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X-ray resonant reflection from magnetic multilayers: Recursion matrix algorithm
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Recursion equations for 232 scattering matrices have been derived to calculate resonant x-ray reflection
from magnetic multilayers. The solution has been basically reduced to that found in Stepanovet al, Phys. Rev.
B 57, 4829~1998! for grazing incidence x-ray diffraction from crystalline multilayers.
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I. INTRODUCTION

For a number of years the majority of magnetic materi
studies were carried out with neutrons, while x rays w
solely used as an auxiliary tool to obtain the crystal struct
data of the materials.1–5 The magnetic scattering of x ray
was not of practical interest because of its weakness as c
pared to the usual x-ray charge scattering. The situa
changed after the discovery of a huge resonant enhance
for the x-ray magnetic scattering near some absorp
edges.6,7 Since then the resonant x-ray magnetic scatter
has become a new experimental tool for the investigation
magnetic materials.

At the beginning, the resonant magnetic x-ray scatter
was mostly measured around high-angle Bragg peaks f
bulk magnetic materials6,8–12 or thick magnetic films.13

Nowadays, the increasing interest in thin magnetic films a
multilayers has stimulated the application of grazing in
dence x-ray techniques that are specifically sensitive to
structure of thin surface layers. Grazing incidence reson
x-ray reflection has been utilized for the investigation of
iron film14 and magnetically coupled Ag/Ni multilayer.15

Resonant grazing incidence x-ray diffraction16 has been ap-
plied to the studies of magnetic effects at UO2 and Co3Pt
surfaces.17,18 Resonant x-ray diffuse scattering at grazing
cidence has been used to measure the magnetic roughne
Co/Cu multilayers,19 a 50-Å-thick Co0.95Fe0.05 film20 and a
Fe/Gd multilayer.21

In the conditions of magnetic resonance, the amplitude
x-ray scattering becomes anisotropic7,22 and the conventiona
Parratt23 and Abeles24 techniques to calculate the x-ray r
flection are generally not applicable. Thus a theory is
quired to calculate the resonant x-ray reflectivity from ma
netic multilayers. This would also provide the x-ray wa
fields inside the layers which are required for the calculat
of grazing incidence diffraction25,26 and diffuse x-ray
scattering27 with the distorted wave Born approximatio
technique.

To our knowledge, the problem of calculating x-ray res
nant reflection from magnetic multilayers has not been fu
addressed. Perhaps, the closest analogs to this task ar
theories for the reflection of visible light from a multilaye
consisting of anisotropic layers.28,29 In these theories the
Maxwell equations for the electromagnetic waves are
PRB 610163-1829/2000/61~22!/15302~10!/$15.00
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duced to four linear equations containing the product o
34 transfer matrices of individual layers. The results of R
29 have been applied to calculate the x-ray resonant re
tivity of a five-layer system with one resonant layer.30 How-
ever, the details and the restrictions of the calculations w
not discussed.

Another similar analysis has been carried out for the x-
reflection from multilayers under the conditions of Mo¨ss-
bauer resonance.31–33 In Ref. 31 a special case was consi
ered where the two x-ray eigenpolarizations in each layer
orthogonal and directed in the same way for all of the laye
Then, the reflectivity of Mo¨ssbauer multilayer could be re
duced to the Parratt scalar recursive equations. In Ref. 32
set of four linear equations for 434 transfer matrices was
obtained as in the optics of anisotropic multilayers.28 Finally,
in a thesis by Baron33 the solution was obtained in the form
of recursive equations for 232 reflection and transmissio
matrices. That approach is the closest to what is suggeste
our paper. However, Ref. 33 did not contain the analysis
special cases such as possible matrix singularities or the
plifications for hard x rays, etc. Also, of course, the specifi
of magnetic scattering were not discussed since the work
devoted to the Mo¨ssbauer resonance. Some other theoret
attempts to build the theory of x-ray resonant reflection fro
magnetic multilayers are underway34,35 but we believe that
they do not overlap with this presentation.

In our study we analyze the x-ray reflection from an ar
trary stack of resonant magnetic and nonmagnetic lay
The problem is basically reduced to that of dynamical gr
ing incidence x-ray diffraction from a crystallin
multilayer,36 i.e., to the (232) recursive matrix algorithm
for scattering matrices of individual layers. The formulas d
rived are valid for the whole x-ray wavelength range, and
simplifications are demonstrated for the medium-energy
hard x rays with small grazing incidence angles and we
interaction with matter.

In Sec. II the conventional reflection from nonresona
media with scalar susceptibility is derived. The idea is
introduce a common approach to both magnetic and n
magnetic reflection, noting, moreover, that magnetic mu
layers are often sandwiches of resonant and nonresonan~or
nonmagnetic! layers.

In Sec. III the reflectivity of a layer with an aligned or
entation of resonant scatterers is analyzed. At the end of
15 302 ©2000 The American Physical Society
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section the problem of resonant reflection from a magn
layer is reduced to that of grazing incidence diffraction.

In Sec. IV a short survey of Ref. 36 is provided for th
reader’s convenience. Also some minor differences betw
our case and Ref. 36 are pointed out.

In Sec. V we present some model calculations using
technique and compare them with the data available in
literature.30 Section V also contains the discussion of po
sible applications and further developments.

II. NONRESONANT X-RAY REFLECTION
„SCALAR MEDIA SUSCEPTIBILITY …

Consider first the usual specular reflection of x rays fr
a slab with flat interface. The wave field in vacuum consi
of the incident and specular waves with the amplitudesE0
andEs, respectively:

Ev~r !5~E0e
ikg0z1Ese

2 ikg0z!ei ki•r. ~1!

Here g05sinF0; F0 is the incidence angle. Since electr
magnetic waves in vacuum are transverse (E•k50), each of
the wavesE0 and Es can be split intos- and p-polariza-
tion components chosen perpendicularly to the incide
plane, and in this plane respectively~see Fig. 1!.

The electric field of the waves inside the isotropic sl
must satisfy Maxwell’s wave equation:37

(
j 51

3

$@¹21k2~11x0!#d i j %Ej~r !50, ~2!

where indexi 51,2,3 lists thex,y,z components andx0 is
the mean dielectric susceptibility of the media~see below!.

Due to the lateral homogeneity of the problem, the late
component ofk does not change at refraction and therefo
the wave fieldE(r ) inside the media can be represented

E~r !5Eeikuz1 i ki•r. ~3!

The parameteru has the same physical meaning for t
waves inside the slab asg0 for the vacuum waves, but unlik
g0 it can be a complex number due to absorption or to
reflection.

Substituting Eq.~3! into Eq. ~2! we get

@~g0
22u2!1x0#E50. ~4!

The condition for a nonzero solution to Eq.~4!—the disper-
sion equation—is

~g0
22u2!1x050, ~5!

which brings

FIG. 1. X-ray reflection and our choice of coordinate syste
Vectorsk0 and ks denote incident and specularly reflected wav

respectively;F0 is the angle of these waves to the surface,êmn are
the unit vectors in the directions ofs andp polarization.
ic

en

r
e

-

s

e

l
e

l

u(1,2)56~g0
21x0!

1/2. ~6!

Thus in the general case of x-ray reflection from isotro
media there are two internal wavesE(1) andE(2) correspond-
ing to the u(1) and u(2), respectively. Since the waves i
homogeneous media are transverse (E( j )

•k( j )50), each of
the vectorsE( j ) has only two independent components,E( j )

5(Es
( j ) ,Ep

( j )), where as in vacuum,p and s polarizations
are chosen in the plane of reflection and perpendicular to
respectively.

On the other hand, thep and s components can be
viewed as separate waves because they are not lin
through the wave equation@Eq. ~4!#. Then, we can conclude
that the reflection from homogeneous media produces
waves inside the slab—twos and twop ones—and the po-
larizations are not exchanged.

The boundary conditions for the waves must be satis
for the lateral componentsEi and Hi of electric fields and
magnetic fields, respectively. SinceH}@k3E#, this gives

g0E0p2g0Esp5 (
j 51,2

Ex
( j ) , ~7!

E0s1Ess5 (
j 51,2

Ey
( j ) , ~8!

g0E0s2g0Ess5 (
j 51,2

u( j )Ey
( j ) , ~9!

E0p1Esp5 (
j 51,2

@u( j )Ex
( j )2nxEz

( j )#, ~10!

where Eqs.~9! and ~10! are for Hx}2kzEy , Hy}(kzEx

2kxEz), respectively, andnx5kx /k5(12g0
2)1/2.

With the condition that the waves inside the media a
transverse, Eqs.~7!–~10! can be transformed to

g0E0p2g0Esp5 (
j 51,2

u( j )Ep
( j )/e1/2, ~11!

E0s1Ess5 (
j 51,2

Es
( j ) , ~12!

g0E0s2g0Ess5 (
j 51,2

u( j )Es
( j ) , ~13!

E0p1Esp5 (
j 51,2

e1/2Ep
( j ) , ~14!

where the parametere511x0 is the dielectric permittivity
of the media.

Finally, Eqs.~11!–~14! can be presented in the 434 ma-
trix form

.
,
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S 1 0 1 0

0 1 0 1

g0 0 2g0 0

0 g0 0 2g0

D S E0s

E0p

Ess

Esp

D
5S 1 0 1 0

0 e1/2 0 e1/2

u(1) 0 u(2) 0

0 u(1)/e1/2 0 u(2)/e1/2

D S Es
(1)

Ep
(1)

Es
(2)

Ep
(2)

D . ~15!

For hard- and medium-energy x rays one can takee'1 and
the equations fors andp polarizations become equivalen

As follows from Eq.~6!, the imaginary parts of rootsu(1)

and u(2) must have opposite signs. Let us choose Im@u(1)#
.0 and Im@u(2)#,0. Then, the amplitudes of the wave
corresponding tou(1) decrease and those foru(2) increase
with z ~i.e., towards the slab interior!. The former and the
latter waves can be interpreted as the refracted inciden~or
transmitted! waves and the ones specularly reflected from
lower interface of the slab, respectively. For a thick slab~no
lower interface! one can takeEs

(2)5Ep
(2)50. Then the four

linear Eqs.~15! are sufficient to find the remaining four un
known amplitudesEss , Esp , Es

(1) , andEp
(1) . If the slab is a

multilayer, the boundary conditions like Eq.~15! can be ap-
plied at each interface, so that each layer adds four m
unknown amplitudes and four more equations. Thus
problem remains soluble.

Of course, in the case ofnonresonantx-ray reflection the
boundary conditions fors and p polarizations can be spli
into independent 232 matrix equations for each of th
polarizations.36 We make use of the 434 formalism in order
to develop a common approach to both the usual case an
resonantx-ray reflection from magnetic layers where the p
larizations interfere with each other.

III. RESONANT X-RAY REFLECTION
„TENSOR MEDIA SUSCEPTIBILITY …

A. Susceptibility tensor

In the case of magnetic resonance the total amplitude
coherent elastic scattering of x rays from a magnetic atom
given by6

f 5H f 01
3l

8p
@F111F121#J ~ êf

!
•êi !

2
3l

8p
i @F112F121#~ êf

!3êi !•M̂

1
3l

8p
@2F102F112F121#~ êf

!
•M̂ !~ êi•M̂ !, ~16!

where f 0 is the usual nonmagnetic~charge scattering! part
known as the Thompson scattering amplitude@ f 05r 0(2Z
1 f 81 i f 9), r 0 is the classical electron radius,Z is the num-
ber of electrons in the atom,f 8 and f 9 are the nonresonan
dispersion corrections#; l52p/k is the x-ray wavelength
êi , êf , andM̂ are the unit vectors representing the polariz
tions of incident and scattered waves and the direction of
e

re
e

the
-

or
is

-
e

magnetic moment of atom, respectively;FLM are the reso-
nant magnetic scattering amplitudes~see Ref. 6 for more
details!.

Since the directions of vectorsêi and êf can be chosen
arbitrarily, the dielectric susceptibility of a resonant ma
netic medium is a tensor:

x i j 5~x01A!d i j 2 iBe i jkMk1CMiM j , ~17!

where by the usual constitutive relationship relating refr
tive index to scattering length,

x052
l2r 0

p (
a

na~2Za1 f a81 i f a9!, ~18!

A5
l2r 0

p
nM@ F̃111F̃121#, ~19!

B5
l2r 0

p
nM@ F̃112F̃121#, ~20!

C5
l2r 0

p
nM@2F̃102F̃112F̃121#. ~21!

The sum in Eq.~18! is over all the types of atoms in th
material,na is the density of the atoms of type ‘‘a’’ and in
particular nM is the density of magnetic atoms;e i jk is the
antisymmetric Levi-Civita symbol (e1235e2315e31251,
e1325e2135e321521, all othere i jk50). The renormalized
amplitudes F̃kl53lFkl /(8pr 0) are substituted instead o
the originalFkl because they are commonly discussed in
literature6 and more convenient for comparing withZa .
They are, in general, complex, the imaginary part being
lated to absorption.

Equations~19!–~21! correspond to the case where all th
magnetic moments are aligned in one direction. In the c
of a partial alignment,nM must be corrected for some de
magnetization factor.

B. Wave equation: General case

With the tensor media susceptibility given by Eq.~17! the
wave Eq.~2! now becomes37

(
j 51

3

@d i j ¹
22¹ i¹ j1k2~d i j 1x i j !#Ej~r !50. ~22!

The substitution ofEj (r ) in the form of Eq.~3! brings

(
j 51

3

@~g0
22u2!d i j 1ninj1x i j #Ej50, ~23!

whereni5ki /k, i.e., nx5(12g0
2)1/2, ny50, nz5u. A non-

trivial solution for Eq.~23! requires the following dispersion
equation:

I 11xxx2u2 xxy xxz1unx

xyx g0
21xyy2u2 xyz

xzx1unx xzy g0
21xzz

I 50, ~24!
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which provides the fourth order polynomial equation foru:

u4Q11u3Q21u2Q31uQ41Q550. ~25!

Here

Q1511xzz, ~26!

Q25nx~xxz1xzx!, ~27!

Q35xxzxzx1xyzxzy2~11xzz!~g0
21xyy!

2~11xxx!~g0
21xzz!, ~28!

Q45nx@xxyxyz1xyxxzy2~xxz1xzx!~g0
21xyy!#, ~29!

Q55~11xxx!@~g0
21xyy!~g0

21xzz!2xyzxzy#

2xxyxyx~g0
21xzz!2xxzxzx~g0

21xyy!

1xxyxzxxyz1xyxxxzxzy . ~30!

Let us prove that Eq.~25! always has two rootsu( j ) with
Im@u(1,2)#.0 and the other two roots with Im@u(3,4)#,0 cor-
responding to transmitted and reflected waves in the
dium, respectively. That can be done with the help of
following imaginary experiment. First we ‘‘switch off’’ the
anisotropy by settingx i j 5x0d i j . Then, Eq.~25! reduces to
the form

@u22~g0
21x0!#

250, ~31!

which clearly has the two roots with Im@u(1,2)#.0 and the
other two with Im@u(3,4)#,0. Now let us continuously pro
ceed from Eq.~31! to Eq.~25! by virtue of continuous varia-
tion in x i j . At such a transition the number of positive an
negative imaginary parts cannot change at any point bec
that would imply the possibility of anisotropic media wit
zero absorption (Im@u( j )#50) which is physically impos-
sible. So, the number of roots with Im@u( j )#,0 and
Im@u( j )#.0 must be always 2 and 2, respectively.

Thus, as distinct from a nonresonant x-ray reflection,
magnetic resonance produces four waves inside the m
~the two transmitted and two reflected ones! with different
critical angles for total external reflection~the latter are given
by the conditionu( j )50 at zero absorption!.

For each of the waves Eqs.~23! give (j 51, . . . 4):

Ex
( j )5Px

( j )Ey
( j ) ,

Ez
( j )5Pz

( j )Ey
( j ) , ~32!

where

Px
( j )5@xxy~g0

21xzz!2xzy~xxz1u( j )nx!#/D ( j ), ~33!

Pz
( j )5@xzy~12u( j )21xxx!2xxy~xzx1u( j )nx!#/D ( j ),

~34!

D ( j )5~xxz1u( j )nx!~xzx1u( j )nx!

2~12u( j )21xxx!~g0
21xzz!. ~35!

The boundary conditions are still given by Eqs.~7!–~10!
with the only difference that now there are four wave mod
e-
e

se

e
ia

s

instead of two on the right-hand side. Substituting Eq.~32!
into the boundary conditions one arrives at

S 1 0 1 0

0 1 0 1

g0 0 2g0 0

0 g0 0 2g0

D S E0s

E0p

Ess

Esp

D
5S 1 1 1 1

v (1) v (2) v (3) v (4)

u(1) u(2) u(3) u(4)

w(1) w(2) w(3) w(4)

D S Ey
(1)

Ey
(2)

Ey
(3)

Ey
(4)

D , ~36!

where

v ( j )5u( j )Px
( j )2nxPz

( j ) , ~37!

w( j )[Px
( j ) . ~38!

For a thick slab with one interface only the reflected wav
inside the slab vanish,E(3)5E(4)50, and Eqs.~36! provide
the remaining four unknown amplitudesEss , Esp , Ey

(1), and
Ey

(2) .

C. Wave equation: Special case of magnetization perpendicular
to the reflection plane

Equations~36! can only be solved if the scattering matr
on the right-hand side is not singular. The singularity m
occur when either some rootsu( j ) coincide or all thev ( j ) or
w( j ) become zero.

As we have seen in the previous section, the former s
ation occurs in the absence of magnetic resonance whe
the off-diagonal terms ofx i j become zero. Then one has
use Eq.~15! instead of Eq.~36!. Note that there is no con
tinuous transition between these two types of equations
cause they are for different sets of wave fields.

The matrix singularity of the latter type@v ( j )50 or w( j )

50# can only occur whenxxy5xzy50. Otherwise, the
terms on the right-hand side of Eqs.~33!, ~34!, and~37! have
different orders of magnitude and cannot yield zero sum. T
conditionxxy5xzy50 providesPx

( j )5Pz
( j )50 and thus im-

plies decoupling ofEx andEz from Ey .
Proceeding to Eq.~17!, we find that the case ofxxy

5xzy50 in the resonant magnetic media requiresMx5Mz
50, i.e., the magnetization vector must be parallel to theY
axis. ForM iY the dispersion equation@Eq. ~24!# reduces to

I 11xxx2u2 0 xxz1unx

0 g0
21xyy2u2 0

2xxz1unx 0 g0
21xzz

I 50, ~39!

and gives (xxx5xzz)

~u22g0
22xyy!~u22g0

22xzz2d!50, ~40!

d5xxz
2 ~11xxx!52B2/~11xxx!. ~41!

The two roots of this equationu(1,3)56(g0
21xyy)

1/2 provide
Ex

(1,3)5Ez
(1,3)50 and an arbitraryEy

(1,3) . The other two
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u(2,4)56(g0
21xzz1d)1/2 provide Ey

(2,4)50 and Ex
(2,4)

5RxEz
(2,4) , whereRx

( j ) are given by Eq.~39!. Substituting
these solutions into the boundary conditions~7!–~10!, one
obtains

S 1 0 1 0

0 1 0 1

g0 0 2g0 0

0 g0 0 2g0

D S E0s

E0p

Ess

Esp

D
5S 1 0 1 0

0 v (2) 0 v (4)

u(1) 0 u(3) 0

0 w(2) 0 w(4)

D S Ey
(1)

Ez
(2)

Ey
(3)

Ez
(4)

D ~42!

with

v ( j )5u( j )Rx
( j )2nx

52@u( j )xxz1nx~11xxx!#/~nx
22d!, ~43!

w( j )5Rx
( j )

52~u( j )nx1xxz!/~nx
22d!. ~44!

Equation~42! looks similar to Eq.~15!, but unlike the scalar
case here one has an interaction betweenEx andEz and the
x-ray waves in the magnetic media are not transverse.

D. Wave equation: Simplifications for hard x rays

With the assumptions that even at the resonancex i j re-
main small (ux i j u!1), and the angles of x rays to the surfa
are also small@g0

2;O(x i j )#, which are reasonable for hard
and medium-energy x rays, we can simplify the expressi
for Qj to

Q151, ~45!

Q25xxz1xzx , ~46!

Q352~g0
21xyy!2~g0

21xzz!, ~47!

Q45xxyxyz1xyxxzy2~xxz1xzx!~g0
21xyy!, ~48!

Q55~g0
21xyy!~g0

21xzz!2xyzxzy . ~49!

Further simplification is possible if the amplitude of res
nance scattering does not essentially exceed the usua
ompson contributionux i j u&ux0u. Then, estimatingu2;g0

2

;ux i j u we find that the order of the terms atQ2 andQ4 in
the dispersion Eq.~25! is small as compared to the other
Neglecting these terms, the rootsu( j ) can be found analyti-
cally:

u25
us

21up
2

2
6F S us

22up
2

2 D 2

1xspxpsG1/2

, ~50!

whereus
25g0

21xss, and s and p axes for grazing x rays
coincide withY and2Z respectively.
s

h-

Equations~33!–~35! are considerably simplified as we
and one obtains

v ( j )52xps /@u( j )22g0
22xxx#,

~51!
w( j )5u( j )v ( j ).

It is worth noting that the above simplifications are equiv
lent to neglectingEx and using the transverse waves appro
mation for hard x rays inside magnetic slab. In this case,
main effect of magnetic resonance on x-ray reflection is
interaction betweens andp polarizations.

Consider now the cases where the magnetization ve
M is directed along one of the coordinate axes.

1. MiX

The dispersion Eq.~24! is reduced to

I 1 0 u

0 g0
21x01A2u2 2 iB

u iB g0
21x01A

I 50, ~52!

and provides the rootsu1,2,3,456(g0
21x01A6B)1/2, as also

follows from Eq. ~50!. Thus, when the incident x rays ar
parallel to the magnetization direction, the magnetic re
nance affects the reflection of any polarization. Also, t
polarizations are interacting. There are two critical angles
total reflectionFc5(x01A6B)1/2, but they are close since
B is in general small.

2. MiY

In this case the dispersion equation is given by Eq.~39!
and the simplified form of it may be written as

I 1 0 u

0 g0
21x01A1C2u2 0

u 0 g0
21x01A

I 50. ~53!

Note that Eq.~50! is also valid. The roots given either by Eq
~50! or Eq. ~53! are u(1,3)56(g0

21x01A1C)1/2 and u(2,4)

56(g0
21x01A)1/2. As we have discussed, the polarizatio

are not interacting in this case. IfF1050, the contributions
of A and C to u(1,3) cancel each other and then only th
reflection ofp polarization is affected by the resonance.

3. MiZ

The dispersion Eq.~24! may be approximated as

I 1 0 u

0 g0
21x01A2u2 0

u 0 g0
21x01A1C

I 50, ~54!

and the respective roots areu(1,3)56(g0
21x01A)1/2 and

u(2,4)56(g0
21x01A1C)1/2. We find that in the approxi-

mation for hard x rays the polarizations are not interact
again. AtF1050 the only affected polarization iss.

Thus, in the case of hard x rays and the magnetiza
vector directed along theY or Z axis ~alongs or p polariza-
tion, respectively!, Eqs. ~36! and ~42! become formally
equivalent38 to Eq. ~15!. This corresponds to ‘‘viewing’’ by
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hard x rays the resonant magnetic media as a nonmag
one. The only exception is that the critical anglesFc

s

5(xss)
1/2 for the total x-ray reflection differ for thes5s

ands5p incident polarizations, respectively.

E. Reflectivity of magnetic multilayer

For a multilayer, the 434 matrix boundary conditions o
the above type can be imposed at each interface:

SvEv5S1E1 ,

S1F 1
(L)E15S2F 2

(U)E2 ,

. . . . . . . . . . . . ,

SN21FN21
(L) EN215SNF N

(U)EN . ~55!

HereEv5(E0s E0p , Ess , Esp) andEn5(Esn
(1) , Esn

(2) , Esn
(3) ,

Esn
(4)) are the four-component vectors.Sv andSn are the char-

acteristic 434 matrices of the layers as introduced at the l
and the right sides of Eq.~36!, respectively. Finally,Fn

j (U,L)

are the diagonal 434 matrices

@Fn
( j )U,L# i j 5d i j exp@ iun

( j )kzn
U,L#, ~56!

zn
U,L denote the coordinates of the upper and the lower in

faces of layers, respectively.
At this point the problem of resonant x-ray reflection fro

magnetic media has been reduced to that of the graz
incidence x-ray diffraction from a crystalline multilayer.36

Thus the rest of this section as well as the next one pres
a nearly complete repetition of Ref. 36. This review is p
vided for the reader’s convenience. We also point out so
minor differences.

A direct formal solution to Eqs.~55! is

Ev5Sv
21S1F1S 1

21S2F2•••SN21
21 SNF N

(U)EN , ~57!

where (Fn) i j 5@F n
(U)(F n

(L))21# i j 5d i j exp(2iun
(j)ktn), and tn

is the thickness on thenth layer. Calculating the matrix prod
uct at the right-hand side of Eq.~57! and taking into accoun
that the amplitudes of reflected waves in the substrate
zero (EsN

(3)5EsN
(4)50), one arrives at four linear equations f

four unknown amplitudes:Ess , Esp , EsN
(1) , and EsN

(2) . The
other amplitudes are given by Eqs.~55! and~32!. The above
scheme provides a 434 transfer-matrix solution to the prob
lem of resonant and nonresonant x-ray reflection from
multilayer.

As has been mentioned in the introduction, a similar
34 matrix formalism is used in the optics of visible light
calculate the reflectivity of anisotropic layered media.28,29 It
has also been applied to calculate the x-ray reflectivity fr
multilayers under the conditions of magnetic30 and
Mössbauer32 resonances. Although formally the 434 matrix
method is absolutely correct, its numerical implementation
often problematic because of possible numerical overfl
while calculating the matrix product on the right side of E
~57!.
tic

t

r-

g-

ts
-
e

re

a

is
w
.

IV. RECURSION 2Ã2 MATRIX FORMULAS
FOR RESONANT X-RAY REFLECTION

FROM A MULTILAYER

In the following consideration we make use of the a
proach developed by Kohn39 for nongrazing x-ray diffraction
from multilayer with multiple Bragg- and Laue-case refle
tions. The Bragg- and Laue-case x-ray waves in that prob
can be viewed as being analogous to the transmitted
reflected waves in our problem. The basic idea of Kohn
that Eq.~57! diverges because the vacuum amplitudesEv are
sought together with the substrate amplitudesEN . The
former amplitudes are of the order of 1, while the latter on
can be evanescent in a thick multilayer. A better way is
express the reflectivity of a multilayer containingn11 inter-
faces via that of a multilayer withn interfaces. Then the
recursion must converge because the effect of additio
lower interfaces on the reflectivity decreases with the d
tance of the interfaces from the surface.

We start with the following renormalizing of x-ray
amplitudes:40

E n85F n
(L)En , ~58!

and denotingXn115S n
21Sn11. Then, all Eqs.~55! assume

the universal form~here and below the primes inEn are left
out!

En5Xn11Fn11En11 , n50, . . . ,N21. ~59!

The amplitudesEn are constant within the layers and chan
at the interfaces. Therefore the interfaces can be treate
‘‘scatterers’’ for amplitudes. First, let us consider the scatt
ing at a single interface. For clarity we discuss the reflect
from the surface@Fig. 2~a!#, but our consideration is appli
cable to any internal interface as well. The waves at
left-hand side of Eq.~59! can be classified as two inciden
and two scattered waves. We group them in the vectorsT0
5(E0s ,E0p) andR05(Ess ,Esp), respectively. In their turn,
the waves at the right-hand side of Eq.~59! can be viewed as
the two transmitted~or scattered! waves and two ones ‘‘in-
cident’’ onto the interface from the slab interior. The form

FIG. 2. Schematic illustrating the derivation of matrix recursi
equations for x-ray resonant reflection in the cases of~a! a single
layer and~b! a multilayer.Tk and Rk denote the two-componen
vectors containing the amplitudes of transmitted and reflec
waves, respectively.
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and the latter waves are characterized by Im@u(1,2)#.0 and
Im@u(3,4)#,0, respectively. Although the amplitudes of th
latter waves are zero in a thick slab, we keep them for
general case where slabs have internal interfaces. Thu
group the waves below the surface as the vectorsT1

5(Es
(1) ,Es

(2)) and R15(Es
(3) ,Es

(4)), respectively. Splitting
matricesX andF into four 232 blocks we obtain

S T0

R0
D 5S Xtt Xtr

Xrt Xrr D S F1 0

0 F2D S T1

R1
D , ~60!

whereF1 and F2 are the diagonal matrices containing t
increasing and decreasing exponential functions, res
tively.

Equation~60! enables the ‘‘scattered’’ wavesR0 and T1
to be expressed via the ‘‘incident’’ wavesT0 andR1:

S T1

R0
D 5S Mtt Mtr

Mrt Mrr D S T0

R1
D , ~61!

where

Mtt5~F1!21~Xtt!21,

Mtr52MttXtrF2,

Mrt5Xrt~Xtt!21,

Mrr 5~Xrr 2MrtXtr !F2. ~62!

Equations~62! have a clear physical interpretation. For e
ample, the blockMrr is responsible for the scattering ofR1
into R0 and the last line in Eq.~62! implies that the scattering
may be a direct transmissionR1→R0 and may be a multiple
scattering processR1→T0→T1→R0. We note that Eqs.~61!
and~62! do not cause any divergences because the increa
exponentialsF1 are inverted. In the case of a thick substra
vectorR1 approaches zero, and thenR05MrtT0.

Proceeding to multilayers@Fig. 2~b!#, the solutions of the
scattering problem for multilayers incorporatingn interfaces
and n11 interfaces according to Eq.~57! can be presented
as

S Tn

R0
D 5S Wn

tt Wn
tr

Wn
rt Wn

rr D S T0

Rn
D , ~63!

and

S Tn11

R0
D 5S Wn11

tt Wn11
tr

Wn11
rt Wn11

rr D S T0

Rn11
D , ~64!

respectively. HereWn and Wn11 are 232 matrices. At the
same time, according to Eq.~61! the scattering equations fo
interface (n11) are

S Tn11

Rn
D 5S Mn11

tt Mn11
tr

Mn11
rt Mn11

rr D S Tn

Rn11
D . ~65!

The combination of Eqs.~63!–~65! results in the following
recursion formulas forWn :

Wn11
tt 5AnWn

tt ,
e
we

c-

ing

Wn11
tr 5Mn11

tr 1AnWn
trMn11

rr ,

Wn11
rt 5Wn

rt 1BnMn11
rt Wn

tt ,

Wn11
rr 5BnMn11

rr , ~66!

where we define

An5Mn11
tt ~12Wn

trMn11
rt !21,

Bn5Wn
rr ~12Mn11

rt Wn
tr !21. ~67!

Starting with the surface and progressively applying E
~66! to lower interfaces, one arrives at the matricesWN

xy de-
termining the reflectivity of the whole multilayer. The recu
sion matrix~RM! solution does not cause any divergences
the numerical calculations. As follows from Eq.~62!, the
order of Mrt is about one, while the other three blocks a
small due to the factorsF2 and (F1)21. According to Eq.
~66!, the same ratio of orders is preserved for the bloc
Wxy. Thus the blockWN

rt is the only one significant for a
thick multilayer and the solution to the reflection problem

R05WN
rtT0 . ~68!

The other matrix blocks converge to zero at the recursi
~66!. The reflectivity is calculated asI 5uEssu21uEspu2

[uR0
(1)u21uR0

(2)u2.
Equation~68! can also be used to calculate the differen

in the reflectivity for ‘‘1’’ and ‘‘ 2 ’’ circularly polarized
incident x rays. SubstitutingE0p

6 56 iE0s we obtain

I 12I 2

I 11I 2
5

2 Im@WN
rt

11WN
rt

12* 1WN
rt

21WN
rt

22* #

uWN
rt

11u21uWN
rt

12u21uWN
rt

21u21uWN
rt

22u2
. ~69!

Finally, let us find the x-ray wave field amplitudesRn andTn
inside the layers. These are required for the interpretatio
x-ray standing waves and diffuse scattering in reflect
from multilayers. Equation~63! gives R05Wn

rtT01Wn
rr Rn .

However, the direct solutionRn5(Wn
rr )21(R02Wn

rtT0)
leads to uncertainties like 0/0 for thick multilayers and o
has to make use of recursions. A combination of Eqs.~63!
and ~65! yields

Rn5~12Mn11
rt Wn

tr !21~Mn11
rr Rn111Mn11

rt Wn
ttT0!,

Tn5Wn
ttT01Wn

trRn . ~70!

Equations~70! must be progressively applied to all the laye
starting at the multilayer substrate whereRN50.

V. NUMERICAL EXAMPLES AND DISCUSSION

The theory presented above has been put into the c
puter code for calculating the reflectivity and the x-ray wa
fields at the x-ray resonant reflection from magnetic mu
layers. Since the general recursion matrix formalism is us
the core part of the code is directly borrowed from the gr
ing incidence diffraction, specular reflectivity, and diffus
scattering programs presented at @http://
sergey.bio.aps.anl.gov# and numerously verified through th
World Wide Web~WWW! interface.

Here we discuss several numerical examples which
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aimed at better understanding the effects of magnetic r
nance on x-ray reflection. Figure 3 presents the calcula
effect of magnetic resonance for the case of a Gd
multilayer consisting of 15 periods of 50-Å Gd and 35-Å F
The calculations are for the resonance in Gd at the GdLIII
edge~7.243 keV!. The incident x rays are chosen eithers- or
p-linearly polarized, while the reflected intensity is calc
lated as a sum ofs and p polarizations~i.e., with the as-
sumption of no analyzer at the detector side!,

R5uEssu21uEspu2. ~71!

The resonant scattering amplitudesF̃10'0, F̃11520.22
19.35i, and F̃12150.3719.65i are taken from Ref. 41
These values correspond to the x-ray energy at the e
center of the resonance peak.22

Figure 3~a! compares the reflectivity without resonan
~gray line! with the resonant reflectivity for the cases whe
either the incident x rays ares polarized and the magnetiza
tion vector is along theZ axis, or the incident x rays arep
polarized and the magnetization vector is along theY axis.
The latter two cases (s⇔Z andp⇔Y) give the same reflec
tivity curve shown by the black line.

For the other combinations (s⇔Y, andp⇔Z), the cal-
culated effect is zero, i.e., the calculated curves comple
coincide with the nonresonant one. This happens due to
choiceF1050 in our parameters of calculations. Then,A5
2C and the critical angle for the total reflectionFc

s

FIG. 3. Calculated resonant reflection of linearly polarized
rays from Gd/Fe multilayer at the GdLIII edge ~7.243 keV! for
different directions of the magnetization and incident polarizatio
o-
d
e
.

ct

ly
he

5uxssu1/25ux01A1Cu1/25ux0u1/2 becomes the same as fo
the nonresonant media. When, however,F10Þ0, these two
combinations are also affected by the resonance but the
fects for s⇔Y, and p⇔Z are equivalent. In any of the
above cases there is no polarization exchange (s→p or p
→s) because the effects are due to the A and C terms in
~17! which contribute to the diagonal terms ofx i j only.

Figure 3~b! shows the calculated reflectivity forX orien-
tation of the magnetization vector, i.e., when the magnet
tion is along the projections of the incident and reflect
x-ray wave vectors onto the surface. Here also the reflect
of boths- andp-polarized x rays are equally affected. How
ever, in addition, as→p andp→s cross scattering appear
due to the interaction between the polarizations, as shown
the lower curve. This curve plots the intensity of reflect
p-polarized x rays when the incident wave is 100%s polar-
ized or vice versa. To measure this effect one needs an x
polarization analyzer at the detector side.

To measure the polarization exchange without the a
lyzer, one can use circularly polarized incident x rays. Fig
4~a! plots the calculated reflectivity curvesI 1 andI 2 for the
clockwise and counterclockwise circularly polarized x ray
respectively. In these two cases the spin of the photons
respectively, parallel and antiparallel to the magnetizat
vector directed alongX. Though it is difficult to see the dif-
ference between these two reflectivity curves in the abso
scale, the relative difference presented on Fig. 4~b! clearly
demonstrates systematic oscillations with the rms va
about 10%. To calculate this curve we have used Eq.~69!.

The oscillations of the relative difference imply a sma
angular shift of polarization exchange from the multilay
reflectivity peaks. This is a typical standing-wave effe
Thus the measurements of (I 12I 2)/(I 11I 2) can clearly
display the magnetic resonance in the sample.

In order to provide a test of our theory, we have attemp
to reproduce the results by Kaoet al.30 Figure 5 presents the
calculated reflectivity of circularly polarized x rays for
multilayer consisting of 36-Å Al2O3 , 39-Å Co, 5-Å Fe,
and 560-Å ZnSe on GaAs substrate. The calculations are
the magnetic resonance in Co at the CoLIII edge~0.7865
keV! and the magnetization vector directed alongX. The
resonance scattering amplitudes used in the calculations

F̃1050, F̃1151216i , and F̃121520214i . The qualitative
agreement of our plot with Fig. 5 of Ref. 30 is quite sat
factory. We could not achieve a better fit because many
rameters of the calculations presented in Ref. 30 were m
ing.

Concluding the discussion of numerical examples,
have found that the effect of magnetic resonance on x-
specular reflection is manifested as both a change of ref
tion and a polarization exchange. The former effect is at le
three to four orders of magnitude stronger and thus easie
observe than the latter one. Perhaps it is one of the m
distinctions between grazing incidence resonant reflec
and resonant Bragg diffraction where the refraction effe
are small.

Although the polarization exchange is relatively weak,
can be measured with circularly polarized x rays. For
reflection from a periodic multilayer one may find th

.



ti
a-

ce
et
jo
ra
t.
uc
fa
ion
p

t b

unt
de-
ke
ci-
ed
nted
uld
nce

n
mi-
he

dis-
ve

us
p-
ci-

x

-

re
at

n

onds

15 310 PRB 61S. A. STEPANOV AND S. K. SINHA
standing-wave effects in the difference between the reflec
ity for clockwise and counterclockwise circular polariz
tions.

VI. CONCLUSIONS

We have developed a formalism and a numerical pro
dure to calculate the x-ray resonant reflection from magn
multilayers. Using this theory we have predicted the ma
peculiarities of the effect of magnetic resonance on the x-
reflectivity and provided some tips for their measuremen

Further developments will need to include the real str
ture effects such as magnetic inhomogeneities and inter
roughness. However, the treatment for some imperfect
can be implemented with the present model too. For exam
graded magnetization profiles can be taken into accoun

FIG. 4. Calculated resonant reflection of circularly polarized
rays from Gd/Fe multilayer at the GdLIII edge~7.243 keV!. ~a!: the
reflectivity curvesI 1 and I 2 for the clockwise and counterclock
wise incident polarizations respectively;~b!: their normalized dif-
ference. In~a! the difference between the two cases is not app
ciable, but in~b! the normalized difference is well seen to vary
the level of about610%.
.W

u

la
ev

C.
v-

-
ic
r
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-
ce
s
le
y

slicing the real layers into sublayers. Also, a simple acco
for the roughness can be added following the procedure
veloped in Ref. 42 which gives the usual Debye-Waller-li
factors in the dependence of x-ray reflectivity on the in
dence angle.27 Using the latter technique we have calculat
the effect of 5-Å interface roughness on the curves prese
in Fig. 3. The calculations predict that the roughness sho
cause a faster decrease of the reflectivity with the incide
angle, but the ratio (I 12I 2)/(I 11I 2) would not be af-
fected.

Finally, the x-ray wave fields provided by our theory ca
be used to calculate the x-ray diffuse scattering from che
cal and magnetic roughness in magnetic multilayers. T
common approach to such calculations is to apply the
torted wave Born approximation which requires the wa
fields for the target without roughness.27,20,21
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FIG. 5. The calculations ofI 1 and I 2 for the case presented i
Ref. 30. The sample consists of 36-Å Al2O3 , 39-Å Co, 5-Å Fe,
and 560-Å ZnSe on GaAs substrate; the x-ray energy corresp
to the CoLIII edge~0.7865 keV!.
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