Basic Terminology

admedial - toward the midline of the lamina (Fig. 4).
apex - usually the upper $\sim 25 \%$ of the lamina (see Character 24). apical (distal) - toward the apex (Fig. 4).
basal (proximal) - toward the base (Fig. 4).
base - usually the lower $\sim 25 \%$ of the lamina (see Character 23).
concave - curving toward the center of the lamina or tooth (Fig. 3).

Fig. 1 Simple Leaf convex - curving away from the center of the lamina or tooth (Fig. 3).
costal vein - primary and secondary veins that extend from the base of the leaf or from a primary toward the leaf margin.
exmedial - away from the midline of the lamina (Fig. 4).
intercostal area - the region bounded by two costal veins.
lamina (blade) - the expanded, flat part of a leaf or leaflet (Fig. 1).
margin - the edge of the lamina (Fig. 1).
midvein - medial primary, in pinnate leaves this is the only primary.

Fig. 2 Pinnately Compound Leaf node - the place where a leaf is (or was) attached to the axis (stem) (Figs. 1, 2). petiole - the stalk of the leaf (Figs. 1, 2).
petiolule - the stalk of a leaflet in a compound leaf (Fig. 2).
primary vein - the widest vein of the leaf and any others of like width and/or course. Primaries usually originate at or just above the petiole. Symbolized 1° (Fig. 1, see Section III).

Fig. 3
rachis - the prolongation of the petiole of a pinnately compound leaf upon which leaflets are attached (Fig. 2).
secondary - the next narrower class of veins after the primary, originating from the primary or primaries. Symbolized 2 ${ }^{\circ}$ (Fig. 1, see Section III).
sessile - a leaf or leaflet that is lacking a petiole or petiolule (Fig. 15.2a).
tertiary vein - the next narrower class of veins after the secondaries, originating from the secondaries or primaries. Symbolized 3° (see Section III).

Fig. 4

15. LEAF ORGANIZATION

Fig. 15.1
simple - consisting of a single lamina.

Fig. 15.5 even-pinnate
palmately compound - a leaf with separate subunits (leaflets) attached at the apex of a petiole.

Fig. 15.4
odd-pinnate pinnately compound - a leaf with
leaflets arranged along a rachis. pinnately compound - a leaf with
leaflets arranged along a rachis.

Fig. 15.6
bipinnate (twice pinnately compound) compound leaf dissected twice with leaflets arranged along rachillae that are attched to the rachis.

Fig. 15.2b

Fig. 15.3
ternate (trifoliate) - a compound
leaf with three leaflets.

eaf with

18. LAMINAR SHAPE

The simplest way to describe the overall shape of the lamina is to locate the axis or, in some cases, the zone of greatest width that lies perpendicular to the axis of greatest length (long axis):

Cheiloclinium anomolum (Celastraceae)
Fig. 18.1
elliptic - the widest part
of the leaf is on an axis in the middle fifth of the long axis of the leaf.

In lobed leaves the blade shape is determined from an ellipse drawn around the apices of the lobes. The widest part of the ellipse is then considered as in unlobed leaves
(Fig. 18.5).

Dioscoreophyllum strigosum (Menispermaceae)
Fig. 18.5
elliptic
special - leaf is not described by any of the shapes illustrated here (such as a needle or awl).

23. BASE SHAPE

These states apply to the basal 25% of the lamina ($0-0.25 \mathrm{~L}$ as in Fig. 7).

Carya leiodermis (Juglandaceae)
Fig. 23.1
cuneate (straight) - the margin between the base and 0.25 L has no significant curvature ($l_{b}=0$).

Populus dimorpha (Salicaceae)
Fig. 23.4
truncate - subtype of convex in which the base terminates abruptly as if cut, with margin perpendicular to the midvein or nearly so $\left(l_{b}=0\right)$.

Prunus manshurica (Rosaceae)
Fig. 23.2
convex - the margin between the base and 0.25 L curves away from the center of the leaf $\left(l_{b}=0\right)$.

Fig. 23.5
concave - the margin between the base and 0.25 L curves toward the center of the leaf ($l_{b}=0$).

Carissa opaca (Apocynaceae)
Fig. 23.3
rounded - subtype of convex in which the margin forms a smooth arc across the base $\left(l_{b}=0\right)$.

Fig. 23.6
concavo-convex - the margin between the base and 0.25 L is concave basally and convex apically $\left(l_{b}=0\right)$.

Alstonia plumosa (Apocynaceae)
Fig. 23.7
decurrent - subtype of either concave or concavo-convex in which the laminar tissue extends basally along the petiole at a gradually decreasing angle ($l_{b}=0$).

Adelia triloba (Euphorbiaceae)
Fig. 23.8
complex - there are more than two inflection points in the curve of the margin between the base and $0.25 \mathrm{~L}\left(l_{b}=0\right)$.

23. BASE SHAPE CONTINUED

Phyllanthus poumensis (Euphorbiaceae)
Fig. 23.9
cordate - the leaf base is embayed in a sinus with straight or convex sides $\left(l_{b}>0\right)$.

Sagittaria sp. (Alismataceae)
Fig. 23.11
sagittate - narrow pointed lobes with apices directed basally, i.e. at an angle 125° or greater from the leaf axis $\left(l_{b}>0\right)$.

Dioscoreophyllum strigosum (Menispermaceae)
Fig. 23.10
lobate - rounded projections with inner margins (those towards the petiole) concave in part $\left(l_{b}>0\right)$.

Araujia angustifolia (Asclepiadaceae)
Fig. 23.12
hastate - two narow pointed lobes that have apices directed exmedially, i.e. at $90^{\circ}-125^{\circ}$ from the leaf axis $\left(l_{b} \sim 0\right)$.

24. POSITION OF PETIOLAR ATTACHMENT

Luniana piperoides (Flacourtiaceaee)
Fig. 24.1
marginal - petiolar insertion at the margin of the leaf.

Fig. 24.2
peltate central - petiole attached within the boundaries of the leaf margin and near the center of the leaf $\left(l_{b}>0\right)$.

Macaranga bicolor (Euphorbiaceae)
Fig. 24.3
peltate eccentric - petiole attached near the edge but inside the boundaries of the leaf margin $\left(l_{b}>0\right)$.

25. APEX SHAPE

These states apply to the apical 25% of the lamina ($0.75 \mathrm{~L}-1 \mathrm{~L}$ as in Fig. 7).

Agonis flexuosa (Myrtaceae)
Fig. 25.1

Saurauia calyptrata (Actinidiaceae) Fig. 25.2
straight - the margin between convex - the margin between the the apex and 0.75 L has no significant curvature $\left(l_{a}=0\right)$.

Oxalis sp. (Oxalidaceae)
Fig. 25.4
truncate - the apex terminates abruptly as if cut, with margin perpendicular to midvein or nearly so $\left(l_{a}=0\right)$.

If $l_{a}>0$, then the leaf is retuse, emarginate, or lobed.

Fig. 25.7 apex and 0.75 L curves away from the center of the leaf $\left(l_{n}=0\right)$.

Neouvaria acuminatissima (Annonaceae) Fig. 25.5
acuminate - the margin between the apex and 0.75 L is concave, curving toward the center of the leaf, or is convex basally and concave apically ($l_{a}=0$). This category includes most drip tips.

Ozora obovata (Anacardiaceae)
Fig. 25.3
rounded - a subtype of convex in which the margin forms a smooth arc across the apex $\left(l_{a}=0\right)$.

Banksia verticillata (Proteaceae)
Fig. 25.6
complex - there are more than two inflection points in the curve of the margin between the apex and $0.75 \mathrm{~L}\left(l_{a}=0\right)$.

Liriodendrites bradacii
Fig. 25.10
lobed - the length of l_{m} is $<75 \%$ of $l_{m}+l_{a}\left(l_{a}>0\right)$.

26. MARGIN TYPE

DEFINITIONS

TEETH are marginal projections with sinuses indented less than $1 / 4$ of the distance to the midvein or long axis of the leaf. Teeth can be either dentate, serrate or crenate.
Note: If there is a single tooth of any size, the leaf is considered to be toothed.

Waldsteinia idahoensis (Rosaceae)
Fig. 26.1
dentate - teeth pointed with their axes perpendicular to the trend of the leaf margin.

Fagus grandifolia (Fagaceae) Fig. 26.2
serrate - teeth pointed with their axes inclined to the trend of the leaf margin.

Tripterygium wilfordi (Celastraceae)
Fig. 26.3
crenate - teeth smoothly rounded without a pointed apex.

Rhododendron amagianum (Ericaceae) Fig. 26.4
entire - margin is smooth, without teeth.

Fig. 26.5
revolute - margins are turned under or rolled up like a scroll.

Fig. 26.6
erose - margins are irregular as if chewed.

27. LOBATION

LOBES are marginal indentations that reach $1 / 4$ or more of the distance to the midvein, measured parallel to the axis of symmetry of the lobe.

Gouania longispicata (Rhamnaceae)
Fig. 27.1 unlobed

Fig. 27.2
bilobed

Dioscoreophyllum strigosum (Menispermaceae)
Fig. 27.3
palmately lobed

Stenocarpus sinuatus (Proteaceae)
Fig. 27.4
pinnately lobed

Section 4: Teeth

DEFINITIONS

Sinus - an incision between marginal projections of any sort (lobes, dentations, serrations, crenations). May be angular or rounded.

Tooth apex - the tip of a tooth.
Apical side - the side of the tooth that is toward the apex of the lamina.

Parts of a tooth
Fig. 10

47. \# OF ORDERS (OF TEETH)

$\left(\mathbf{1}^{\circ}, \mathbf{2}^{\circ}\right.$ or $\left.\mathbf{3}^{\circ}\right)$ If the teeth can be separated into different size groups, they are called compound.

Fig. 47.1 1 order

Fig. 47.2
2 orders

Fig. 47.3
3 orders

48. TEETH/CM

The number of teeth $/ \mathrm{cm}$ in the middle 50% of the leaf.

Fig. 48.1

49. (TOOTH) SPACING

This refers to the interval between corresponding points on the teeth or crenations.

Fig. 49.1

Dichroa philippinensis (Hydrangeaceae) regular - the interval varies less than 25%.

Fig. 49.2

Beauaertia mucronata (Celastraceae) irregular - the interval varies more than 25%.

50. (TOOTH) SHAPE

Tooth shape is described in terms of the shape of the apical side and the basal side. The possible combinations are shown in the chart below. In the database, the following abbreviations are used:

| cv (convex) | st (straight) | cc (concave) | fl (flexuous)
 basally convex and
 apically concave |
| :---: | :---: | :---: | :---: | | rt (retroflexed) |
| :--- |
| apically convex and |
| basally concave |

The apical shape is listed first. For example, cc/fl would be concave on the apical side and flexuous on the basal side of the tooth. Note that a given leaf can exhibit more than one tooth shape.

Fig. 50.1

51. SINUS (SHAPE)

The shape of the sinus of the tooth.

Fig. 51.1 angular

Phylloclinium paradoxum (Flacourtiaceae)
Fig. 51.2
rounded

52. (TOOTH) APEX

There are three major types of tooth apex: simple, spinose, and glandular. In living leaves and some fossils, it may be possible to distinguish the following subsets of glandular: spherulate, papillate, foraminate, mucronate, and setaceous. For situations in which a more specific identification is not possible, use non-specific glandular.

Fig. 52.1
simple - tooth apex formed by the change in direction of the leaf margin without additional elements.

Fig. 52.4
spherulate - having a spherical callosity fused to the apex.

Leea macropus (Vitaceae)
Fig. 52.6
foraminate - with an apical cavity or foramen that broadens from the termination of the principal vein toward the exterior.

Fig. 52.2
non-specific glandular - in fossils, it may be impossible to distinguish between the different subtypes of glandular teeth. This character state is reserved for the description of fossil teeth with a visible concentration of material on the tooth apex.

Daphandra crypta (Monimiaceae)
Fig. 52.7
mucronate - with an opaque or non-deciduous cap or mucro fused to the tooth.

Fig. 52.3
spinose - principal vein of tooth projecting beyond the apex.
 Fig. 52.5
papillate - having a clear, nipple-shaped, glandular apical termination.

Saurauia calyptrata (Actinidiaceae)
Fig. 52.8
setaceous - an opaque, deciduous bristle or cap thickened proximally and not fused firmly with the remaining tooth substance.

