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Abstract. We have performed experiments that explore the e®ects of a magnetic
quadrupole ¯eld on a pure electron plasma con¯ned in a Malmberg-Penning trap.
We have developed a model which describes the shape of the plasma and shows that a
certain class of resonant electrons follows trajectories that take them out of the plasma.
Even though the quadrupole ¯eld destroys the cylindrical symmetry of the system, the
theory predicts that if the electrons are o® resonance, the lifetime of the plasma is not
greatly a®ected by the quadrupole ¯eld, but near resonance the lifetime diminishes
sharply. Preliminary experimental results show that the shape of the plasma and the
plasma lifetime agree with the model. We are investigating the lifetime scaling with
various experimental parameters such as the plasma length, density, and strength of the
quadrupole ¯eld. This resonant particle transport may be detrimental to experiments
which plan to use magnetic quadrupole neutral atom traps to con¯ne anti-hydrogen
created in double-well positron/anti-proton Malmberg-Penning traps.3

Resonant particle transport has long been suspected as the primary cause of
plasma loss in Malmberg-Penning traps, but there is no conclusive experimental
evidence to support this claim [1{5]. We have found experimental evidence for
resonant particle transport when we apply a quadrupole magnetic ¯eld to our sys-
tem. We have also measured the equilibrium shape of plasmas when a magnetic
quadrupole perturbation is present. The results of this research apply directly to
anti-hydrogen creation experiments proposed by the ATHENA and ATRAP col-
laborations. Malmberg-Penning traps will be used to con¯ne positrons and anti-
protons, which should recombine into anti-hydrogen. Quadrupole ¯elds will be used
to con¯ne the neutral anti-hydrogen.

With an axially invariant transverse magnetic quadrupole ¯eld, the total mag-
netic ¯eld becomes

~B = Boẑ + ¯q(xx̂¡ yŷ); (1)
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where Boẑ is the standard axial ¯eld. The self electric ¯elds of the plasma cause it

FIGURE 1. Adding a small transverse quadrupole perturbation to a constant axial ¯eld pro-

duces the ¯eld lines shown in this ¯gure.

to ~E £ ~B drift around the trap axis. When this rotation is slow compared to the
time it takes an electron to bounce back and forth across the length of the plasma,
the electrons follow the magnetic ¯eld lines shown in Fig. 1. The plasma has a
circular cross section in the middle and has elliptical cross sections at both ends.
The ellipses are rotated 90± from one another. When the rotation is fast compared
to the bounce time, the plasma smears out into a cylinder.

FIGURE 2. The equilibrium shape of a slowly rotating plasma. The lines with arrows (to be

discussed later) show the trajectory followed by an outward moving resonant electron.

We measure the ellipticity ² and orientation µ of the plasma either by imaging
the plasma or by measuring the image charge induced on the trap walls. When
the plasma is rotating slowly, the quadrupole moment, as expected, is zero in the
center of the plasma, has equal and opposite values at the ends of the plasma, and
is proportional to ¯q. When we image quickly and slowly rotating plasmas, we see
the expected circular and elliptical shapes.

Theoretically, ²¡ 1 should scale with ¯q=Bo, and is in rough agreement with the
data shown in Fig. 5. We do not understand the step in the data at Bo » 400 G.
The variation in angle is reminiscent of the drive/response phase shift of a damped
driven simple harmonic oscillator as it passes through resonance.

If the rotation rate is such that an electron makes a quarter revolution each time
it travels the length of the plasma, the electron can move ever outwards or inwards
(see the lines with arrows in Fig. 2). For a constant density plasma, the resonance
condition is,

Bo =
neL

¼²ovz
: (2)

Resonant and near-resonant electrons traveling outwards can leave the plasma
very quickly. Di®usion due to this mechanism can be large. There are higher order



FIGURE 3. Measurements of quadrupole moment along the plasma's length show the axial

dependence and ¯q proportionality that we expect.

FIGURE 4. ¯q=Bo = 0:004 cm¡1. (a) Bo = 32:43 G so the plasma is rotating quickly. We

measure ² = 1:09 and µ = 53:5±. (b) Bo = 500 G so the plasma is rotating slowly. We measure

² = 1:26 and µ = ¡37:5±.

resonances in which the electron makes N=4 (N odd) revolutions as it travels across
the plasma, but these are less important.

Above resonance, when the plasma is rotating slowly, the resonant velocity lies
well within the electron distribution function f (v). There are many resonant elec-
trons and the quadrupole ¯eld has a strong e®ect. Well below resonance, when the
plasma is rotating quickly, the resonant velocity falls in the tail of f (v). Conse-
quently, there are few resonant electrons and the quadrupole ¯eld has little e®ect.

This resonance e®ect can be seen in Fig. 6. Below resonance [Fig. 6 (a)], the
application of the quadrupole ¯eld has no e®ect on the evolution of the central
density as a function of time until the plasma expands enough so that the resonance
condition is met. The plasma in Fig. 6 (b) begins above resonance so the quadrupole
¯eld has an immediate e®ect on the central density.

From a series of images taken at successive times, we measure the di®usion
coe±cient, D. The plasma images measure the z-averaged radial density pro¯le
n(r; t), from which we compute N (r; t) =

R r
0 n(r0; t)2¼r0 dr0.

We write the di®usion equation in polar coordinates, integrate once with respect
to r and rearrange to yield

D(R) =
@N=@t

2¼R @n=@r

¯̄
¯̄
r=R

: (3)



FIGURE 5. The scaled ellipticity and angle of the plasma as functions of Bo as measured from

images such as those shown in Fig. 4.

FIGURE 6. By comparing the time evolution of the central density with the quadrupole ¯eld

on and o®, we can separate the e®ects of the quadrupole ¯eld from other plasma loss mechanisms.

All µ variations have been neglected because the quadrupole ¯eld used in the dif-
fusion experiments is typically small.

In Fig. 7 (a,b), we keep ¯q=Bo ¯xed, as would be the case if the quadrupole ¯eld
were due to imperfections in the main magnet coils. When ¯q 6= 0, D is the sum
of the di®usion due to both the quadrupole ¯eld and background processes. Below
resonance, the quadrupole ¯eld has little e®ect, but above resonance it enhances
di®usion. In Fig. 7 (c,d), we hold ¯q ¯xed. For large Bo, the di®usion due to the
quadrupole ¯eld becomes small and background processes dominate the di®usion.
The anomalous structure in the background (D¯q=0) data needs to be understood
before further study can be completed.

By measuring the relative lifetimes using three di®erent plasma lengths, we see
that the location of the resonance moves in agreement with the change in the
resonance condition. To ¯nd the plasma's lifetime, we measure the time it takes
for the central density to drop to » 70% of its initial value. We do this both with
the quadrupole ¯eld on and o®, then compute the relative lifetime.

We model the results of our experiments by constructing a di®usion coe±cient,
D = ¸2ºf , where ¸ is the average step size of a resonant electron, º is the fre-



FIGURE 7. (a) D for ¯q=Bo = 0; 0:002 cm¡1. (b) D due only to the quadrupole ¯eld. Above

Bo » 200 G, D scales roughly like B2
o . (c) D for ¯q = 0; 0:1 G cm¡1. (d) Near resonance, D

due to the quadrupole ¯eld is enhanced. In (b) and (d), the solid curve is D(n; kT;Bo) from the

theory using the measured densities at each point and assuming kT = 1:5 eV.

quency of collisions that knock an electron out of resonance, and f is the fraction
of electrons that satisfy the resonance condition. We must sum over the higher
order resonances to obtain an expression for D. The result is D =

P
N OddDN ,

where, for a constant density plasma,

DN =
2R2n2e2

¼4²2o

r
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th

¶
: (4)

This formula, suitably generalized for arbitrary n(r), is used in Fig. 7 (b,d).

Clear evidence for resonant particle transport as the mechanism for plasma loss in
Malmberg-Penning traps has been lacking. When applying a magnetic quadrupole
perturbation, we observe resonant behavior that could help to explain plasma loss in
Malmberg-Penning traps. If operating in suitable parameter regime, experiments
planned by the ATHENA and ATRAP collaborations may be able to use both
Malmberg-Penning traps and quadrupole traps. For example, if ATRAP operates
with Bo = 2 T, n = 108 cm¡3, L = 1 cm, and T = 4 K [6], they will be near the
resonant axial ¯eld of 0:7 T and plasma loss due to the quadrupole ¯eld may be
too great to tolerate.



FIGURE 8. Graphs of the relative lifetime versus magnetic ¯eld show that when the resonance

condition is met, particle loss is enhanced. The resonance location is length dependent.
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