# Resonant Dust: IR Targets for Tagging Tracking, and Identification

<u>Marc L. Simpson ESTD</u>, Phillip Britt CTD, John Caughman FED, John T. Simpson ESTD, Don Hutchinson ESTD, Chuck Britton ESTD, Steve Allison ESTD, Chris Rouleau SSD

Oak Ridge National Laboratory (ORNL) 12/04/01

#### **Sponsor: DOE Special Technologies Program**

Presented at D&D Symposium

Contact info: Dr. Marc L. Simpson Oak Ridge National Laboratory PO Box 2008 Oak Ridge, TN 37831-6004 Tel (865)574-4171 e-mail simpsonml@ornl.gov



U.S. Department of Energy Oak Ridge National Laboratory

# **Outline of Talk**

- Introduction IR tags
- IR thermographic phosphors
- IR read out of microcantilevers
- Customized IR resonant surfaces (smart dust)
- Enabling hardware developments in the LWIR
- Future areas of interest (smarter tags)



## Unclassified Infrared (IR) Thermophosphor Paint Ball Detectable at >1 Km

ORNL 99-1351C EFG



U.S. Department of Energy Oak Ridge National Laboratory

## Unclassified IR Phosphors Are Available in Atmospheric Windows

Atmospheric Transmission - 300 m



U.S. Department of Energy Oak Ridge National Laboratory



## Unclassified Electrically Readable Cantilevers R&D at ORNL

- + ORNL presently has several patents issued and pending and over a dozen disclosures on the technology
- + Utilizing *arrays* of microcantilevers on a *single chip* with *customized coatings* to produce application-specific programmable sensors
- + Researching the limits of electronic readout of microcantilevers
- + Researching different chemical coatings for selective sensing (chemical & biological)



U.S. Department of Energy Oak Ridge National Laboratory Unclassified

ORNL-developed cantilever array





## Unclassified ORNL surface micromachined cantilever cross-section fabbed through MUMPS

+ Exposed coatings can have two basic effects

- **•** Change in mass (resonant frequency change)
- **•** Change in stress (positional change)



# Unclassified Our basic cantilever design is a ∏-shaped structure

+ The coating area beam width is approximately 100  $\mu$ m



# Long Wave IR Remote Readout of Vibrating Microcantilevers at > 1 Km Using Doppler Shift



# **Customizable All-weather IR Tag: Smart Dust**



- "Dust-like" particles
- IFF Applications: customized to be sensitive at single/multiple wavelengths
- Possible sensitivity to presence/absence of various substances

U.S. Department of Energy Oak Ridge National Laboratory



## Previous Research in Guided Mode Resonant Filters (GMRFs) Required an Embedded Waveguide Structure

- Coupling orthogonal to surface
- Linear gratings formed by surface relief
- Waveguide/grating couplers
- Resonant narrow band filters



U.S. Department of Energy Oak Ridge National Laboratory



# ORNL Initially Worked with Sinusoidal GRMFs due to Ease of Fabrication

Bandwidth (FWHM)

**∆φ** = 0.3°

- --> Δλ = 0.85nm
- Performance limitations
  - grating nonuniformity
    - ghost interference
    - beam nonuniformity
    - mechanical jitter during exposure







# Unclassified Sinusoidal GMRF Performance



U.S. Department of Energy Oak Ridge National Laboratory



# As Surface Features Get Smaller than the Wavelength of Incident Light, Surface Layer Becomes a Waveguide



# Key to Resonant Dust: Random Orientation Provides Signal Return from Wide Angles



U.S. Department of Energy Oak Ridge National Laboratory



# **Simulation of Reflectance for 2D SWS Layouts**



# Unclassified Initial Laboratory Data Supports Resonant Dust Models





Over etched Si on BaF<sub>2</sub> sample

U.S. Department of Energy Oak Ridge National Laboratory Sample measured reflectance compared with simulated theoretical reflectance



# **Next Phase: Chemically Selective Resonant Dust**

- Polymer film covalently bound on the surface of the resonant dust.
- Adsorption of organic vapors into the polymer film:
  - Changes the polarity of the polymer film (i.e., its dielectric constant) which alters the refractive index of the polymer.
    - For an example see: Nature 1996, 382, 697 and Acc. Chem. Res. 1998, 31, 267,
  - Swells the polymer film which changes the optical pathlength.



U.S. Department of Energy Oak Ridge National Laboratory



# Unclassified Simulation Showing Change in Reflectivity for Passive Tag Assuming a Polymer Delta n = .01



U.S. Department of Energy Oak Ridge National Laboratory



## Unclassified 1 to 5 Km Standoff Optical Read Out of Chem/Bio or IFF Point Sensors

- Distributed chem/bio or IFF point sensors
- Read out based on battery-powered micro cantilevers or resonant dust
- All weather optical receiver (TRL 5)
  - Miniature CO<sub>2</sub> laser and TE-cooled detector
  - 1.0 m<sup>3</sup> footprint
  - 500W input power
  - 150 lbs



U.S. Department of Energy Oak Ridge National Laboratory

![](_page_18_Picture_11.jpeg)

## Unclassified Compact, Low Power Optical Communication 10 Micron Technology Enabling Smaller Lasers, Modulators and Room Temperature Detectors

- Folded cavity and waveguide CO<sub>2</sub> lasers with 0.1 m<sup>2</sup> footprints and >5W output power
- HgCdZnTe and QWIP room temperature/TE cooled detectors
- High bandwidth modulators
- All weather transmission, invisible to night vision gear

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

U.S. Department of Energy Oak Ridge National Laboratory

![](_page_19_Picture_9.jpeg)

# Future Areas for Development in Micro and Nano-structures for Tagging/Tracking: Smarter Tags

- Remote IR readout of microcantilevers
- Anisotropic 2D structures (e.g. polarization sensitivity)
- Customized, multiple wavelength/polarization for ID
- Substance-specific polymer films for detection
- Totally Passive concepts for tags

U.S. Department of Energy Oak Ridge National Laboratory

![](_page_20_Picture_9.jpeg)