ) = V0 +

µ
Rrad + h

Zs
2πa
− iωLt

¶
I ( )

where

Lt = h
μ0
2π
[ln (2h/a)− 2]

Zs = Rs (1− i)
Because the plasma permittivity is taken to be near that of free space we regard the radiation resistance to
be unchanged from the free space value

Rrad ∼
1

π

p
μ0/ε0 (kh/2)

2 2

π
k

Continuity of the current at z = p/2 gives

I ( p/2− 0) = I ( p/2 + 0)
or

I (0) cos (γ p/2) +
1

γ

dI

dz
(0) sin (γ p/2) = I ( ) cos (γ0 ( p/2− )) +

1

γ0

dI

dz
( ) sin (γ0 ( p/2− ))

Continuity of voltage at this point gives
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− 1
Y

dI

dz
( p/2− 0) =

1

iωC

dI

dz
( p/2 + 0)

or

γ

Y
I (0) sin (γ p/2)−

1

Y

dI

dz
(0) cos (γ p/2) = −

γ0
iωC

I ( ) sin (γ0 ( p/2− )) +
1

iωC

dI

dz
( ) cos (γ0 ( p/2− ))

The four equations have now been set up for the end currents and their derivatives. Eliminating the
derivatives

∙
cos (γ p/2) +

1

γ

Y

Yt
sin (γ p/2)

¸
I (0) = I ( ) cos (γ0 ( p/2− ))

+
1

γ0
iωC

∙
V0 +

µ
Rrad + h

Zs
2πa
− iωLt

¶
I ( )

¸
sin (γ0 ( p/2− ))

∙
γ

Y
sin (γ p/2)−

1

Yt
cos (γ p/2)

¸
I (0) = − γ0

iωC
I ( ) sin (γ0 ( p/2− )) + V0 cos (γ0 ( p/2− ))

+

µ
Rrad + h

Zs
2πa
− iωLt

¶
I ( ) cos (γ0 ( p/2− ))

Eliminating I (0)

γ

Y

½
sin (γ p/2)−

1

γ

Y

Yt
cos (γ p/2)

¾ ∙
cos (γ0 ( p/2− )) +

1

γ0
iωC

µ
Rrad + h

Zs
2πa
− iωLt

¶
sin (γ0 ( p/2− ))

¸

+
γ0
iωC

½
cos (γ p/2) +

1

γ

Y

Yt
sin (γ p/2)

¾
∙
sin (γ0 ( p/2− ))− 1

γ0
iωC

µ
Rrad + h

Zs
2πa
− iωLt

¶
cos (γ0 ( p/2− ))

¸
=

∙½
cos (γ p/2) +

1

γ

Y

Yt
sin (γ p/2)

¾
cos (γ0 ( p/2− ))

−
½
sin (γ p/2)−

1

γ

Y

Yt
cos (γ p/2)

¾
γ

γ0

iωC

Y
sin (γ0 ( p/2− ))

¸
V0/I ( )

Now taking the limit Ct, Lt, Yt, Zs → 0 and γ → γ0

iωC

γ0
sin (γ0 ) /

∙
cos (γ0 )−

1

γ0
iωCRrad sin (γ0 )

¸
= I ( ) /V0

11.2 Shorted End

Next we consider the block to be centered at the shorted end of the resonator. The transmission line
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parameters have a discontinuity at z = − p/2.

I (z) = I (0) cos (γ0z) +
1

γ0

dI

dz
(0) sin (γ0z)

dI

dz
(0) =

C

Ct
I (0)

Ct ∼ hC
1

Ω
[1 + 4 (1− ln 2) /Ω]

Ω = 2 ln (2h/a)
The current near the shorted end is

I (z) = I ( ) cos (γ (z − )) +
1

γ

dI

dz
( ) sin (γ (z − ))

The condition near the shorted end with voltage drive V0 is

V ( ) = − 1
Y

dI

dz
( ) = V0 +

µ
Rrad + h

Zs
2πa
− iωLt

¶
I ( )

where

Lt = h
μ0
2π
[ln (2h/a)− 2]

Zs = Rs (1− i)
Because the plasma permittivity is taken to be near that of free space we regard the radiation resistance to
be unchanged from the free space value

Rrad ∼
1

π

p
μ0/ε0 (kh/2)

2 2

π
k

Continuity of the current at z = − p/2 gives

I ( − p/2 + 0) = I ( − p/2− 0)
or

I ( ) cos (γ (− p/2)) +
1

γ

dI

dz
( ) sin (γ (− p/2)) = I (0) cos (γ0 ( − p/2)) +

1

γ0

dI

dz
(0) sin (γ0 ( − p/2))

Continuity of voltage at this point gives

− 1
Y

dI

dz
( − p/2 + 0) =

1

iωC

dI

dz
( − p/2− 0)

or
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γ

Y
I ( ) sin (γ (− p/2))−

1

Y

dI

dz
( ) cos (γ (− p/2)) = −

γ0
iωC

I (0) sin (γ0 ( − p/2))+
1

iωC

dI

dz
(0) cos (γ0 ( − p/2))

Eliminating the current derivatives gives

I ( ) cos (γ (− p/2))− Y
1

γ
V0 sin (γ (− p/2))− Y

1

γ

µ
Rrad + h

Zs
2πa
− iωLt

¶
I ( ) sin (γ (− p/2))

=

∙
cos (γ0 ( − p/2)) +

1

γ0

C

Ct
sin (γ0 ( − p/2))

¸
I (0)

I ( ) sin (γ (− p/2)) +
1

γ
Y V0 cos (γ (− p/2)) +

1

γ
Y

µ
Rrad + h

Zs
2πa
− iωLt

¶
I ( ) cos (γ (− p/2))

= −γ0
γ

Y

iωC

∙
sin (γ0 ( − p/2))−

1

γ0

C

Ct
cos (γ0 ( − p/2))

¸
I (0)

Eliminating I (0)

½
cos (γ0 ( − p/2)) +

1

γ0

C

Ct
sin (γ0 ( − p/2))

¾
½
sin (γ (− p/2)) +

1

γ
Y

µ
Rrad + h

Zs
2πa
− iωLt

¶
cos (γ (− p/2))

¾

+
γ0
γ

Y

iωC

½
sin (γ0 ( − p/2))−

1

γ0

C

Ct
cos (γ0 ( − p/2))

¾
½
cos (γ (− p/2))−

1

γ
Y

µ
Rrad + h

Zs
2πa
− iωLt

¶
sin (γ (− p/2))

¾
=

∙
γ0
γ

Y

iωC

½
sin (γ0 ( − p/2))−

1

γ0

C

Ct
cos (γ0 ( − p/2))

¾
sin (γ (− p/2))

−
½
cos (γ0 ( − p/2)) +

1

γ0

C

Ct
sin (γ0 ( − p/2))

¾
cos (γ (− p/2))

¸
1

γ
Y V0/I ( )

If we take the limit Ct, Yt, Lt, Zs → 0 and γ → γ0, Y → −iωC

I ( ) /V0 =
iωC

γ
sin (γ0 ) /

½
cos (γ )− iωC

γ
Rrad sin (γ )

¾
Figure 16 compares the open and short end plasma block results with the homogeneous plasma results and
with the silver wire without a plasma present (the PEC wire is also shown). Notice that the plasma block
at the shorted end (one quarter of the length of the resonator p/2 is immersed in the plasma) has little
effect (it nearly overlays the no plasma curve). The plasma near the open end shows a significant shift.
This is expected since the electric field is large at the open end of the resonator and small near the shorted
end (it is only the electric field that interacts with the plasma dielectric constant).
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Figure 16. Variation of drive current divided by drive voltage with frequency near the resonance for a lossless
cylindrical plasma block at various locations along.a silver resonator. The case of a perfectly conducting
wire without a plasma and the case of a silver wire without a plasma are also shown.
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12 DISC CAVITY

The cylindrical cavity has spacing d = 25 mm and radius b = 200 mm. Thus at fr ≈ 4.1 GHz the
vertical electric field modes have the form (the half wavelength at this frequency is λ/2 ≈ 36.6 mm, which
is larger than the spacing d, and thus the TM mode with no half wave variations in the vertical will be the
only propagating mode)

1

r

∂

∂r

µ
∂

∂r
rEz

¶
+
1

r2
∂2

∂ϕ2
Ez + k2mnEz = 0

Ez = E0Jm (kmnr) cos (mϕ)

iωμ0Hϕ = − (E0kmn) J
0
m (kmnr) cos (mϕ)

12.1 Shorted Outer Radius

For a shorted condition at the outer periphery the boundary condition

Ez (r = b) = 0
gives

kmnb = jm,n

where

Jm (jm,n) = 0 , n = 1, 2, ...
We can also use other types of outer boundary conditions (for example, of the impedance type Ez = −ZsHϕ)
to represent radiation leakage at the periphery. Because we want to examine the case where kmn → k ∼ 85.9
m−1 is fairly large so that kb >> 1 we use the asymptotic form

kb ≈ 17.2→ jm,n ∼ (n+m/2− 1/4)π , n→∞
The modal spacing due to the variation in m is

∆k ∼ π/ (2b) ∼ 7.85 m−1
The modal spacing due to the variation in n is

∆k ∼ π/b
These modal spacing implies a spacing quality factor in the range

k/∆k ≈ 5.5− 11
The energy stored in a mode is
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W =

Z
V

1

2
ε |E|2 dV =

d

εm

Z b

0

1

2
ε |E0Jm (jm,nr/b)|2 2πrdr =

1

2εm
εdπb2 |E0|2 [J 0m (jm,n)]

2

and we have used [9]

Z 1

0

[Jm (jm,nr)]
2 rdr =

1

2
[J 0m (jm,n)]

2
=
1

2
[Jm+1 (jm,n)]

2

where the Neumann number εm = 1 if m = 0 and εm = 2 otherwise. The power dissipated by the walls can
be found as

P =

I
S

1

2
Rs |K|2 dS

=
2

εm

Z b

0

1

2
Rs

¯̄̄̄µ
iE0
ωμ0

jm.n/b

¶
J 0m (jm,nr/b)

¯̄̄̄2
2πrdr +

1

2
Rs

¯̄̄̄µ
iE0
ωμ0

jm.n/b

¶
J 0m (jm,n)

¯̄̄̄2
d2πb

1

εm

=
2

εm
Rs

µ
jm,n

ωμ0b

¶2
|E0|2 πb2

Z 1

0

[J 0m (jm,nr)]
2
rdr +

1

εm
Rs

µ
jm,n

ωμ0b

¶2
|E0|2 [J 0m (jm,n)]

2
dπb

where K = n×H is the electric surface current density on the cavity walls. To carry out the integral we
use the identities [9], [10]

Z
[J 0m (x)]

2
xdx =

Z h
Jm−1 (x)−

m

x
Jm (x)

i2
xdx =

Z
[Jm−1 (x)]

2 xdx+m2

Z
[Jm (x)]

2 dx

x

−2m
Z

Jm−1 (x)Jm (x) dx

Z
[Jm−1 (x)]

2
xdx =

1

2

£
xJ 0m−1 (x)

¤2
+
1

2

h
x2 − (m− 1)2

i
J2m−1 (x)

Z
[Jm (x)]

2 dx

x
=

1

2m

"
1 + J20 (x) + J2m (x)− 2

mX
k=0

J2k (x)

#
and

Z
Jm−1 (x) Jm (x) dx =

1

2
− 1
2
J20 (x)−

m−1X
k=1

J2k (x)

where the final sum is dropped if m = 1. Next, collecting terms

Z
[J 0m (x)]

2
xdx =

1

2

£
xJ 0m−1 (x)

¤2
+
1

2

h
x2 − (m− 1)2

i
J2m−1 (x)+

m

2

"
−1− J20 (x)− J2m (x) + 2

m−1X
k=0

J2k (x)

#
Note that this also works for m = 0
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Z
[J 00 (x)]

2
xdx =

Z
[J1 (x)]

2 xdx =
1

2
[xJ 01 (x)]

2
+
1

2

¡
x2 − 1

¢
J21 (x)

Thus we can write

j2m,n

Z 1

0

[J 0m (jm,nr)]
2
rdr =

Z jm,n

0

[J 0m (x)]
2
xdx =

1

2

£
jm,nJ

0
m−1 (jm,n)

¤2
+
1

2

h
j2m,n − (m− 1)

2
i
J2m−1 (jm,n)+

m

2

"
−1− J20 (jm,n)− J2m (jm,n) + 2

m−1X
k=0

J2k (jm,n)

#
Then we can write the power lost as

P =
1

εm
Rs

µ
jm,n

ωμ0b

¶2
|E0|2 πb [J 0m (jm,n)]

2
[d+ bFm (jm,n)]

where we define

[J 0m (jm,n)]
2
Fm (jm,n) =

£
J 0m−1 (jm,n)

¤2
+
h
1− (m− 1)2 /j2m,n

i
J2m−1 (jm,n) +

m

j2m,n

"
−1− J20 (jm,n)− J2m (jm,n) + 2

m−1X
k=0

J2k (jm,n)

#
or

Fm (jm,n) = 1 +
m

j2m,nJ
2
m−1 (jm,n)

"
−1− J20 (jm,n) + 2

m−1X
k=0

J2k (jm,n)

#
where we note that F0 (j0,n) = 1.

The quality factor is then

Qm,n =
ωW

P
=

ωεdb (ωμ0b/jm,n)
2

2Rs [d+ bFm (jm,n)]
Results for the quality factors from 3.5 GHz to 5 GHz are shown in Figure 17.

As a check we can construct an approximate formula for several half wave variations in the radial and
azimuthal directions (and two vector field components) by writing approximately

W ≈ 1
2
μ02H

2 1

4
V

P ≈ 1
2
Rs2H

2 1

4
S

Q =
ωW

P
≈ ωμ0V

RsS
=
2V

δS
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Figure 17. Quality factors versus resonant frequencies for cylindrical disc cavity resonator with shorted
outer wall.
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where (note that the final equality holds if the walls have free space permeability) the skin depth in the
wall is

δ =
p
2/ (ωμσ)

the volume is

V = dπb2 ≈ 3.14× 10−3 m3
and the surface area is

S = 2πb2 + 2πbd ≈ 0.283 m2
If we take the walls to be polysilicon with σ ≈ 105 S/m then

δ ≈ 2.5× 10−5 m
The quality factor is then

Q ≈ 900
which is in the ballpark of the lower values in the figure.

The dimensions of the resonator we have been using are length = 17 mm, spacing h = 3 mm, and
wire diameter 2a = 0.125 mm. Note that for r < rm where krm ≈ m, there is very little field in the cavity
mode. Thus a resonator located at the center of the resonator will not couple well into these modes with
many high-order azimuthal variations.

To look at only two parallel walls we consider imaging the current elements of the resonator in the
walls. The first subsection below considers the case where the resonator is oriented to be orthogonal to
these resonant propagating modes.

12.2 Radiation at Outer Radius

We now consider the quality factor and modal frequencies when the outer periphery allows radiation
from two thin walls that simply end at the outer periphery. Because the disc is electrically large in radius
at the nominal resonant frequencies of the hairpin resonator we will use a boundary condition associated
with a wave propagating between infinite planes and impinging on the ends of the planes. Also because the
radiation loss is large compared to the wall loss we will take the walls to be perfectly conducting in this
subsection.

The eigenmode frequency near the disc edge is taken as

k2 ∼ k2ϕ + k2ρ
where for the mth azimuthal mode

kϕ = m/b
Thus
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Figure 18. Page from the Waveguide Handbook [11] on circuit elements associated with a wave radiating
into free space from between two infinite conducting planes. Note that to translate these results we take
b→ d and b/λ0 → X.
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Figure 19. Page from the Waveguide Handbook [11] on circuit elements associated with a wave radiating
into free space from between two infinite conducting planes giving the effective circuit conductance and
susceptance values. Note that to translate these results we take b→ d and b/λ0 → X.

63



cosα = kρ/k ∼
r
1−

³m
kb

´2

X =
kd

2π
cosα

Θ/2 = X [ln (2/X) + 1− γ0]−
∞X
n=1

[arcsin (X/n)−X/n]

γ0 = 0.5772

G0/Y0 =
sinh (πX)

cosh (πX) + cosΘ
∼ 1
4
kd cosα , X << 1

B0/Y0 =
sinΘ

cosh (πX) + cosΘ
∼ X [ln (2/X) + 1− γ0] , X << 1

where the admittance per unit width in the parallel plate guide is

Y0 =
1

d

p
ε/μ0

Setting the admittance per unit width to

Y 0 = G0 − iB0

and the surface impedance to

Zs = 1/ (Y
0d) =

p
μ0/ε

G0/Y0 − iB0/Y0
we then write the outer boundary condition as

Ez = −ZsHϕ

If the outer boundary condition satisfies Zs/
p
μ0/ε << 1 or if Y 0 >> Y0 we can use the previous

perturbation theory to find the quality factor. However from the figure for G0/Y0 and B0/Y0 if X << 1 an
open circuit boundary condition is a more appropriate starting point for the perturbation calculation.

12.2.1high impedance load

In this case we write

Hϕ (r = b) = 0
and thus the solution is

Ez = E0Jm
¡
j0m,nr/b

¢
cos (mϕ)

64



iωμ0Hϕ = − (E0jm.n/b)J
0
m

¡
j0m,nr/b

¢
cos (mϕ)

where

J 0m
¡
j0m,n

¢
= 0

Note that

j0m,1 ∼ m+ 0.8086165m1/3 − 0.072490m−1/3 − 0.05097m−1 + 0.0094m−5/3 + · · ·

j0m,n ∼ (m+ n/2− 1/4)π , n >> m
The energy stored is then

W =

Z
V

1

2
ε |E|2 dV =

d

εm

Z b

0

1

2
ε
¯̄
E0Jm

¡
j0m,nr/b

¢¯̄2
2πrdr =

1

2εm
εdπb2 |E0|2

¡
1−m2/j02m,n

¢ £
Jm
¡
j0m,n

¢¤2
The power lost is then

P =
1

2
dRe (Y 0d)

Z 2π

0

|Ez (b, ϕ)|2 bdϕ =
1

εm
πbd2G0 |E0|2

£
Jm
¡
j0m,n

¢¤2
The quality factor is then (j015,1 ≈ 16.961153)

Q =
ωεb

¡
1−m2/j02m,n

¢
2dG0

∼
2b
¡
1−m2/j02m,n

¢
d

q
1−

¡
m
kb

¢2
For m = 15, n = 1, j015,1 ≈ 16.961153, and f = 4.1 GHz

Q ≈ 7
For m = 0, n = 11, j01,11 ≈ 16.5, and f = 4.1 GHz

Q ≈ 16
12.2.2low impedance load

The short circuit perturbation theory gives

P =
1

2
dRe (Zs)

Z 2π

0

|Hϕ (b, ϕ)|2 bdϕ =
1

ω2μ20εm
πbdRe (Zs) |E0|2 (jm.n/b)

2 [J 0m (jm,n)]
2

Re (Zs) =

p
μ0/εG

0/Y0

(G0/Y0)
2
+ (B0/Y0)

2 ∼
(π/2)

p
μ0/ε/X

π2/4 + [ln (2/X) + 1− γ0]2

X =
kd

2π

r
1−

³m
kb

´2
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Using the energy stored

W =
1

2εm
εdπb2 |E0|2 [J 0m (jm,n)]

2

the quality factor is

Q =
(kb)3

p
μ0/ε

2Re (Zs) j2m.n
If there are no large frequency shifts caused by the outer impedance boundary condition then jmn ∼ kb

Q ∼ (kb)

2Re
³
Zs/

p
μ0/ε

´ ∼ kb
π2/4 + [ln (2/X) + 1− γ0]2

π/X

X =
kd

2π

r
1−

³m
kb

´2
Now for m = 15, f = 4.14 GHz

X ≈ 0.07

Q ∼ 6.5
For m = 1 (in this case the perturbation theory may not be justified)

X ≈ 0.35

Q ∼ 13.8
12.2.3transmission line solution

Suppose we consider the region near r = 0 to provide a drive so that the general solution in the disc
cavity is

Ez = E0 [Jm (kr) +RYm (kr)] cos (mϕ)

iωμ0Hϕ = − (E0k) [J 0m (kr) +RY 0
m (kr)] cos (mϕ)

The impedance boundary condition gives

Y 0dEz (b, ϕ) = −Hϕ (b, ϕ)
or
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R = − J 0m (kb)− i
p
μ0/εY

0dJm (kb)

Y 0
m (kb)− i

p
μ0/εY

0dYm (kb)
Then if we consider the normalized ratio of electric to magnetic fields (voltage to current) along the radial
transmission line

−Ez (r, ϕ) /Hϕ (r, ϕ)p
μ0/ε

= i
Jm (kr)

h
Y 0
m (kb)− i

p
μ0/εY

0dYm (kb)
i
− Ym (kr)

h
J 0m (kb)− i

p
μ0/εY

0dJm (kb)
i

J 0m (kr)
h
Y 0
m (kb)− i

p
μ0/εY

0dYm (kb)
i
− Y 0

m (kr)
h
J 0m (kb)− i

p
μ0/εY

0dJm (kb)
i

p
μ0/εY

0d = Y 0/Y0 = G0/T0 − iB0/Y0

G0/Y0 =
sinh (πX)

cosh (πX) + cosΘ

B0/Y0 =
sinΘ

cosh (πX) + cosΘ

X =
kd

2π

r
1−

³m
kb

´2

Θ/2 = X [ln (2/X) + 1− γ0]−
∞X
n=1

[arcsin (X/n)−X/n]

γ0 = 0.5772

12.3 Two Wall Interaction with Horizontal Orientation

The two wall interaction will be investigated using images. Although we could include reflection
coefficients at the walls to approximately account for losses, because the operating frequency will be below
transverse resonance we can approximately use perfectly conducting images for this orientation. Here we
are interested in the case where the resonator is centered to minimize quasistatic interaction with the walls
and where it is oriented so that the walls are at y = ±d/2, to minimize coupling to the Ey propagating
modes (here we return to the notation where z is along the resonator arms and y is perpendicular to the
cavity walls). Figure 23 shows the image summations with reversals of sign on each reflection.

The two components of the vector potential thus become

Az (x, y, z) =

μ0
4π

Z
0

I (z0)
∞X

n=−∞
(−1)n

⎡⎣ eik
√
(x−h/2)2+(y−nd)2+(z−z0)2q

(x− h/2)2 + (y − nd)2 + (z − z0)2
− eik

√
(x+h/2)2+(y−nd)2+(z−z0)2q

(x+ h/2)2 + (y − nd)2 + (z − z0)2

⎤⎦ dz0
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Figure 20. Impedance at r = b/5 for m = 0. The quality factor of the peak appears to be near 15.
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Figure 21. The quality factor of the peak appears to be near 18. It was necessary to move the obervation
point out to r = b/2 because of the small size near r = 0 for m = 10.

68



4.0 4.2 4.4 4.6 4.8 5.0
f (GHz)

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Z(

r)
/h

0
b = 200 mm
d = 25 mm
r = 2b/3
m = 15

Figure 22. The quality factor of the peak appears to be near 19.

Figure 23. Set of images of resonator in walls of disc cavity when the normal to the plane of the resonator
is also normal to the cylindrical disc cavity.
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Ax (x, y, z) = −
μ0
4π

I ( )
∞X

n=−∞
(−1)n

Z h/2

−h/2

eik
√
(x−x0)2+(y−nd)2+(z− )2q

(x− x0)2 + (y − nd)2 + (z − )2
dx0

where we have approximated the “shorted” end as having constant current and taken the load current to be
directed toward the +x direction and the images are in the y direction, perpendicular to the cavity walls.
Our interest here is in assessing the magnitude of the image response. Therefore let us take the scattered
potential to be

As
z (x, 0, z) =

μ0
4π

Z
0

I (z0)
∞X

n=−∞
n6=0

(−1)n
⎡⎣ eik
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− eik

√
(x+h/2)2+(nd)2+(z−z0)2q

(x+ h/2)2 + (nd)2 + (z − z0)2

⎤⎦ dz0
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hI ( )
∞X
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n6=0

(−1)n eik
√
x2+(nd)2+(z− )2q

x2 + (nd)
2
+ (z − )

2

We will also approximate the current distribution along the transmission line as the quarter wave form

I (z0) ≈ I ( ) sin (k0z
0) = I ( ) sin

µ
πz0

2

¶
The electric field is given by

E =
i

ωεμ0
∇×∇×A =

i

ωεμ0

£
∇ (∇ ·A) + k2A

¤
or

Es
z =

i

ωεμ0

µ
∂2

∂z∂x
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x +

∂2

∂z2
As
z + k2As

z

¶
and because the x segment is electrically short we can write

Es
x ≈

i

ωεμ0

µ
∂2

∂x∂z
As
z +

∂2

∂x2
As
x + k2As

x

¶
≈ i

ωεμ0
k2As

x

The open circuit voltage at the drive point due to the images can be found using reciprocity [5]. The result
is

V s
oc = −

1

I ( )

Z
C

Es · Ids
This is still a rather complicated set of equations to implement. However because the resonator is operating
near the relatively short quarter wave length, and because of the spacing between the images and the
resonator, it is a reasonable approximation to use an average point current element for the z-directed
current segments. We place the current elements at location
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and the open circuit voltage from the images is
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Inserting the above expressions gives
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and
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We note that kd ≈ 2.1 ≈ 0.68π and therefore the argument of the logarithm is not near zero. Furthermore
k ≈ 1.46 and (kh)2 ≈ 0.066, k/ (ωε0) =

p
μ0/ε0 ≈ 120π ohms. Thus we find that V s

oc/I ( ) is in the
vicinity of an ohm. Away from resonance this is a small effect (see preceding graphs). However at resonance
this can lead to a shift in frequency and in very little radiation damping. The figures show the real and
imaginary parts. We have used the approximation

£
πiωε/

¡
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¢¤
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oc/I ( ) ≈ −
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2kd
ln
¡
1 + eikd

¢
These values of reactance indicate that we expect a very small shift in frequency (since the impedance

at the 3 dB point of the resonance is a couple of ohms compared with tenths of an ohm reactance from
the walls of the cavity). However, because the modes are cutoff for this polarization, the radiation quality
factor would go to infinity (the polysilicon wall loss will make it finite, but because the Q of the cavity will
be large there would be a large increase in the resonator Q). The real impedance from the walls cancels the
real impedance of the resonator in free space since radiation is suppressed by the fact that the modes with
projections on the resonator current are cutoff (the reason for the small difference in magnitude between
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Figure 24. Real and imaginary parts of the scattered voltage at the drive point of the resonator (resulting
from the image currents in the resonator walls) divided by the drive current. This is the horizontal orientation
where the resonator does not couple into the propagating disc modes of the cavity. The suppression of
resonator radiation by the perfectly conducting cavity walls leads to a negative real part in the scattered
voltage. This means that the resonator quality factor is increased by operation in the cavity.
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Figure 25. Real and imaginary parts of the ratio of drive voltage divided by drive current (without cavity
wall effects present) for both a perfectly conducting and a silver wire resonator.

the two graphs is the approximations made in the scattered field). This effect therefore increases the Q of
the resonator and it is then predominantly due to the wire loss.

The outer load at the edge of the resonator cavity did not come into the picture with this orientation
because there was no coupling to the propagating modes in the disc region. The vertical orientation will
couple to these modes.

12.4 Two Wall Interaction with Vertical Orientation

The propagating modes in the disc region are excited by the vertical orientation of the resonator.
Because we expect that a better model for the disc cavity includes radiation at the open edges of the discs
we will only treat this lower Q case.

A question impacting the size of the wall interaction is the balance of the two arms and drive geometry
of the resonator. For example, if the drive is unbalanced with respect to the center line of the resonator,
then common mode drives of the resonator arms will couple to the load, whereas the balanced case will not.
We will look at the two wall interaction with a balanced resonator.

We again take the z axis along the longer arms of the resonator and the y axis perpendicular to the
discs as well as along the short leg of the resonator.

The two components of the vector potential thus become (here there are no sign changes associated
with the images as shown in Figure 26)
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Figure 26. Set of images in cylindrcal walls of disc cavity when normal to the plane of the resonator is
parallel to walls of disc cavity.
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where we have approximated the “shorted” end as having constant current and taken the load current to be
directed toward the −y direction and the images are in the y direction, perpendicular to the cavity walls.
Our interest here is in assessing the magnitude of the image response. Therefore let us take the scattered
potential to be
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We will also approximate the current distribution along the transmission line as the quarter wave form

I (z0) ≈ I ( ) sin (k0z
0) = I ( ) sin

µ
πz0

2

¶
The electric field is given by

E =
i

ωεμ0
∇×∇×A =

i

ωεμ0

£
∇ (∇ ·A) + k2A

¤
or

Es
z =

i

ωεμ0

µ
∂2

∂z∂y
As
y +

∂2

∂z2
As
z + k2As

z

¶
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The open circuit voltage at the drive point due to the images can be found using reciprocity [5]. The result
is
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This is still a rather complicated set of equations to implement. However because the resonator is operating
near the relatively short quarter wave length, and because of the spacing between the images and the
resonator, it is a reasonable approximation to use an average point current element for the z-directed
current segments. We place the current elements at location
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Noting that we have an average vertical current

−I ( )h/d
we expect to have a propagating mode
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We see from the above kr >> 1 limit that this Hankel function form is also expected from the average of
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The final modal summation involves propagating terms which interact with the outer disc radius. Note
that this addition theorem representation is only valid for r > . If a reflection takes place at the outer disc
radius, we expect a returning wave so that
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The open circuit voltage induced by this contribution (from the Ay potential to the Es
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Figure 28 shows the reflected impedance at the resonator drive point as in the previous orientation. Notice
that the radiative load at the outer disc edge results in a reflected impedance which is negative over most
of the range shown but is smaller in magnitude than the free space value (near +2 ohms). Thus there is
net radiation and the influence on the resonator quality factor is not as large. However since it is varying in
frequency, the effect of the disc cavity must be taken into account to establish the rigorous quality factor
for the resonator.

As checks on the calculation the next two figures consider some modifications of the outer edge load.
First we set the conductance G0 to zero and find that the reflected impedance has a real part that cancels
(to the level of approximation present) the free space real impedance of the resonator (with perfectly
conducting wires). This makes sense since we have then eliminated radiative damping.

Finally we set the outer edge reflection coefficient to zero and observe that the reflected real part is now
positive. This means that radiative damping is enhanced by the presence of the disc cavity. The direction of
the change in real part seems reasonable because the resonator is electrically small and the close conducting
walls would be expected to act as extensions of the radiating arms of the resonator, enhancing radiation.

13 CONCLUSIONS

This report constructs circuit models for a hairpin resonator probe used for detecting plasma properties
such as plasma frequency (proportional to electron number density) and electron collision frequency. A
transmission line model is used along the resonator length and lumped loads are used to capture the
parasitic capacitance at the open end and the parasitic inductance at the drive or shorted end along with
a lumped radiation resistance. The impact of a plasma sheath surrounding the resonator wires as well as
the finite conductivity of the wires are addressed. Electromagnetic simulations using a frequency domain
method of moments code are also included as comparisons to the circuit model results. The effects of
nonsymmetric fields around the wires and the sheath due to interactions between the resonator arms are
shown to be small by a multipole technique. Inhomogeneities in plasma density along the resonator length
are examined briefly. Finally, the impact of the polysilicon disc cavity, which contains the resonator, is
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Figure 27. Real and imaginary parts of the scattered voltage at the drive point of the resonator (resulting
from the image currents in the resonator walls) divided by the drive current. This is the vertical orientation
where the resonator does couple into the propagating disc modes of the cavity. The propagating disc modes
are reflected from open edges at the outer radius of the disc cavity. Although the real part of the scattered
voltage is slightly negative over part of the range, the suppression of resonator radiation by the perfectly
conducting cavity walls is not as signficant in this vertical orientation due to the radiation of the propagating
disc modes at the outer cavity radius.
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Figure 28. Real and imaginary parts of the scattered voltage at the drive point of the resonator (resulting
from the image currents in the resonator walls) divided by the drive current. This is the vertical orientation
where the resonator does couple into the propagating disc modes of the cavity. However in this plot the
propagating disc modes are reflected from a short circuit at the outer radius of the disc cavity. The real part
of the scattered voltage thus becomes negative similar to the horizontal orientation. The resonator quality
factor will then be increased due to the suppression of resonator radiation by the perfectly conducting cavity
walls similar to the horizontal resonator orientation.
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Figure 29. Real and imaginary parts of the scattered voltage at the drive point of the resonator (resulting
from the image currents in the resonator walls) divided by the drive current. This is the vertical orientation
where the resonator does couple into the propagating disc modes of the cavity. However in this plot the
propagating disc modes are absorbed without reflection at the outer radius of the disc cavity. The real part
of the scattered voltage then becomes positive, indicating that there is enhanced radiation damping relative
to the case where the resonator is in free space. The cavity disc walls effectively help match the radiation
properties of the resonator, leading to increased radiation damping and a reduced quality factor.
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ascertained. The quality factor of the cavity is estimated using the properties of polysilicon as well as
known approximations for the load admittance at the outer periphery of the disc. The resonator is operated
at frequencies for which the only propagating modes in the disc cavity have a vertical electric field that
is independent of vertical position. When the hairpin resonator is oriented with all wires parallel to the
disc walls it does not couple effectively into these modes. However the presence of the disc cavity thereby
suppresses radiation damping of the hairpin and increases its quality factor. When the hairpin resonator
is oriented vertically it does couple into the propagating disc modes and the radiation characteristics are
modified somewhat (but are not eliminated) by the disc resonances. Interestingly, if the disc edge were well
matched to these modes, the radiation damping would actually be increased somewhat.
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