Ω

Workshop: Photon-in—Photon-out ALS 18/20-10-2004

Coryn F. HAGUE Université Pierre et Marie Curie, Paris

 Ω

Workshop: Photon-in—Photon-out ALS 18/20-10-2004

Workshop Photon-in—Photon-out ALS 18/20-10-2004

Ω

Renaud DELAUNAY Jean-Michel MARIOT Jean-Pascal RUEFF ← *Univ. P & M CURIE* Marino MARSI *Elettra* Maurizio SACCHI ← *LURE (SOLEIL)*

Workshop: Photon-in—Photon-out ALS 18/20-10-2004

RXES ONE OF THE TECHNIQUES WHICH BENEFITS MOST FROM SR

PREPARE FOR:

- GOOD RESOLUTION AND
- GOOD STATISTICS
- MORE USER FRIENDLY FOR MATERIALS SCIENCE.
- OVER MAXIMUM ENERGY RANGE OF MACHINE

Workshop Photon-in—Photon-out ALS 18/20-10-2004

"TEXTBOOK" RESONANT X-RAY EMISSION

• Low energy excitations.

Here spin flip in Gd.

Moewes et al PRB 98

"TEXTBOOK" RESONANT X-RAY EMISSION

• Magnetism

Here effect on spin flip

• MAGNETIC MATERIALS and exchange interactions

Mariot et al (Surf Sci Rev 2002) ELETTRA:Cipo

"TEXTBOOK" RESONANT X-RAY EMISSION

- Details of pre-edge structure in transition -1 4f 1 metal oxides useful for MATERIALS SCIENCE
- Highlighting pre-edge structure e.g. quadrupole transitions in lanthanides.

3d -1 4f 1

≈ 900 eV

Journel et al. PRB 2002 Nakazawa et al. PRB 2003

 $\gamma \rightarrow \alpha$ transition (first order) in Ce

- fcc \rightarrow fcc 14% contraction
- $\gamma \rightarrow \alpha$: 8 GPa (80kbar) 300 K

$\gamma \rightarrow \alpha$ transition (first order) in Ce

Theory Held et al PRL 2001 McMahan et al PRB 2003

•LDA+DMFT:

PREDICT A QUASI PARTICLE RESONANCE IN THE 4f SPECTRUM ACCOMPANIED BY RAPID GROWTH IN DOUBLE OCCUPANCY AS THE γ to α TRANSITION IS CROSSED

Expt.

See Rueff et al PRL 2004

metal \rightarrow insulator transition (first order) in V₂ O₃

V₂O₃ McWhan 1972

metal \rightarrow insulator transition (first order) in V₂O₃

 V_2O_3 THIN FILM Sass et al (Univ. Göttingen) Epitaxially grown on α -Al₂O₃

MAIN FEATURES OF SOLEIL

E = 2.76 GeV

 $2\pi = 354$ m

I (multi-bunch) = 500 mA

Emittance H = 3.7 nm.rad V = 37pm.rad

Straight sections:

4x12 m 12x6m 8X3.5 m

Low energy resonant inelastic x-ray scattering

High energy resonant inelastic x-ray scattering

WHAT ARE THE **SPECIFIC** REQUIREMENTS?

- VERY HIGH INCIDENT FLUX and VARIABLE POLARIZATION
- HIGH PERFORMANCE MONOCHROMATORS (high emittance) and MICROFOCUS to OPTIMIZE ACCEPTANCE
- EFFICIENT X-RAY SPECTROMETERS
- MATCHED RESOLVING POWER FOR Ω and ω
- VERY HIGH STABILITY (Beam and Analyzer particularly for Magnetic measurements)

LOW ENERGY MONOCHROMATOR

Lagarde and Polack (SOLEIL)

- •2 sets of constant included angle +
- •3 gratings
- •No entrance slit 20 μ m slit for E/ Δ E=3000
- •Fixed slit position (source for KB).
- •KB demagnification 1/10.

Low energy resonant inelastic x-ray scattering

High energy resonant inelastic x-ray scattering

FLAT-FIELD GRATING SPECTROMETER

GOOD RESOLVING POWER
GOOD ACCEPTANCE (slitless)
GOOD DETECTION EFFICIENCY (CCD)
EASY ENERGY CALIBRATION (Flat-field)
TRANSPORTABLE
HETTERICK-UNDERWOOD PRINCIPLE (In coll. Jim Underwood)

Low energy resonant inelastic x-ray scattering

FLAT-FIELD GRATING SPECTROMETER

GOOD RESOLVING POWER
GOOD ACCEPTANCE (slitless but requires microfocus)
GOOD DETECTION EFFICIENCY (CCD) (horizontally focusing mirror)
EASY ENERGY CALIBRATION
TRANSPORTABLE

PERFORMANCE

GOOD RESOLVING POWER (potentially)
GOOD ACCEPTANCE (slitless)
GOOD DETECTION EFFICIENCY (CCD)
EASY ENERGY CALIBRATION
TRANSPORTABLE

BESSY U41-PGM monochromator (Petersen type) exit slit 100 μ m BL resolving power > 2000 FOCUS SIZE 35 μ m RIXS at V L₃ edge

PERFORMANCE

TRANSPORTABLE GOOD RESOLVING POWER (potentially) GOOD DETECTION EFFICIENCY (CCD) EASY ENERGY CALIBRATION

TRANSPORTABLE GOOD RESOLVING POWER GOOD S/N (CCD) by using binned modeEASY ENERGY CALIBRATION

Ce: $|int\rangle = 2\underline{p}(4f5d)^{n+1}$ $|f\rangle = 3\underline{d}(4f5d)^{n+1}$

" Chemical" pressure + temperature

Ce-Th

Ce-Sc

Rueff et al PRL 2004 MacMahan et al PRB 2003

See also Held et al. PRL 2001 (LDA+DMFT)

TO SUMMARIZE:

FIRST EXPERIMENTS AT SOLEIL ARE EXPECTED 2007

THERE'S A DEMAND IN MATERIALS SCIENCE FOR:

- "GOOD" RESOLVING POWER (i.e. ≈ 1000 (low energies), 5000 (high energies) + GOOD STATISTICS
- GOOD ENERGY CALIBRATION
- **RESONANT** INELASTIC SCATTERING
- VERY HIGH RESOLVING POWER AT LOW ENERGIES WILL ENTAIL A THIRD BL

THANKS TO:

- A. Rogalev ESRF
- S. Turchini Elettra
- S. Heun Elettra
- C. Jung Bessy
- S. Eisebitt Bessy
- J.H. Underwood CXRO R.C. Perera CXRO

FINANCIAL SUPPORT:

CNRS LURE

Jinghua Guo for the invitation