Searching for Resonant Higgs Production at CDF AKA: $H \rightarrow WW$ at CDF

Elliot Lipeles University of California, San Diego

Why $H \rightarrow WW$?

- *H* → *WW* dominates the branching fraction down to ≈ 135 GeV
- gg → H with both Ws decaying leptonically is sufficiently clean
- Loop process is sensitive to new physics (enhancements up to ≈ 9)

Elliot Lipeles (UCSD)

Resonant Higgs at CDF

2/17

The Challenge of $H \rightarrow WW$

The Backgrounds

The Higgs is underneath the needle in the haystack

Dominant Background: $q\overline{q} \rightarrow WW^*$

Telling $H \to WW^*$ from the graphic three the second seco

The Handles

- Parity violation makes *W* an excellent spin analyzer
 - Higgs is scalar ⇒ charged leptons go ≈ same direction
 - t-channel WW: Ws ≈ polarized along the beam direction
- At low masses one W is off-shell
 - One lepton is lower energy
- gg vs qq: less understood
 - Fragmentation
 - WW system z-momentum

Two Analyses:

- Matrix Element: Probability of the full lepton and E_T kinematics
- Neural Network: Detector and physics model from simulated data

Resonant Higgs at CDF

Dilepton Selection

- We only use the fully leptonic channel because backgrounds are too big with jets
- Optimized lepton acceptance
- Two e or μ leptons, one with $p_T > 20$ GeV, one $p_T > 10$

Backgrounds

- $Z/\gamma^* \rightarrow II WW \rightarrow II\nu\nu$
- Wγ and W+jets with γ or jet misidentified as lepton
- $WZ \rightarrow III\nu, ZZ \rightarrow II\nu\nu$, and $t\bar{t} \rightarrow II\nu\nu jj$

$(H \rightarrow)WW \rightarrow II\nu\nu$ Selection

- Neutrinos show up as missing transverse energy 𝔼_T
- Large Z/γ^* background has two lepton, but no ν s
- WW will produce eµ events, while Drell-Yan is only ee and µµ
- E_T cannot point along a jet or lepton

Source	Expected \pm Systematic
WW	132.9 ± 15.0
WZ	9.5 ± 1.4
ZZ	11.7 ± 1.7
tī	9.6 ± 1.8
DY	55.4 ± 12.0
$W\gamma$	$\textbf{24.7} \pm \textbf{ 6.1}$
W+jets	$\textbf{42.4} \pm \textbf{11.4}$
Total	$\textbf{286.1} \pm \textbf{23.3}$
Observed	323
Elliot Lipeles (UCS	SD) Resonant Higgs at CDF

EPS2007, Manchester, UK

6/17

$WW \rightarrow II \nu \nu$ and $H \rightarrow WW \rightarrow II \nu \nu$

Predicted Higgs Yields

Higgs Mass (GeV)									
110	120	130	140	150	160	170	180	190	200
0.2	0.6	1.4	2.4	3.2	3.9	3.9	3.3	2. 4	2.0

IIET Selection Controls Regions

- Same event selection but with same-sign leptons
- Tests model of jet or γ misidentified as leptons

- Events with lots of hadronic activity
- Tests E_T modeling

The Matrix Element Calculation

Separating $H \rightarrow WW$ from everthing else

Event-by-event probability density using the full kinematic information

$$P(\vec{x}_{obs}) = \frac{1}{<\sigma>} \int \frac{d\sigma_{th}(\vec{y})}{d\vec{y}} \epsilon(\vec{y}) G(\vec{x}_{obs}, \vec{y}) d\vec{y}$$

What we measure

- Integration over missing neutrino information
- Photons and jets additional factor = fraction detected as leptons
- Modeled modes: WW, ZZ, Wp \rightarrow W + fake, W $\gamma \rightarrow$ We_{conv}

Using the Calculated Probabilities

$$LR = rac{P_{Higgs}(M_H)}{P_{Higgs}(M_H) + \sum_{i} f_{ ext{bkg},i} P_{ ext{bkg},i}}$$

- Models don't have to be perfect
 - Monte Carlo and Data-based estimates of a 1-d distribution
- Don't have to model everything
 - Small diffi cult to model backgrounds: Drell-Yan
 - Next-to-leading order effects...

First a cross-check ..

Treat Backgrounds as Signal in Likelihood Ratio

Likelihood Ratio Discriminant

Resonant Higgs at CDF

The Matrix Element Analysis Limits

$M_H(GeV/c^2)$	110	120	130	140	150	160	170	180	190	200
Median(pb)	7.1	4.9	3.8	3.4	2.9	1.8	1.7	1.8	1.9	2.0
Observed(pb)	8.9	4.7	4.0	3.0	2.1	1.3	1.2	1.9	2.8	2.8
Expected/ σ_{NNLL}	122.6	37.4	17.4	10.7	8.0	4.8	4.9	6.6	9.8	12.9
Observed/ σ_{NNLL}	151.2	33.9	17.0	9.5	5.7	3.4	3.3	6.8	14.6	18.4

The Neural Network Analysis I

Two neural networks:

- One to differentiate
 - $H \rightarrow WW$ from Drell-Yan
- One for $H \rightarrow WW$ vs WW

Neural Network to Differentiate $H \rightarrow WW$ from Drell-Yan

Variables used in the NNs

Lepton Kinematics:

- Dilepton mass
- Leading and subleading lepton *p_T*
- Lepton angular separation
- Lepton azimuthal separation

Global Event:

- *E*_T
- Total transverse energy
- Azimuthal between *E*_T and nearest lepton or jet

•
$$E_T/\sqrt{\sum E_T}$$

Jet structure:

- Number of jets
- Leading and subleading jet *E_T*

14/17

The Neural Network Analysis II

 $e\mu$

Zee

fake

WZ

ZΖ

WW wgamma

tthar

higgsww

Zmumu Ztautau

ee

Neural Network for $H \rightarrow WW$ vs WW

- Similar Sensitivity to Matrix Element Analysis
- Different selections
 - Matrix Element: larger lepton acceptance
 - NN: 16 < *m*_{ll} < 25 GeV
- Combination with new data is in the works

- *H* → *WW* is the most sensitive channel above ≈ 135 > GeV
- New physics at the TeV scale can have a large effect on the gg → H coupling

Closing in on the Standard Model

... and limiting new physics on the way

Backup: Systematic Uncertainties

Source	WW	WZ	ZZ	tt	DY	$W\gamma$	W+jets	Higgs
<i>E</i> _T Modeling	1.0	1.0	1.0	1.0	20.0	1.0	-	1.0
Conversions	-	-	-	-	-	20.0	-	-
NLO Acceptance	4.2	5.0	5.0	5.0	5.0	5.0	-	5.0
Cross-section	10.0	10.0	10.0	15.0	5.0	10.0	-	-
PDF Uncertainty	1.9	2.7	2.7	2.1	4.1	2.2	-	2.2
Lepld $\pm 1\sigma$	1.4	1.5	1.4	1.3	1.7	1.3	-	1.2
Trigger Eff	0.3	0.3	0.3	0.4	0.4	0.5	-	0.6
Fake Rate	-	-	-	-	-	-	32.8(23.3)	-
Total	11.1	11.6	11.6	16.0	21.7	23.1	32.8(23.3)	5.7

Estimation Methods

- *E*_T: Comparison of data and simulation in large hadronic activity events
- Conversions veto efficiency: study of independanty derived sample of conversions
- Fake rates: variation in sample used to derive the fakes rates
- Fake rates+Conversions cross-checked in trilepton low- 𝑘_T sample which 50/50 Fake and Conversions

Elliot Lipeles (UCSD)

Resonant Higgs at CDF