Lecture #5

Introduction to Nonlinear Effects

Summary of lecture #4

1. We have used the dispersion relation to describe linear wave propagation in plasmas. In a magnetized plasma, the wide variety of wave behavior possible is classified in 
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 space with the help of the CMA diagram.

2. We have discussed kinetic corrections to the cold-plasma dielectric function that are derived from the Vlasov theory.  In particular we showed that Landau damping results from the interaction of particles traveling near the phase velocity of the wave.

3. We showed that conservation laws exist for the conservation of energy among linear waves, provided the microscopic energy density and energy flux of the plasma particles is included.

Overview of Lecture #5

Hierarchy of nonlinear effects.

Three-wave interactions

· coasting beam experiments.

Quasi-linear diffusion

· application to beams

Nonlinear Hierarchy of Collective Effects

We have taken a look at the linear oscillations about equilibrium in a plasma and found a dispersion relation which governs the relationship between frequency and wavelength in the linear medium.

As the strength of the perturbations is increased, true nonlinear effects begin to appear.  We will consider a hierarchy6 of nonlinear effects of increasing amplitude.

1. Wave-wave interactions

Resonant linear modes satisfying 
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 can couple to each other at sufficiently large amplitude.  The wave amplitudes still obey conservation laws because the equilibrium distribution function remains unchanged.

The primary quantities conserved are the wave energy and wave momentum which can be related to the following conditions:
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2. Wave-particle interactions

In this case, sufficient numbers of particles experience acceleration through Landau damping of the waves so that the background distribution function is altered.  This can be the saturation mechanism for many unstable waves.

If the waves that produce the particle acceleration are sufficiently random, diffusion in velocity space occurs and the phenomenon is known as quasi-linear diffusion.
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Another form of nonlinear wave-particle interaction can occur in which two waves produce a beat which can resonate with particles moving with velocity v.
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This effect is called induced scattering.

3. Large-amplitude waves

If the unstable waves are not random in phase space, then well-defined stationary waves can sometimes develop, know as solitons.

However, other conditions can exist in which the waves are sufficiently large that they overturn (like waves approaching a beach), and the much altered evolution of the distribution function toward equilibrium is known as nonlinear Landau damping.
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Still more violent interactions can occur through the interaction of solitons, or the crash of a wave, which produces a chaotic spectrum of fluctuations known as turbulence, much like the foam that follows the crash of a breaker on the shore.

Equilibrium is finally reached by the dissipation of the fluctuation power over a broad spectral range.

Spectral scaling laws can be developed which yield the form of the fluctuation spectrum given a driving mechanism for the instability and a nonlinear coupling mechanism among waves.
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Three-wave Interactions

Three-wave coupling is the lowest-order nonlinear coupling among waves that can occur.  In fact, if one of the waves can be considered to be stationary (constant amplitude), then the argument can be made that it is not truly nonlinear at all (but is a form of induced scattering).

Three-wave coupling is also known as parametric coupling as two waves can be coupled by the periodic variation of some parameter of the medium, by a third wave.

Any system that exhibits coupling of one frequency to another is nonlinear to some degree.
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We consider the following example to illustrate the basic mechanism of parametric coupling.

Example:  Coupled Pendula

Consider a system of two pendula coupled by a spring with a variable spring constant.
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is the pump frequency.


The Lagrangian for the system is the following
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The frequency of the first pendulum is
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where the change in frequency due to the spring constant is assumed small and will be neglected.  The equation for 
[image: image13.wmf]2

w

 is similar.

The system of equations for the motion are then given by
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Since the parametric coupling between the pendula is assumed to be small, each pendulum oscillates near its uncoupled frequency, but the amplitude of the oscillations may vary slowly due to the spring.

So we shall look for solutions of the form
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where the coefficients 
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 are assumed to be slowly varying relative to the fast time scale of 
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 (note: The division of the dynamics into two time scales).

Substituting into the equations of motion, we find
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To determine the slowly varying coefficients 
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 we average the above equations over a period of the fast time scale so that only the envelope remains.

The exponential terms on the RHS will average to zero unless particular frequency conditions are met.  Suppose we choose
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and the averaged equations of motion then become
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To find the eigenvalues of these equations, we let
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which leads to the dispersion relation
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Keeping only the lowest order of 
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, (which is consistent with our two time scale approach), we can find
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Then A/ and A2 are only oscillatory functions.  No parametric instability.

However, if we now assume 
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 and follow the same procedure, then we are led to the result
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which indicates exponential growth of the parametrically-coupled modes.

Since all the frequencies are defined to be positive, this means that instability can occur for a pump frequency that is higher than either of the modes that are involved.  Such a situation is common (though not exclusive) and is known as a decay instability because the incident photon (at 
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) decays via the coupling into two photons of lesser energy.  We note that energy of the process is conserved since
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In actuality, the coupled-mode amplitudes cannot grow indefinitely at an exponential rate.  All we have done in this example so far is to find the secular term of the two-time-scale expansion we have derived previously.  A second step would be to find the long time behavior of the slowly-varying coefficients.  We will carry this out for the longitudinal modes of a coasting beam in the following.

Parametric Coupling of Longitudinal Modes in a Coasting Beam

We note from our previous discussion of the two-time-scale expansion method, that we found, to lowest order in the expansion, the linear mode dispersion relation
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and an equation which governed the second-order distribution function
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We note the presence of the product terms at second order which produce sum and difference frequencies.

Using the notation
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we can write
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where
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We find that if we choose the following conditions on the frequency and the phase in the above equations
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then certain terms will become secular, and it is these terms that will give us a condition on the slowly-varying amplitudes.

After a couple of integrations by parts, we find
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Now as in the pendulum case, we impose an external voltage at mode n of the form
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Since we are not permitting (yet) the voltage 
[image: image39.wmf]n
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 to vary, this situation is essentially a linear scattering of one mode into another by a periodic medium, i.e. the beam as modulated at frequency 
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, but the results of the coupling are found by considering the second-order distributions.

Keeping only the resonant modes, the expression for the amplitude becomes
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And finally we follow the same normal mode analysis as in the pendulum example by letting
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This results in the following nonlinear dispersion relation for the parametric coupling growth rate
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The above expression differs in an important way from the simple pendulum case: the presence of dissipation through Landau damping and through the real part of the impedance.  Since the RHS of the above equation involves 
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, and this is the amplitude required for the parametric oscillation to go unstable.

Solving the above equation numerically yields a solution that indicates the importance of the frequency (and phase) matching condition found above.
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An aside to consider beam transfer function measurements.  The purpose of such a measurement is to determine the machine impedance, i.e. the proximity of the beam to instability.  We will consider a longitudinal beam transfer function in a coasting beam (consistent with our approach thus far).
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Neglecting second-order effects, the first-order distribution function is influenced by both an external voltage and a voltage produced by longitudinal wakes.
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Noting that
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We can solve for the beam response function given by
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Carrying out the measurement across a revolution harmonic produces a characteristic resonance curve, shifted by an impedance Z.
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Ref:  Spentzouris Thesis
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Ref:  Spentzouris Thesis

Conservation Law for Three-wave Coupling

We can find an energy (power) conservation law for this coupling process by rearranging the equation that removed the secular terms
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We have dropped the multiple-time-scale notation.  Noting that
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we can write the above equation as
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where the interaction term 
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 is given by
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Noting that the energy density of one of the modes is given by
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we can construct the total energy of the waves (ignoring any significant dissipation) as
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Summing over the modes and using the symmetry relations
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we can finally arrive at the following conservation rule
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This says that the total change in energy of the system is conserved.  As the daughter waves grow, the pump must decline, and the process is, in principle, reversible.  In fact parametric coupling is periodic for zero dissipation.
We have explored the comparatively simple case of parametric coupling between longitudinal modes in a coasting beam.  However, such coupling can be expected to occur between any harmonically related modes.  Since synchrotrons are inherently periodic, the possibility of such coupling is likely.

For instance, within a bunch, the various synchrotron oscillations can couple
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Two colliding beams may well exhibit coupling of betatron modes.
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Wave-particle interactions

In the above analysis, we have not allowed the distribution function to change appreciably, however the essence of the wave-particle interaction in Landau damping suggest that the resonant part of phase space is greatly altered.
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In this example, the non-Maxwell-Boltzmann distribution is unstable due to the bump-on-the-tail.  As waves grow, the faster particles slow down on the average, and the slower particles speed up, filling in the distribution until the slope=0.

In some cases, namely when there is a spectrum of waves with random phases, we can cast the effect on the wave-particle interaction into a form of diffusion operator, where each particle experience a series of short, resonant accelerations by the waves, leading to a random walk in phase space.

To gain some insight on this process, we consider the simple case of particles with straight trajectories interacting with a wave.  The zero-order motion (constant velocity) is given by
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and the perturbation on the velocity due to a sinusoidal wave of the form
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is given by
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If we now assume the initial starting locations are uniformly distributed across a wavelength, we can find the average of the perturbed velocity as
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Now in the limit of large t, this expression is approximately
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and we may define a diffusion coefficient as
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What does this mean?  It means there is effectively a strongly peaked diffusion operator in the region of resonance in phase space.
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We can repeat this derivation more rigorously in terms of the Vlasov Equation.  We assume that we can find 
[image: image75.wmf]/
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, the perturbed distribution function for the linearized Vlasov Equation, for a given electric field E
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where 
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 is the solution of the dispersion relation assuming a self-consistent solution for E, and 
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If we now average the Vlasov Equation over the fast time scale, and over space, the 
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 term and the electric field term (assumed to be sinusoidal) average to zero.  This give
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Using the above solution for 
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 we find
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Finally for definiteness we assume that the electric field grows in accordance with the linear growth rates from the dispersion relation so that
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These are the so-called quasi-linear diffusion equations of plasma physics.  Their validity rests on two important assumptions:

(1) the phase of the waves is sufficiently random such that the averaging process leads to a random walk in phase space and 
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(2) the distribution function evolves on a slow time scale so that the linear dispersion relation remains valid

In general, the evolution of the distribution function under quasi-linear diffusion needs to be found in conjunction with the collision terms of the Fokker-Planck equation discussed previously.

Let us now consider the case of quasi-linear diffusion applied to a coating beam in a synchrotron.  This model was used to explain the phenomenon of overshoot, namely the tendency for an unstable beam to grow larger than the minimum emittance needed to stabilize a given instability.

Recall that the linear dispersion relation for a coasting beam is given by
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Following the analysis presented above, we can find the following diffusion operator for momentum diffusion
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Now this operator can be expanded in a series of coupled moment equations of the form
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To solve this system we truncate at a given order, which specifies the maximum phase space asymmetry that can be permitted, and solve the resulting closed form of the coupled equations for the moment amplitudes
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The reason the permitted asymmetry is an important issue is because the quasi-linear operator contains a near delta function, and contains many phase space harmonics.  However, we assume that the strength of the operator is sufficiently weak such that collisions can maintain a near symmetric distribution function. The solution is typically carried out numerically
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Ref:  Bogacz and Ng

It is also instructive to carry out the same analysis in a bunched beam, in particular for longitudinal motion.  In this case the dynamical equations are given by the synchrotron motion of particles in the rf potential
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The dispersion relation for single-bunch modes has been derived in the literature, and has been found to be of the form
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If we now follow the same procedure as in the plasma case, a quasi-linear diffusion operator can be derived of the form
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This is further simplified by inserting the linear dispersion roots symbolically in the expression
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Of particular note is the fact that the work done on the particles by the waves through Landau damping is exactly what shows up in the additional thermal energy of the distribution.  This is a universal property of quasi-linear diffusion wherever it may occur.

By comparison to both simulation and experiment, however, it is seen that unless decorrelation effects are sufficiently strong, the random phase approximation does not always apply to a beam, and the quasi-linear aspect of the dynamics breaks down.  In the next lecture we will explore what happens when the wave motion becomes strongly nonlinear, but remains coherent.
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Summary of Lecture #5

1. We have outlined the hierarchy of nonlinear effects and showed that the behavior is ordered according to the strength of the perturbation.

2. We derived the resonant wave-wave interaction known as parametric coupling and examined its occurrence in a coasting beam.

3. We derived a quasi-linear diffusion operator which gives rise to slow changes in the distribution function as a result of a spectrum of waves.  Its applicability depends on the validity of the random phase approximation.
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