Updating Finite Element Models to Match Ground Vibration Test Data

Chan-gi Pak, Ph.D.

Leader, Structural Dynamics Group Aerostructures Branch (Code RS) NASA Dryden Flight Research Center

- **G** Functionality
 - ✤ Aeroelastic & Aeroservoelastic System Analysis, Clearance, Monitoring, & Research
- **G** Skills
 - Structural Dynamic Finite Element Modeling, Analyses, & Tool Development
 - ➤ Use ProE, MSC/PATRAN, & MSC/NASTRAN codes for Structural Modeling & Analyses
 - ➢ In-house Tool Development for Structural Dynamic, Aeroelastic, & Aeroservoelastic Analyses
 - Ground Vibration Test and Finite Element Model Update
 - Improve Structural Dynamic FEM if needed
 - Aeroelastic and Aeroservoelastic Analyses
 - Flutter, Buzz, Divergence, and Closed-Loop Flutter Analyses
 - Subsonic and Supersonic Flight Regimes: Use Linear Lifting Surface Codes (ZAERO or MSC/NASTRAN)
 - Transonic Flight Regime: Use 3D CFD Codes (CFL3D version 4 or CAPTSDv etc.)
 - Structural Optimization with Stress/Strain and Flutter Constraints
 - ➢ Based on MSC/NASTRAN code

Structural Dynamics Group (continued)

□ Skills (continued)

- Structural Mode Interaction Test and Flight Control Model Update
 - Improve Flight Control Model if needed
- Maneuver Load Alleviation and Control
 - Based on Minimization of the Maximum Bending Moment and/or Shear Force
- ✤ Active Aeroelastic Control and Vibration Suppression
 - Based on Modern and Adaptive Control Techniques
- Flight Flutter Testing & On-Line System Identification (Flutterometer)
 - Flutter Boundary Identification based on Flight Test Data
 - Linear and Nonlinear Robust Aeroservoelastic System ID
 - Time-frequency-scale (wavelet, HHT) Identification
- Structural Health Monitoring
 - Use GVT & Mode Matching Technique
 - Linear/Nonlinear ID Methods

- Everyone believes the test data except for the experimentalist, and no one believes the finite element model except for the analyst.
 - Some of the discrepancies come from analytical Finite Element modeling uncertainties, noise in the test results, and/or inadequate sensor and actuator locations.
- □ MIL-STD-1540C Section 6.2.10
 - Test Requirements for Launch, Upper-Stage, & Space Vehicles
 - ✤ Less than 3% and 10% frequency errors for the primary and secondary modes, respectively
 - ✤ Less than 10% off-diagonal terms in mass matrix

□ AFFTC-TIH-90-001 (Structures Flight Test Handbook)

- If measured mode shapes are going to be associated with a finite element model of the structure, *it will probably need to be adjusted to match the lumped mass modeling of the analysis.*
- * Based on the measured mode shape matrix $[\Phi]$ and the analytical mass matrix [M], the following operation is performed.

$\Phi^\mathsf{T} \mathsf{M} \Phi$

The results is near diagonalization of the resulting matrix with values close to 1 on the diagonal and values close to zero in the off-diagonal terms. Experimental reality dictates that the data will not produce exact unity or null values, so *10 percent of these targets are accepted as good orthogonality* and the data can be confidently correlated with the finite element model.

NASA

- $\Phi^{\mathsf{T}}\mathsf{M}\Phi = \begin{bmatrix} \mathsf{I} \end{bmatrix} \qquad \Phi^{\mathsf{T}}\mathsf{K}\Phi = \begin{bmatrix} \omega^2 \end{bmatrix}$
 - M:Mass matrix
 K: Stiffness matrix
 Φ: Mode shaped (Eigen matrix)
 ω: Frequencies (Eigen Values)
- Guarantee linear independency between mode shapes
- Superposition principle can be used for the aeroelastic and aeroservoelastic analyses

*

Update Mass FE Model M & K ✤ Match Total Weight ✤ Match C.G. Location Update **Update Stiffness** No Check Mass M W, C.G. ✤ Frequency difference Yes Goal=5% (Primary modes) ~ 10% (Secondary modes) GVT Φ_{G}, ω_{G} □ Flutter Analysis Based on analytical mass & modes NOT based on GVT Mode Shapes Check Update No (ա-ա_G)<Goal Stiffness K Summarize Yes ✤ FEM updated manually Aero Model ✤ Best estimated mass А $\Phi_{G}^{T} \mathsf{M} \Phi_{G} \neq [I]$ □ Applications Flutter ✤ F-18 SRA, AAW, ATW, & B-52B Analysis Structural Dynamics Group Chan-gi Pak-6 GVT Based Flutter Analysis: Approach #2

Updated FEM Based Flutter Analysis: New Approach

- **Given Step 1: Mass Properties**
 - ✤ To start optimization procedure inside the feasible domain
 - Match Total Mass
 - Match CG Locations
 - Match Mass Moment of Inertias

Statement Number	Objective Function	Constraints				
1	$\mathbf{J}_1 = \mathbf{W} \cdot \mathbf{W}_{\mathbf{G}}$	Unconstraint				
2	$J_2 = X - X_G$	$ J_1 < \epsilon$				
3	$\mathbf{J}_{3} = \mathbf{Y} - \mathbf{Y}_{G}$	$ J_i < \epsilon i=1,2$				
4	$J_4 = Z - Z_G$	$ \mathbf{J}_{\mathbf{i}} < \varepsilon \mathbf{i} = 1, \dots 3$				
5	$\mathbf{J}_5 = \mathbf{I}_{\mathbf{X}\mathbf{X}} - (\mathbf{I}_{\mathbf{X}\mathbf{X}})_{\mathbf{G}}$	$ J_i < \epsilon i = 1, \dots 4$				
6	$\mathbf{J}_6 = \mathbf{I}_{\mathbf{Y}\mathbf{Y}} - (\mathbf{I}_{\mathbf{Y}\mathbf{Y}})_{\mathbf{G}}$	$ J_i < \epsilon i = 1, \dots 5$				
7	$\mathbf{J}_7 = \mathbf{I}_{\mathbf{Z}\mathbf{Z}} - (\mathbf{I}_{\mathbf{Z}\mathbf{Z}})_{\mathbf{G}}$	$ J_i < \epsilon i = 1, \dots 6$				
8	$J_8 = I_{XY} - (I_{XY})_G$	$ J_i < \epsilon i = 1, \dots 7$				
9	$\mathbf{J}_9 = \mathbf{I}_{\mathbf{YZ}} - (\mathbf{I}_{\mathbf{YZ}})_{\mathbf{G}}$	$ \mathbf{J}_{\mathbf{i}} < \varepsilon \mathbf{i} = 1, \dots 8$				
10	$J_{10} = I_{ZX} - (I_{ZX})_{G}$	$ \mathbf{J}_i < \varepsilon \ i=1, \dots 9$				

Model Update Technique (Continued)

- □ Step 2: Improve Mass Matrix
 - Orthonormalized Mass Matrix: $\underline{\mathbf{M}} = \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{M} \boldsymbol{\Phi}$
 - ✤ Minimize J

$$J \equiv \sum_{i=1, j=1, i \neq j}^{n} \underline{M}_{ij}$$

Such that,

- $|W-W_G| < \varepsilon$: Total Mass
- $|X-X_G| < \varepsilon, |Y-Y_G| < \varepsilon, \& |Z-Z_G| < \varepsilon: CG \text{ Locations}$
- $\begin{aligned} |I_{XX}^{-}(I_{XX})_G| < \varepsilon, \ |I_{YY}^{-}(I_{YY})_G| < \varepsilon, \ |I_{ZZ}^{-}(I_{ZZ})_G| < \varepsilon, \ |I_{XY}^{-}(I_{XY})_G| < \varepsilon, \ |I_{YZ}^{-}(I_{ZX})_G| < \varepsilon, \ |I_{ZX}^{-}(I_{ZX})_G| < \varepsilon. \end{aligned}$
- Positive Definiteness of Lumped Masses

Model Update Technique (continued)

- □ Step 3: Frequencies and Mode Shapes
 - Option 1: Minimize Errors in Frequencies and off-diagonal terms in $\underline{\mathbf{K}}$
 - Orthonormalized Stiffness Matrix: $\mathbf{\underline{K}} = \mathbf{\Phi}^{\mathrm{T}} \mathbf{K} \mathbf{\Phi}$

$$\begin{array}{l} \text{Minimize J} \\ J \equiv \sum_{i=1}^{n} \left| \frac{\Omega_{i}^{2} - \underbrace{K_{ii}}_{ii}}{\Omega_{i}^{2}} \right| + \beta \sum_{i=1, j=1, i \neq j}^{n} \underbrace{K_{ij}}_{i \neq j} \end{array} \right|$$

- Option 2: Minimize Errors in Frequencies and Mode Shapes
 - Eigen-Solver is based on
 - Subspace Iteration Method
 - Simplified Approach
 - Minimize J

$$J \equiv \sum_{i=1}^{n} \left| \frac{\Omega_{i}^{2} - \underbrace{K_{ii}}_{M_{ii}}}{\Omega_{i}^{2}} \right| + \beta \sum_{j=1}^{m} \left(\Phi_{j} - \Phi_{jG} \right)$$

where, i=1,...,n j=1,...,m n: number of modes m: number of sensors

Application of Mode Matching Technique: Type 2

Finite Element Model Update using GVT Data

Minimize the structural modeling error in aeroelastic and/or aeroservoelastic stability analyses.

Case 1: B-52H Engine Modeling using GVT Data

- □ Half aircraft model from Boeing Wichita
- □ Make tip-to-tip model
- □ Use B-52B Engine Properties as an initial B-52H Engine Properties

Case 1: Results

					Initi	al Beam Pr	roperties	U	Updated Beam Properties					
Mode Initial		ooard Engine (Hz)		Outboard I	Outboard Engine (Hz)		Inboard Engine	Outboard Engine			Inboard Engine	Outboard Engine		
		FENI	Final FEIVI	Initial FEIVI	Final FENI	Е	E,	E	11	E	E,	E		
1	-8.39	%	0%	-7.6%	0%		N.	v	┨┠	v	 V.	v		
2	-14%	%	02%	-6.2%	03%		v _i	• • • • • • • • • • • • • • • • • • •	┨┠╴	•	• <u>i</u>	• • • • • • • • • • • • • • • • • • •		
3	-3.79	%	0%	-4.7%	02%	A	A _i	A ₀	┨┝╴	A -	Ai	A		
		I	L			I ₁	I _{i1}	I ₀₁	┨┢	I ₁	1.34 I _{i1}	1.14 I ₀₁		
GV	GVT FEM						I _{i2}	I ₀₂		I ₂	1.19 I_{i2}	1.17 I ₀₂		
							J _i	J _o		J	1.16 J _i	1.18 J _o		
	<u>Mode 1</u>	-		Mode 2	Mode 2			Mode 3						
	Lateral Bending Vertical Bending						Torsion							
			Inboard Engine (MAC*)					Outboard E	ngin	gine (MAC*)				
111	loue	Initi	al FEM	Final FEM	GVT		Initial FEM Fina		Final FEM		(GVT		
	1	9	98.95	98.98	100		97.79	9	97.92			100		
	2	9	06.37	98.30	100		97.99	99	99.33			100		
	3	9	02.22	89.16	100		88.77	82	82.71			100		

Structural Dynamics Group * MAC: Modal Assurance Criteria

Case 2: X-43A Stack Equivalent Beam Model

Case 3: B-52H Pylon + X-37 DCTF Model Update using GVT Data

Case 3: Results

Mada	Equivalent Beam (% error)			CVT		Generali	zed Ma	ass		Generalized Stiffness				
wide	Guyan Reduction	Full Order		GVI	1	1%	-2%	-8%	, D	1	2%	-2%	1%	
1	04%	08%	94.4	\mathbf{f}_1	011	1	-6%	5%		022	1	-8%	-1%	
2	01%	03%	84.7	\mathbf{f}_2	.011	1	-070	370		.022	075	070	170	
3	01%	03%	50.6	f ₃	016	063		2%)	01/	075	1	0%	
4	05%	-4.1%	82.3	\mathbf{f}_4	076	.046	.020	1		005	010	001	1	
(*): M.	(*): MAC Value <u>GVT</u>								Detailed FEM		Equiv. Beam		Error	
						We	eight	ght -		-		10%		
							X	X _{CG}		aured	-		.07%	
							Y	Y _{CG} M		lease	-		01%	
Mode 1 Mode 2		Mod	<u>Iode 3</u> <u>Mode 4</u>			Z	Z _{CG}		-	-		.18%		
1 st Pen	ndulum Mailt	ox Yawing	Mailbox	Pitching	2nd	Pendulun	ı I I	XX		-		-	.21%	
			Th	Gran 19			Ι	YX		-		-	20%	
- M								YY		outed	-		19%	
					X		I	ZX	$\int c$	ompe		-	11%	
					K.		1	ZY	4	-		-	.15%	
k					4	s s s s s s s s s s s s s s s s s s s		77		-		-	16%	

Structural Dynamics Group

Case 4: F-15B Cone Drag Experiment

Task Statements

 Compare Flutter Boundaries from Previous and New Methodologies for the Flutter Analysis

Approaches

- □ Previous Flutter Analysis: Approach #2
 - ✤ Frequencies & Mode Shapes: From GVT
 - ✤ Mass Matrix: Best Guess Mass Distribution
- □ New Flutter Analysis
 - Frequencies & Mode Shapes: From Equivalent Beam
 - Equivalent Beam is obtained from GVT Mode Matching Technique
 - ✤ Mass Matrix: Orthogonal to GVT mode shapes

Structural Dynamics Group

Chan-gi Pak-21

Equivalent

Structural Dynamic Research Activities at NASA Dryden Flight Research Center

Project Supports & Researches (FY05 - Present)

- High Altitude Long Endurance Remotely Operated Aircraft
 - Create and Update Beam Equivalent Model for a High Aspect Ratio Wing
 - Develop New GVT Methodology
 - Preparing Structural Dynamics R&D Proposals for Modeling/Simulation/Control
- □ F-15B Quiet Spike Boom
 - Update F-15B & Quite Spike Boom Models for the Open-Loop Flutter Clearance
- □ F-15B LIFT
 - ✤ For Space Shuttle Return to Flight
 - Flutter Clearance
- □ ATW2
 - Flutter Clearance and Sensor Research
- □ AAW
 - ✤ ASE Flight Research
- Given F-15 IFCS
 - ✤ ASE Clearance with Adaptive Controller

ATW2

AAW

Chan-gi Pak-23

Project Supports & Researches (FY02 - FY04)

- □ Helios Mishap Investigation
 - Structural Dynamic & Flutter Analyses
- □ X-43A Ship1
 - Independent Mishap Investigation
 - Closed-Loop Flutter Analysis
- □ X-43A Ship2 & Ship3
 - ✤ B-52B Captive Carry Flutter Clearance
- □ X-37 ALTV, Pylon, and DCF
 - ✤ B-52H Captive Carry Flutter Clearance ALTAIR (UAV)
- Structural Dynamic & Flutter Analyses
 F-15B CDE
 - ✤ Flutter Clearance
- □ ATW1

- Flutterometer Research
- □ X-45A (UCAV)
 - ✤ GVT

Helios

ALTAIR

X-43A Ship 2 & 3

X-37 ALTV, Pylon, & DCF

ATW1

Х-45А спан-уггак-24