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SUMMARY

The different substructures that form in the power-law and exponential creep regimes for single phase crys-
talline materials under various conditions of stress, temperature and strain are reviewed. The microstructure is corre-
lated both qualitatively and quantitatively with power-law and exponential creep as well as with steady state and
non-steady state deformation behavior. These observations suggest that creep is influenced by a complex interaction
between several elements of the microstructure, such as dislocations, cells and subgrains. The stability of the creep
substructure is examined in both of these creep regimes during stress and temperature change experiments. These
observations are rationalized on the basis of a phenomenological model, where normal primary creep is interpreted
as a series of constant structure exponential creep rate-stress relationships. The implications of this viewpoint on the
magnitude of the stress exponent and steady-state behavior are discussed. A theory is developed to predict the
macroscopic creep behavior of a single phase material using quantitative microstructural data. In this technique the
thermally activated deformation mechanisms proposed by dislocation physics are interlinked with a previously
developed multiphase, three-dimensional, dislocation substructure creep model. This procedure leads to several
coupled differential equations interrelating macroscopic creep plasticity with microstructural evolution.
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LIST OF SYMBOLS

A dimensionless constant in the power-law equation (3)

AH.T. dimensionless constant in the high temperature climb equation (5)

AL.T. dimensionless constant in the low temperature climb equation (6)

A1 constant in the exponential creep equation (4)

A2 constant in equation (22b)

A activation area for a thermally activated deformation process

a lattice parameter

B dimensionless constant in the exponential creep equation (4)

B2 constant in equation (22b)

Bij tensorial representation of the back stress

r
b Burgers vector

Cj density of extended jogs

Deff effective diffusion coefficient for lattice and pipe diffusion

Dijkl elastic moduli tensor

Dl lattice self-diffusion coefficient

D0 frequency factor for diffusion

D0l frequency factor for lattice diffusion

D0p frequency factor for pipe diffusion

d grain size

dc cell size

dcs stress dependent stacking fault width

ds subgrain size

dsb diameter of new subgrains nucleated by localized migration of a pre-existing subboundary (= β1Γsb/τ)

–
Eij applied or global strain tensor

E
φ
ij local deviatoric strain tensor in phase φ

Ėij
φ local deviatoric strain rate tensor in phase φ
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Fij tensorial representation of the forward stress

∆F Helmholtz free energy associated with moving a dislocation past an obstacle in equation (11)

f
cb

volume fraction of cell boundaries

f
h

volume fraction of ‘hard’ regions

f
s

volume fraction of ‘soft’ regions

G shear modulus

∆GCS activation free energy for cross-slip at zero stress in equation (10)

h dislocation spacing in a cell or subboundary

 Iklmn identity tensor

K constant relating the subgrain size and the applied stress in equation (16)

K1 constant relating dislocation spacing in the cell or subgrain boundaries with the stress in the ‘hard’ regions

k Boltzmann’s constant (1.38×10
–23

 J K
–1

)

L general representation of the cell (dc) or subgrain (ds) size

L
h

average dimensions of the ‘hard’ regions

LN dislocation spacing in a network

L
s

average dimensions of the ‘soft’ regions

L* activated length for cross-slip

M Taylor factor

m subgrain size exponent in equation (16)

N number of cell or subboundaries

NP number of dislocations in a piled-up array in equation (8)

n creep stress exponent

n' effective creep stress exponent

Pj jth material property

p constant in equation (4) obtained from the stress dependence of the dislocation density. In general, p ≈ 2 or
3 for most materials

Qc activation energy for creep
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Qcs activation energy for cross-slip mechanisms

Qg activation energy for the obstacle-controlled glide process

Q1 activation energy for lattice self-diffusion

Q0 maximum activation energy for cross-slip in equation (9b)

Q01 maximum activation energy for cross-slip in equation (10)

Qp activation energy for dislocation core diffusion

QCl
–    activation energy for Cl

–
 diffusion in NaCl

QNa
+ activation energy for Na

+
 diffusion in NaCl

q stacking fault energy exponent

R universal gas constant (8.314 J mol
–1

 K
–1

)

Si microstructural parameters 1,2,3...i

S
φ
ij deviatoric stress in phase φ

Ṡij
φ

deviatoric stress rate tensor in phase φ

Sijkl Eshelby deviatroic stress tensor

T absolute temperature

Tc absolute transition temperature above which Qc ≈ Ql and below which Qc < Ql

Tm absolute melting temperature

T0 reference temperature in equation (57)

t time

tc characteristic time for a pair of edge dislocations to climb a distance h/2 before annihilation

V* activation volume for creep

vc climb velocity

X
φ
ij general representation of a local tensorial strain or stress field in phase φ

X
–

ij global tensorial strain or stress field

x spacial coordinate

α geometric constant in the Taylor equation (20)

αc coefficient of thermal expansion
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αkl coefficient of thermal expansion tensor

αφ
constant in the Taylor equation relating the strength of a phase φ with the dislocation density in the phase

α1 geometric constant in equation (12)

α' constant in equation (10) dependent on the stacking fault energy

β shape factor of a cell or subgrain (β = 2(4-5ν)/15(1-ν) for spheroids)

β1 constant determining the size of newly-formed subgrains nucleated by subboundary migration

β2 constant in equation (38) equal to about 1000

β' constant in equation (8) equal to about 1.0 and 2.0 for low and high stacking fault energy materials

Γ stacking fault energy

Γsb subboundary surface energy

γ shear strain

γh
shear strain in the ‘hard’ regions

γs
shear strain in the ‘soft’ regions

γ̇ shear strain rate

γ̇ ph plastic shear strain rate in the ‘hard’ region

γ̇ ps plastic shear strain rate in the ‘soft’ region

δij Kronecker Delta

ε normal strain

ε̇ normal uniaxial creep or strain rate

ε̇H.T. normal creep rate for high temperature climb

ε̇L.T. normal creep rate for low temperature climb

ε̇cl dislocation recovery-controlled creep rate in equation (24)

ε̇g strain rate associated with thermally activated glide in equation (24)

ε̇mn creep or strain rate tensor

ε0 instantaneous creep strain on loading

κ bulk modulus
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Λh
average distance travelled by a dislocation in the cell wall before being stopped

Λs
average distance travelled by a dislocation in the cell interior before being stopped

Λ•φ Prandtl-Reuss rate parameter given by equation (53)

ν Poisson’s ratio

νD Debye frequency

ρ dislocation density

ρci dislocation density within cells

ρcb dislocation density within cell boundaries

ρh
dislocation density in the ‘hard’ regions

ρst dislocation density within the subgrains

ρsb dislocation density in the subboundaries

ρT total dislocation density (e.g., ρT = ρsi + ρsb)

ρφ
dislocation density in phase φ

σ normal uniaxial applied stress

σb back stress on a dislocation in the cell or subgrain interior or ‘soft’ region

σe general representation of the effective stress acting on a dislocation within a cell or subgrain

σf forward stress acting on a cell or subgrain boundary

σcb effective stress acting on a cell boundary (= σ + σf)

σci effective stress acting on a dislocation in the cell interior (= σ – σb)

σmn applied stress tensor

σobs obstacle strength

σPLB power-law break down stress

τ applied shear stress

τb shear back stress acting on the dislocations in the ‘soft’ regions

τf forward shear stress acting on the ‘hard’ regions

τh
effective shear stress acting on the ‘hard’ regions (= τ + τf)

τφ
ij general representation of the shear stress in the ‘hard’ (φ = h) or ‘soft’ (φ = s) regions

τ∧φ
shear strength of an obstacle in the ‘hard’ or ‘soft’ region
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τs
effective shear stress acting in the ‘soft’ regions (= τ – τb)

φ general representation denoting ‘hard’ (h) or ‘soft’ (s) phase

χ = L
h
/L

s

χo initial value of χ at the beginning of deformation

Ω atomic volume
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1.0 INTRODUCTION

1.1 Kinetic and Microstructure Evolution Laws

Creep is defined as the time-dependent deformation of a material at any absolute temperature, T, under the
action of either a slowly time variant or a time invariant monotonic applied stress. Although a material can creep at
any temperature above absolute zero, measurable time-dependent deformation occurs at elevated temperatures typi-
cally above 0.3 Tm, where Tm is the absolute melting temperature of the material. Considerable data, accumulated
over several decades, have enabled a detailed characterization of the creep process in terms of its stress, temperature
and microstructural dependence. As a result, several models have attempted to formulate constitutive laws to express
the creep rate, ε̇, in terms of σ or τ, T, Pj and Si, where σ and τ are the applied normal and shear stress, respectively,
Pj is the j

th
 material property (e.g. lattice parameter, a, atomic volume, Ω, elastic moduli, Burgers vector, 

r
b, and

diffusion frequency factor, D0) and Si is the i
th

 microstructural parameter (e.g., grain size, d, dislocation density, ρ,
cell size, dc, subgrain size, ds, and stacking fault energy, Γ). It should be noted that Si is also referred to as an inter-
nal state variable in the plasticity literature. A more general formulation can express the tensorial creep rate,ε̇mn, in
terms of a tensorial stress state, σmn. The role of microstructure in influencing creep behavior has been studied ex-
tensively in a large number of materials as evidenced by the numerous review articles (Schoeck, 1957; Sherby,
1962; McLean, 1966; Sherby and Burke, 1967; Bird et al., 1969, Mukherjee et al., 1969; Lagneborg, 1972;
Weertman, 1975; Takeuchi and Argon, 1976; Blum, 1977; Nix and Ilschner, 1980; Myshlyaev, 1981; Bendersky
et al., 1985; Nix and Gibeling, 1985(a); Orlová and 

(
Cadek, 1986; Caillard and Martin, 1987; Blum et al., 1991;

Blum, 1993; Longquan and Northwood, 1993; Yoshinaga, 1993; Raj, 1994) and texts (Garofalo, 1965; Gittus, 1975;
Poirier, 1985) which have followed the course of development of the subject over the last four decades. These ad-
vances suggest that deformation behavior can be represented by a generalized kinetic or rate equation (Frost and
Ashby, 1982)

˙ , , , ( )ε σ= ( )f T S Pi j 1

and a generalized microstructure evolution equation describing the rate of change of the microstructure, Ṡi , during

deformation

˙ , , , ( )S g T S Pi i j= ( )σ 2

It is important to note that the kinetic equation (1) describes deformation for a constant microstructure, whereas the
microstructure evolution equation (2) represents the manner in which the microstructure changes during the course
of deformation. Equations (1) and (2) are fairly general to be applicable to both low and high temperature deforma-
tion under either cyclic or monotonic stresses. This generality argues for the development of a unified deformation
model which describes flow behavior under different stress states at any temperature for conditions where thermally
activated dislocation processes are important. In reality, the problem is complex in part because the present under-
standing of the dislocation mechanisms controlling deformation is incomplete in many instances and in part because
the role of microstructure and its evolution on deformation processes is difficult to quantify. Thus, specific deforma-
tion characteristics and microstructure may vary from one material to another. Nevertheless, the last four decades of
research have shown that there are a lot of similarities in the deformation behavior and microstructural evolution in
several materials ranging from simple metals to the more complex geological rocks (Frost and Ashby, 1982). These
similarities have permitted a general understanding of the deformation behavior of materials.

The emphasis of the present chapter is to consider dislocation-controlled flow processes, except Harper-
Dorn creep (Harper and Dorn, 1957; Harper et al., 1958), occurring under uniaxial deformation. The mechanism for
Harper-Dorn creep is poorly understood at present and this process is not considered. In contrast to classical ap-
proaches, which artificially treat low and high temperature deformation as unrelated flow behavior, the current treat-
ment views deformation from a broader global perspective of a material response to a set of external variables
resulting from a corresponding evolution in the microstructure. Dislocations within a material move, rearrange and
annihilate themselves and form low energy dislocation substructures (LEDS) so as to achieve steady-state conditions
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in accordance with the laws of irreversible thermodynamics. In principle, this steady-state condition and the corre-
sponding microstructure is achievable under all deformation conditions at all temperatures above 0 K if other fac-
tors, such as mechanical and microstructural instability, do not intervene. However, in practice the rate of recovery
may be extremely slow so that steady-state deformation conditions and an equilibrium microstructure may not be
observed in the time frame of a typical experiment.

 1.2 Types of Flow Behavior

Figure 1 shows schematics of the different types of tensile creep curves, plotted either as creep strain, ε,
against time, t, (A) or as ε̇  versus ε (B), generally observed in creep tests. The corresponding tensile σ-ε curves (C)
obtained from constant strain rate tests are also shown since the latter tests are often used for generating steady-state
ε̇-σ plots in studies relating to the high temperature deformation of materials. Some special cases, such as serrated
yielding and dynamic recrystallization, are not discussed. Although the constant strain rate and creep data often
correspond closely at high temperatures, it is important to recognize that the transient dislocation substructures
formed in these two tests are likely to be vastly different. This difference arises from the fact that the thermody-
namic path by which the substructure evolves towards a steady-state configuration will be generally different in
constant stress and constant strain rate tests.
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Figure 1.—Schematic plots of creep strain versus time (A), creep rate versus
   creep strain (B) and stress versus strain (C) illustrating typical (a) normal,
   (b) sigmoidal and (c) inverse primary creep and the corresponding stress-
   strain transients observed under constant stress and constant strain rate
   deformation conditions. Regions I, II, and III represent the primary,
   secondary and tertiary regions.

(c)

(a)

(b)
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A typical creep curve consists of several stages (Fig.1): an instantaneous strain on loading; a primary creep
region where the creep rate changes with time (I); a region of linear, steady-state flow or secondary creep regime in
which ε̇  is independent of strain and time (II); and a period of accelerating creep in the tertiary stage resulting from
mech-anical (i.e. external or internal necking) or microstructural (e.g. dynamic recrystallization and grain growth)
instability (III). The duration of secondary creep will be short if tertiary creep occurs early. Tertiary creep is gener-
ally absent in compression creep if microstructural instability does not occur. However, the creep rate can continue
to decrease with strain or time during constant load compression creep due to an increase in the cross-sectional area.

Normal primary creep, typical of class M or Metal type (Yavari et al., 1981) or class II (Sherby and Burke,
1967) behavior, is illustrated by Fig. 1(a), where the creep rate decreases with increasing strain in the primary region
as the material work hardens. In the absence of significant recovery, the material will continue to harden until the
creep rate is immeasurably small. However, significant recovery occurs in most materials at intermediate and high
temperatures,

1
 and the material tends towards steady-state behavior where the work hardening rate balances the

recovery rate. Under these conditions, all microstructural parameters attain quasi-equilibrium so that dSi/dt ≈ 0.
Sigmoidal (Fig. 1(b)) and inverse (Fig. 1(c)) primary creep are often observed in materials exhibiting class A or
Alloy type (Yavari et al. 1981) or class I (Sherby and Burke, 1967) behavior, where a solute atmosphere around a
dislocation tends to inhibit its motion (Weertman, 1957). In some instances, steady-state flow is attained almost
immediately on loading and the creep curve is linear until tertiary creep intervenes. Inverse and sigmoidal primary
creep occur when the initial mobile dislocation density is low which results in a low initial creep rate. The creep rate
increases with strain during inverse primary creep until a steady-state value is obtained (Fig. 1(c)). Sigmoidal pri-
mary creep, which is intermediate between inverse and normal primary creep, involves an initial region of increas-
ing creep rate to a maximum value followed by a period of decreasing creep rate till steady-state creep is achieved
(Fig. 1(b)).

Most creep mechanisms fall into three broad categories: diffusion, power-law and exponential creep. Two
diffusion creep mechanisms involving Newtonian viscous flow with ε̇  proportional to σ (Nabarro, 1948; Herring,
1950; Coble, 1963) occur at low values of normalized stress, σ/G with G being the shear modulus, where typically
σ/G ≤ 5×10

–6
. In this case, strain is produced by the diffusion of atoms from grain boundaries under compression to

those under tension with vacancies flowing in the opposite direction (Raj and Ashby, 1971). Nabarro-Herring creep
(Nabarro,1948; Herring, 1950) occurs when the diffusion path is through the lattice in contrast to Coble creep
(Coble, 1963), where the diffusion path is along grain boundaries. A third Newtonian creep mechanism, which was
discovered by Harper and Dorn (1957, 1958), involves a poorly-understood dislocation-controlled process.

In contrast, power-law creep occurs at intermediate stresses, typically 5×10
–6

 ≤ σ/G ≤ σPLB/G, where σPLB
is the power-law breakdown (PLB) stress. In this case, the creep rate depends on the applied stress through a power-
law relation with ̇ε  proportional to (σ/G)

n
, where n is the stress exponent, typically varying between 4 and 5 for

class M behavior (Bird et al., 1969). Strain is produced by a sequential motion of dislocations through glide and
climb, where the slowest mechanism is the rate-controlling step. Since the power-law relation is a generic equation
which can often be used to describe almost any set of creep data plotted double logarithmically, the term “power-law
creep” is not very descriptive of the characteristics of the deformation mechanism. Instead, the terms “class M
creep” and “class A creep” will be used in this paper to describe class M or class A material behavior, respectively.

The power-law relation breaks down at high stresses when σ/G > σPLB/G and the stress dependence of ε̇
is better described by an exponential relationship with ε̇  proportional to exp(Bσ/G), where B is a constant. Unlike
creep mechanisms dominant in the diffusion and class M creep regimes, where the diffusion of atomic and defect
species is important, exponential creep mechanisms are generally non-diffusional in nature. Since the major objec-
tive of the present chapter is to model the role of dislocation substructure during class M and exponential creep,
class A and Newtonian viscous creep mechanisms are not addressed in this review.

In contrast to class M creep, which has been studied extensively in several materials (Sherby and Burke,
1967; Bird et al., 1969; Mukherjee et al., 1969), considerably less attention has been paid to understanding the
mechanisms dominant in the exponential creep region and the microstructures that form under these conditions.
Noting that many engineering applications require materials to operate at intermediate temperatures (Table I) (Nix
and Gibeling, 1985(a)), where the diffusion rates are slower than at higher temperatures, the rate-controlling mecha-
nisms may often be nondiffusional in nature and similar to those dominant in the exponential creep region (Raj and

1
The terms ‘intermediate’ and ‘high’ as used in the creep literature strictly refer to the temperature ranges above 0.3 Tm for which Qc < Ql and

Qc ≈ Ql, respectively, where Qc and Ql are the activation energies for creep and lattice self diffusion, respectively. For simplicity, the temperature
ranges T ≈ 0.3-0.7 Tm and T > 0.7 Tm are generally assumed to define the intermediate and high temperature creep ranges, respectively, since
Qc ≈ Ql when T ≥ 0.7 Tm for most materials.
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Langdon, 1989; 1991(a) and (b)). Despite the potential importance of characterizing exponential creep behavior, this
subject has been largely ignored primarily because of the difficulty in modeling nonsteady state creep. Since creep
data are seldom acquired over a very large range of stresses and temperatures in any one investigation, detailed mi-
crostructural characterization of the transition from class M to exponential creep is virtually nonexistant for most
materials. As a result, our understanding of the microstructural changes occurring during this transition is poor so
that it is difficult to formulate realistic microstructurally-based creep models.

Nevertheless, in comparison to previous attempts (Weertman, 1955, 1957, 1975; McLean, 1966;
Lagneborg, 1972; Takeuchi and Argon, 1976), a fundamental change occurred in the philosophy and approach
adopted towards the development of microstructure-based creep models when Nix and Ilschner (1980) developed a
two-phase microstructural composite creep model to predict deformation behavior in the class M and exponential
creep regimes. It is interesting to note that Mughrabi (1980) and Mughrabi and Essmann (1980) also presented a
similar approach in modeling low temperature behavior and fatigue at the same conference. Although the Nix-
Ilschner model (1980) is conceptually incorrect (Raj and Langdon, 1991(b)), it provided the foundation for the de-
velopment of current creep models. A significant step in this direction occurred with the publication of two
important papers by Nix et al., (1985(a) and (b)), which attempted to model creep using a set of coupled kinetic and
evolution equations describing low and high temperature deformation mechanisms. Other developments and refine-
ments followed (Vogler and Blum, 1990; Hofmann and Blum, 1993; Zhu and Blum, 1993). Typically, these models
assume that the microstructure consists of alternate regions of long subboundaries or ‘hard’ phases and subgrain
interiors or ‘soft’ phases, which must deform in such a manner so as to maintain compatibility between the two
phases. When considered with similar modeling efforts for low temperature uniaxial (Mughrabi, 1983; Argon and
Haasen, 1993) and cyclic (Mughrabi, 1981, 1987) deformation, it becomes apparent that, at least in principle, this
approach to modeling low and high temperature deformation behavior can lead to the development of a unified
model describing various deformation behavior of a material.

Despite the potential advantages of the two-phase deformation models, they are still largely limited in
scope for several reasons. First, they assume that subgrains form soon after loading, and therefore, they do not take
into account the large microstructural variations that actually occur during primary creep and in the exponential
creep region. Second, they unrealistically assume that subgrains are one-dimensional in nature. Third, they assume
that the volume fractions of the subboundaries and dislocation densities do not change with strain or time. Fourth,
they assume the presence of one type of substructure i.e., cells or subgrains. In reality, as discussed in §3.1.2, both
cells and subgrains can form during creep.

In a recent development, Freed et al., (1992) attempted to address some of these issues by extending the
one-dimensional composite models to the more realistic three dimensions using an Eshelby analysis for isotropic
spheroidal cells or subgrains, and by allowing the microstructural terms to vary with deformation. The approach was

Application

Rotors and piping
for steam turbines

Pressure vessels
and piping in
nuclear reactors

Reactor skirts in
nuclear reactors

Gas turbine blades

Burner cans for
gas turbine engines

Typical materials

Cr-Mo-V steels

316 stainless steel

316 stainless steel

Nickel-based
superalloys

Oxide dispersion
strengthened
nickel-based alloys

Typical
temperatures,

K

825 to 875

650 to 750

850 to 950

775 to 925

1350 to 1400

T/Tm

0.45 to 0.50

0.35 to 0.40

0.45 to 0.55

0.45 to 0.60

0.55 to 0.65

TABLE I.—TYPICAL OPERATING TEMPERATURES IN
ENGINEERING APPLICATIONS.

(Nix and Gibeling, 1985(a)).
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general enough to consider a variant microstructure of cells and subgrains coexisting together although, for simplic-
ity, the analysis was presented for one type of substructure. It was demonstrated that the shape factor, β, of the cell
or subgrain introduces an additional second order tensorial elastic strain term to describe the local strain compatibil-
ity between the ‘soft’ and ‘hard’ regions in the crystal. The equations reduce to the Voigt approximation used by Nix
and others in the one-dimensional case when β = 0. In principle, this three-dimensional model, termed as Disloca-
tion Substructure Viscoplasticity (DSV), should lead to the development of a unified deformation theory to describe
plastic deformation for any stress state with additional refinements.

In contrast to the microstructural-based creep theories, viscoplasticity models ignore the role of microstruc-
ture on creep behavior (Kocks, 1987). Instead, the material is treated as a “black box” with stress and temperature as
the primary input variables, and creep strain and creep rate as the main output variables. The internal state variables
are introduced to account for transient effects, such as the Bauschinger effect and cyclic hardening under fatigue
type loading situations. This approach is more useful in predicting the material response in engineering design,
whereas the microstructural theories permit sound material design and selection. However, both approaches to creep
modeling are limited in scope in that the viscoplastic models have to make arbitrary assumptions regarding Si while
current microstructural-based creep theories cannot be easily scaled-up to predict the macroscopic creep behavior of
an engineering component.

Therefore, the question arises: Can a model be developed by coupling the creep equations from
viscoplasticity with those from dislocation physics? If so, then it should be possible, at least in theory, to predict the
macroscopic creep response of an engineering component or test specimen at one extreme and the evolving defor-
mation microstructure at the other using the principles of finite element analysis (FEM), viscoplasticity and disloca-
tion physics. The fundamental objective of this chapter is to develop such a modeling technique. In its final form the
model should predict the time evolution of the shape of a deforming body and the corresponding internal stresses
and dislocation microstructures for macroscopic stress states produced during bend, cyclic, multiaxial and uniaxial
tests. However, owing to the complexity of the problem and the amount of computational time required, the present
goals are rather modest and tackle only uniaxial deformation. The intention here is to present a focussed review of
uniaxial compression creep data and microstructural observations on NaCl single crystals with the primary purpose
of using the information in developing the creep model. No attempt is made to specifically review the creep proper-
ties of other materials. The use of NaCl single crystal data in this study was influenced by a number of factors criti-
cal to the present modeling effort. Since it is a single phase material, which exhibits class M creep behavior,
additional complications due to solid solution effects and second phase particles are avoided. In addition, grain
boundary effects are eliminated for single crystals. More importantly, there is a considerable amount of creep, and
qualitative and quantitative microstructural data on this material varying over a very large range of stresses and tem-
peratures corresponding to class M and exponential creep (Ilschner and Reppich, 1963; Le Comte, 1965; Stokes,
1966; Blum and Ilschner, 1967; Heard, 1972; Poirier, 1972(a) and (b); Eggeler and Blum, 1981; Carter and Hansen,
1983; Wawersik, 1984, 1985; Raj and Pharr, 1986(a) and (b); Nadgornyi and Strunk, 1987; Przystupa et al., 1987;
Raj et al., 1989; Raj and Pharr, 1989; Raj et al., 1991; Raj and Freed, 1992; Raj and Pharr, 1992).

Figure 2 schematically illustrates the approach adopted in this work. The essential idea used in developing
this mesoscopic creep model is to couple the microscopic kinetic and evolution equations for different thermally
activated deformation mechanisms with the macroscopic stresses, strains, strain rates and time-dependent micro-
structural variables using the DSV model (Freed et al., 1992). A solution of the equations from the DSV model at
different points on an engineering component or a test specimen using FEM analysis then gives the macroscopic
response in terms of stresses, strains and creep rates. This coupling between the macro- and the microstates of the
component allows a two-way flow of information as shown in Fig. 2. In essence, this approach promises to be a
powerful analytical tool for understanding the deformation behavior of solids under uniaxial, multiaxial and cyclic
loading conditions if the details of the dislocation mechanisms are well characterized for the dominant deformation
processes. However, this paper provides only the theoretical basis for coupling the DSV model and dislocation me-
chanics. The dislocation model considered here is applicable only to the simple one-dimensional cell model postu-
lated by Nix et al., (1985)(a) and (b). A more detailed treatment of the dislocation processes governing cell and
subgrain formation and their subsequent deformation is required before the DSV model can be applied to the general
three-dimensional case. In addition, the extension of the computation to study the deformation of an entire test speci-
men using numerical analysis and FEM is not considered here in order to keep the problem tractable. For simplicity,
grain boundary effects are neglected so that the present solutions are strictly valid for single crystals. The solutions
are valid for polycrystalline materials only if the strain contributions from grain boundary effects, such as grain
boundary sliding and grain boundary migration, are small.
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This chapter is divided into several sections: First, a general discussion of the current understanding of the
class M and exponential creep mechanisms is presented for single phase class M materials. Second, the characteris-
tics of the dislocation substructures formed during class M and exponential creep are discussed. Third, the stability
of these microstructures after stress and temperature changes are examined. Fourth, a modified version of the one-
dimensional, two-phase Nix-Gibeling creep model (1985(a)) is presented. Fifth, the development of the DSV model
is treated.

2.0 CLASS M AND EXPONENTIAL CREEP IN SINGLE PHASE MATERIALS

The steady-state creep rate at intermediate values of normalized stress corresponding to the class M creep
regime is usually given by (Bird et al., 1969)

˙ exp ( )ε σ= ( )( ) −( )A D Gb Qn
c0 3/kT /G /RT

where b is the Burgers vector, k is Boltzmann’s constant, R is the universal gas constant, and A is a dimensionless
constant. Typically, the experimental values of the stress exponents are about n ≈ 4 to 5 and Qc ≈ Ql for a large num-
ber of materials exhibiting class M behavior (Sherby and Burke, 1967). A point that may be noted here is that the
observation Qc ≈ Ql is not accepted by all investigators. For example, Poirier (1978, 1979) has suggested that
Qc > Ql at very high temperatures and low stresses, and that Qc ≈ Ql is only an approximation of true deformation
behavior in certain stress and temperature ranges. This viewpoint has been questioned by Sherby and Weertman
(1979) and Nix and Ilschner (1980). At high values of normalized stresses, the power-law relation given by equation
(3) breaks down when σ/G > (σ/G)PLB, where (σ/G)PLB is the normalized power-law breakdown stress. The creep
rate then exhibits an exponential dependence on normalized stress over a large range of stresses and temperatures as

˙ exp exp ( )ε σ σ= ( ) ( ) −( )A Bp
1 4/G /G Q /RTc

where A1 and p are constants, where p reflects the stress dependence of the dislocation density so that p ≈ 2 (Bird
et al., 1969; Takeuchi and Argon, 1976).

It is generally accepted that class M creep is controlled by dislocation climb (Bird et al., 1969; Takeuchi
and Argon, 1976; Nix and Illschner, 1980). As first pointed out by Weertman (1975), theories for dislocation climb
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Figure 2.—Schematic block diagram of the coupling between dislocation mechanics, dislocation substructure
   viscoplasticity and finite element analysis required to study the interaction between the macroscopic and
   microscopic stresses, strains and strain rates.
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creep always predict a stress exponent of n = 3 if no special assumptions are made irrespective of the microstructural
basis for the model. Therefore, it was hypothesized that there is a natural or universal creep law which predicts
that n = 3 for class M creep. In reality, experimental observations consistently reveal that n > 3 for most materials
undergoing class M creep (Bird et al., 1969). In contrast, the exponential creep law is even more poorly understood
in terms of dislocation processes operating in this regime. Some of the proposed mechanisms are discussed below.

2.1 Assessment of Dislocation Core Diffusion-Controlled Creep Mechanisms 

If the activation energy is plotted as a function of temperature, it is often seen that Qc ≈ Ql, where Ql is the
activation energy for lattice diffusion, for T > 0.7 Tm and Qc < Ql for T < 0.7 Tm (Sherby and Burke, 1967; Lüthy et
al., 1980). Interestingly, early research suggested that Qc ≈ 0.5 to 0.6 Ql for some materials at intermediate tempera-
tures (Fig. 3) (Barrett and Sherby, 1964; Robinson and Sherby, 1969; Lüthy et al., 1980). Sherby et al., (Barrett and
Sherby, 1964; Robinson and Sherby, 1969; Lüthy et al., 1980) rationalized these observations on the basis that creep
behavior at these temperatures is also controlled by dislocation climb, where vacancy diffusion now occurs along
dislocation cores instead of through the lattice, so that Qc ≈ Qp, where Qp is the activation energy for dislocation
pipe or core diffusion. Thus, creep processes controlled by dislocation climb at intermediate and high temperatures
were termed low temperature (L.T.) and high temperature (H.T.) climb, respectively (Frost and Ashby, 1975, 1977,
1982). Since dislocation core diffusion is dependent on the dislocation density (Hart, 1957; Shewmon, 1963), and ρ
is proportional to σ2

, the predicted stress exponent for L.T. climb is (n+2) (Robinson and Sherby, 1969; Sherby and
Young, 1975). Thus, the creep rate equation for L.T. climb can be specifically expressed as

˙ exp ( ). . . .ε σL T L T
nA= ( )( ) −( )+D Gb/kT /G Q /RT0p p

2 5

and that for H.T. climb as

˙ exp ( ). . . .ε σH T H T
nA= ( )( ) −( )D Gb/kT /G Q /RT0l 1 6

where D0l and D0p are the frequency factors for lattice and pipe diffusion, respectively, and AH.T. and AL.T. are
dimensionless constants.

Figure 4 schematically illustrates the regions of dominance of H.T. climb, L.T. climb and exponential creep
on a plot of normalized creep rate, ε̇kT/DeffGb, against σ/G, where Deff is an effective diffusion coefficient repre-
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Figure 3.—Variation of the activation energy for creep,
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   diffusion, with the homologous temperature for different
   materials showing the probable dominance of low
   temperature climb at low and intermediate temperatures
   (Luthy et al., 1980) (with kind permission from Elsevier
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   temperature climb) and exponential creep.

senting the combined effects due to lattice and core diffusion. The two sets of curves shown in Fig. 4 represent the
creep behavior of high and low stacking fault energy materials. Sherby and Burke (SB) (1967) first suggested that
the power-law breaks down at almost a constant value of ε̇/Deff ≈ 10

13
 m

2
 (i.e., ε̇kT/DeffGb ≈ 10

–8
) for many mate-

rials, and this criterion is indicated in Fig. 4.
Although the L.T. climb process predicts a stress exponent of (n+2) and Qc ≈ Qp, Spingarn et al., (1979)

concluded from a reevaluation of the creep data for several materials that increases in the stress exponents did not
correlate with Qc ≈ Qp. Furthermore, the predicted creep rates based on theories for core diffusion were about 20 to
400 times slower than the experimental values for four metals: Al, Cu, Ni and W. Similarly, Kassner and Oldani
(1988) and Kassner (1989) concluded that the Qc versus T plot for Ag does not show any plateau corresponding to
Qc ≈ Qp. More recently, a detailed study on the creep of Cu also failed to reveal any evidence of L.T. climb-con-
trolled creep in this material (Raj and Langdon, 1989, 1991(a),(b)). In this case, the activation energy was observed
to decrease linearly with increasing values of σ/G, and it was demonstrated that this stress dependency of Qc could
not be attributed to a transition from H.T. to L.T. climb with increasing normalized stress. Furthermore, it was dem-
onstrated through a compilation of Qc values published in the literature that the activation energy data for Cu does
not exhibit the simple step-function transition shown in Fig. 3 (Raj and Langdon, 1989).

Similarly, a plot of Qc against T/Tm for NaCl polycrystals (Le Comte, 1965) and single crystals (Raj and
Pharr, 1986(b)) shows no clear evidence of a plateau at intermediate temperatures (Fig. 5). Instead, Qc increases
monotonically with increasing homologous temperature. The horizontal broken lines show the values for QCl

– and
QNa

+,  where QCl
– and QNa

+ are the average activation energies for the lattice diffusion of Cl
–
 and Na

+
 ions, respec-

tively, in NaCl determined by replotting diffusion data obtained from several sources (Harrison et al., 1958; Barr et
al., 1960; Barr et al., 1965; Beniere et al., 1970; Downing et al., 1970; Nelson and Friauf, 1970; Rothman et al.,
1972; Mitchell and Lazarus, 1975; Beniere et al., 1977; Ho and Pratt, 1983). Figure 5 also shows the predicted
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Figure 5.—Temperature dependence of the experimental
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:

variations in the temperature dependence of Qc assuming there is a transition from low to high temperature climb
with increasing temperature for σ/G = 10

–4
 and 10

–3
. The mean values of Qc are given by (Langdon and Mohamed,

1977)

Q Q Qc H T p L T H T L T= +( ) +( )1 7˙ ˙ ˙ ˙ ( ). . . . . . . .ε ε ε ε

The calculated values of Qc were obtained using values of Qp ≈ 155 kJ mol
–1

 (Ho and Pratt, 1983) and Ql = QCl
–

≈ 230 kJ mol
–1

 (Raj and Pharr, 1989).
Therefore, there is an increasing body of evidence which suggests that creep involving dislocation core

diffusion is not a valid concept for many materials. It can then be inferred from Fig. 4 that in the absence of L.T.
climb, there is a direct transition from class M to exponential creep. This implies that the mechanism(s) dominant in
the exponential creep region is identical to those controlling creep at intermediate temperatures, where the transition
from class M to the exponential creep involves a change over from a diffusional to a nondiffusional process(s).
Therefore, the term “class M creep” as used in this chapter will specifically refer to H.T. climb dominated creep.

Alternatively, the low values of Qc < Ql observed at intermediate temperatures have been attributed to one
or more non-diffusional processes (Dorn and Jaffe, 1961; Jaffe and Dorn, 1962; Poirier, 1976; Caillard and Martin,
1987; Raj and Langdon, 1991(b)). Most of these mechanisms predict a stress-dependent activation energy which
leads to an exponential creep behavior similar to equation (4) or, if a power-law relation is used to analyze the data,
to values of n >> 4. Among the several mechanisms that have been proposed (Caillard and Martin, 1987; Raj and
Langdon, 1991(b)), those involving the cross-slip of screw dislocations (Friedel, 1959, 1964, 1977; Dorn and Jaffe,
1961; Jaffe and Dorn, 1962; Poirier, 1976; Caillard and Martin, 1987; Carrard and Martin, 1987, 1988) and obstacle-
controlled glide (Nix and Ilschner, 1980; Raj and Langdon, 1991(b)) appear to be important at intermediate tempera-
tures and high stresses.

2.2 Nondiffusional Creep Mechanisms

Several nondiffusional creep mechanisms have been proposed and these are reviewed elsewhere (Caillard
and Martin, 1987; Raj and Langdon, 1991(b)). However, only two of these, namely cross-slip and obstacle-
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controlled glide mechanisms, appear to be relevant in most instances (Caillard and Martin, 1987; Nix and Illschner,
1980; Raj and Langdon, 1991(b)). These are discussed below.

2.2.1 Cross-slip mechanisms
The cross-slip of screw-oriented dislocations can lead to a decrease in the dislocation density through the

annihilation of screw dislocations of opposite signs. Thus, it is possible for cross-slip to act as a recovery process in
addition to its role as a multiplicative mechanism. The mechanism is complex and no good creep model exists to
describe the process. As a result, there is some controversy as to whether this process is dominant at intermediate
and high temperatures (Poirier, 1976, 1978, 1979; Sherby and Weertman, 1979). This controversy hinges on a fun-
damental question: Do edge and screw components of a dislocation loop move independently or sequentially during
deformation? The conventional viewpoint, first advocated by Weertman (1955), assumes that the edge and screw
components move sequentially with the rate of climb of edge dislocations being slower than the rate of cross-slip of
screw dislocations. Therefore, the creep rate was controlled by dislocation climb in the Weertman model. The justi-
fication for this rationale lies in the fact that Qc ≈ Ql for experimental data reported for several materials in the class
M creep regime (Sherby and Burke, 1967; Bird et al., 1969). In contrast, Poirier (1976, 1978) reanalyzed some of
the published creep data for many metals and concluded that Qc ≈ Ql only in certain stress and temperature ranges
and that Qc > Ql at higher temperatures and lower stresses. He attributed these high values of Qc to creep controlled
by cross-slip of screw dislocations, and proposed a creep model, where climb of the edge and cross-slip of screw
components were assumed to occur as independent mechanisms (Poirier, 1976). The model also predicts that Qc <
Ql at very high stresses and low temperatures.

Theories involving cross-slip fall into two broad categories depending on whether the partial dislocations
constrict along a length equal to that of a Frank-Read source (Schoeck and Seeger, 1955; Wolf, 1960; Püschl and
Schoeck, 1993) or to a length less than the Frank-Read source (Friedel, 1959, 1964, 1977; Escaig, 1968(a) and (b);
Bonneville and Escaig, 1979; Duesbery et al., 1992) prior to cross-slip onto the new slip plane. In each case, the unit
dislocation dissociates into its partials in the cross-slip plane. The former process is energetically unfavorable by
comparison with the latter so that it is generally not important. Two variations of the second process exist both of
which are based on the Friedel model (Friedel, 1959, 1964, 1977). Jaffe and Dorn (1962) were the first to propose
that the values of Qc < Ql observed at intermediate temperatures (Fig. 3) could be rationalized using the Friedel
cross-slip model. They assumed that the partial dislocations constrict over a critical length of about 4dcs, where dcs
is the stress dependent stacking fault width. The activation energy for cross-slip, Qcs, for this mechanism is (Jaffe
and Dorn, 1962)

Q Gbcs P= ′( ) { }[ ]0 014 0 89 83 0 5 0 5 0 5
. ( ) ln ( . )( ) ( ). . .

β σ σ/Np G/ /N G/

where β' is a constant which is approximately 1.0 and 2.0 for low and high stacking fault energy materials, respec-
tively, and NP is the number of dislocations in a piled-up array. Equation (8) predicts a nonlinear dependence
of Qcs on stress.

In the second version, Escaig and others (Escaig, 1968(a), (b); Poirier, 1976; Bonneville and Escaig, 1979)
assumed that the partial dislocations cross-slip at preexisting constrictions. However, as the constricted dislocation
cross-slips and dissociates spontaneously into its partials in the cross-slip plane, two constricted nodes are formed at
the intersection of the primary and cross-slip planes. The movement of these nodes away from each other as the
partials glide on the new slip plane provides the driving force for cross-slip. An analysis of this process results in a
complex expression for Qcs which depends on the magnitudes of the local stresses acting on the partials. A simpli-
fied relationship for this process leads to a linear dependence of Qcs on stress given by (Escaig, 1968(a) and (b),
Poirier, 1976)

Q G Gb b acs = ( )[ ] −2 0 51875 4 5 1 3 9b / /1 /24 Γ Γ Γln( . ) ( ) ( ). σ

or
Q Q V bcs = −0 1 9( *) ( )σ

where Q0 is the maximum activation energy for cross-slip given by
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Q G ccs = × ( )5 10 0 07 94 0 5– .
( )(ln( . ( )b Gb/ Gb/3 Γ Γ

and the apparent activation volume, V*, by

V b d* ( )= 3 9Q /20 Γ

Note that V* = A*b, where A* is the activation area for deformation.
Application of equations (8) and (9) to creep data obtained on polycrystalline Cu (Fig. 6) (Raj and

Langdon, 1991(b)) showed no good agreement between theory and experiment. For Cu, Qc decreases linearly with
increasing values of σ/G and the nonlinear trend predicted by equation (8) is inconsistent with experimental obser-
vations (Fig. 6). Although equation (9) predicts this linear dependence of Qc, it underestimates the experimental
values by more than a factor of three in the case of Cu (Fig. 6) (Raj and Langdon, 1991(b)). In the case of NaCl, the
Jaffe-Dorn cross-slip model given by equation (8) is reasonably close to the experimental data for Np ≈ 5 and β' = 1
(Fig. 7) (Raj and Pharr, 1986(b)). In contrast, the Escaig model underestimates Qc by a factor of four to twenty.

Experimental observations of wavy slip morphology in Al (Carrard and Martin, 1987, 1988), Cu (Raj and
Langdon, 1991(a)) and NaCl (Wawersik, 1984; Haasen et al., 1986; Skrotzki and Haasen, 1988) clearly suggest that
cross-slip processes are important during creep. In the case of Cu, it was observed that wavy slip occurs at high
stresses and high temperatures close to the transition region between class M and exponential creep (Raj and
Langdon, 1991(a)). In this case, since wavy slip was observed only after a finite amount of deformation, it appears
that a critical combination of stress, temperature and strain conditions must be satisfied for these slip features to
occur during creep. If wavy slip can be solely attributed to the cross-slip of screw dislocations, then the existence of
these criteria can be qualitatively understood if it is assumed that the local stress required to constrict the partial
dislocations to form a unit dislocation attains a critical value only at high temperatures and high strains. This criteria
is more likely to be attained in high stacking fault energy materials, such as Al, than in materials with lower values
of Γ, such as Cu.
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In the absence of good theoretical models for cross-slip, empirical equations are often used to force a fit
through the data, where it is necessary to make an a priori assumption that cross-slip is the dominant deformation
mechanism in order to obtain the fitting constants. Nix et al., (1985(a) and (b)) expressed the activation free energy
for cross-slip,  ∆Gcs, as

exp exp exp ( )−( ) = −( ) ( ) −{ }∆G Q bCS/kT /kT A * /kT01 1 10τ

where Q01 is the activation energy for cross-slip at zero stress. The exp(τbA*/kT) term in equation (10) represents
the activation energy for cross-slip events in the direction of the resolved shear stress while –1 represents the acti-
vation energy for dislocation motion in the opposite direction. Nix et al., (1985(a), (b)) assumed that A* = α'Q01/Gb,
where α' is a constant depending on the stacking fault energy of the material. Both Q01 and α' are adjustable
parameters which must be determined from experimental data assuming that cross-slip is the dominant mechanism.
Referring to Fig. 7 and assuming typical values of G and that cross-slip is dominant in the linear region,
Q01 ≈ 185 kJ mol

–1
 for NaCl if the probability of backjumps is assumed to be zero (i.e. the '–1' is deleted from equa-

tion (10)). Since A* ≈ 300 b
2
 for cross-slip (Conrad, 1964; Evans and Rawlings, 1969; Bonneville and Escaig,

1979), the magnitude of α' ≈ 500 to 950 between 300 and 973 K.

2.2.2. Obstacle-Controlled Glide of Dislocations
Nix and Ilschner (1980) suggested that exponential creep is dominated by thermally activated obstacle-

limited dislocation glide (Kocks et al., 1975; Frost and Ashby, 1982), where a gliding dislocation is obstructed by
immobile or “forest” dislocations in single phase materials. Dislocation motion is limited by the cutting of these
obstacles. The rate equation for this mechanism, assuming “rectangular” obstacles, is given by (Nix and Ilschner,
1980)

˙ ( ) exp ( ) ( )ε σ σ σ σ= ×( ) − − −{ }[ ]4 10 1 1112 3 2/M /G /kT /∆F b obs

where M is the Taylor factor, ∆F is Helmholtz free energy required to move a dislocation past an obstacle without
aid from an external stress, σb is the back stress on the dislocation and σobs is the obstacle strength. The quantity
σ – σb represents an effective stress on the dislocation. The magnitude of ∆F, which depends on the type of obstacle,
is typically 0.2 to 1.0 Gb

3
 for medium strength obstacles such as forest dislocations (Frost and Ashby, 1982).

Typical, values of ∆F = 0.4 to 0.6Gb
3
 appear to describe the experimental data on Cu (Fig. 8) (Raj and Langdon,

1991(b)) and NaCl (Fig. 7) (Raj and Pharr, 1986(b)) reasonably well. The magnitude of σobs is given by (Taylor,
1934)
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σ α ρobs M Gb= ( ) ( ) ( ).
1

0 5 12

where α1 is a geometric constant equal to about 0.5 when M = 2 (Bird et al., 1969; Mecking and Kocks, 1981).
Alternatively, equation (11) can be formulated in terms of V* with

V obs* ( )= ∆F/σ 13

Equation (11) gives

Q Fc b obs= − −{ }∆ 1 14( ) ( )σ σ σ/

As shown in Fig. 7 (Raj and Pharr, 1986(b)) and Fig. 8 (Raj and Langdon, 1991(b)), the magnitudes of Qc
determined from equation (14) are in reasonable agreement with the experimental data for NaCl and Cu, respec-
tively. These predicted curves were calculated assuming σb ≈ 0.5 σ for Cu and NaCl, respectively. Figures 7 and 8
suggest a direct transition from Qc ≈ Ql to Qc < Ql with increasing σ/G for both these materials which is consistent
with the observed transition from class M to exponential creep (Figs. 9 and 10).

2.3 Effect of Stacking Fault Energy on Class M Creep

The effect of stacking fault energy on the creep behavior of metals and alloys has been studied extensively
under class M creep conditions (Barrett and Sherby, 1965; Davies et al., 1965; Shalayev et al., 1969; Singh Deo and
Barrett, 1969; Vandervoort, 1969; Oikawa and Karashima, 1971; Johnson et al., 1972; Kozyrskiy et al., 1972(a),(b),
Mohamed and Langdon, 1974; Okrainets and Pishchak, 1979; Yang et al., 1987). As a result, it is now well-
established that the creep rate decreases by approximately a factor of 6000 for about an order magnitude decrease in
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Figure 9.—Normalized creep rate versus normalized
   stress for copper showing the transition from class
   M creep with n ≈ 4.3 to exponential creep (Raj and
   Langdon, 1991 (b)) (with kind permission from
   Elsevier Science Ltd.).
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Γ (Barrett and Sherby, 1965). Stacking fault energy influences both dislocation climb (Weertman, 1965; Argon and
Mofatt, 1981; Kong and Li, 1993) and cross-slip (see §2.2.1) so that as Γ/Gb decreases, the rate of climb and cross-
slip decrease correspondingly.

The exact manner by which Γ affects the parameters in the class M creep equation (3) is poorly understood
at present. However, most theoretical treatments of the problem assume that the extended dislocations form a con-
striction prior to cross-slip or climb so that the effect of Γ enters the creep equation through its influence on the con-
striction energy. At present, both theory (Argon and Moffatt, 1981; Argon and Takeuchi, 1981; Kong and Li, 1993)
and experiment (Barrett and Sherby, 1965; Mohamed and Langdon, 1974) suggest that the A parameter in equation
(3) is a function of (Γ/Gb)

q
, where q is the stacking fault energy exponent.

Barrett and Sherby (1965) first proposed that ε̇  α Γ3.5
 in the class M creep regime based on their experi-

mental observations on pure metals. In a later extension of these results to other metals and alloys, Mohamed and
Langdon (1974) observed that q ≈ 3. Several other values of q have also been reported in the literature varying be-
tween q ≈ 1 to 4 (e.g., Oikawa & Karashima, 1971). In addition, alternative expressions to the power-law relation
have been proposed. For example, Oikawa and Karashima (1971) observed ε̇  α exp(Γ/Gb) for several copper al-
loys. However, the power-law relation with a value of q ≈ 3 is more commonly accepted in the literature.
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Figure 12.—Variation of the normalized creep rate at
   which the power-law breaks down for several f.c.c.
   metals (i.e. at (s/G)PLB ≈ 5x10–4) with the normalized
   stacking fault energy (Raj and Langdon, 1991 (b))
   (with kind permission from Elsevier Science Ltd.).

2.4 Power-Law Breakdown Criterion 

Since both the climb and cross-slip velocities are dependent on (Γ/Gb) (Poirier, 1976; Argon and Moffatt,
1981; Kong and Li, 1993), it is expected that recovery processes, and hence, the rate of evolution of the steady-state
substructure should decrease with decreasing values of Γ/Gb. Thus, nondiffusional creep mechanisms are likely to
dominate at lower values of normalized creep rate with decreasing values of Γ/Gb. As shown in Fig. 11, this is in-
deed the case when experimental creep data for a number of f.c.c. metals with Γ/Gb varying between 2.3×10

–2
 for

Al to 2×10
–3

 for Ag are compared with each other on a normalized plot (Raj, 1986; Raj and Langdon, 1991(b)).
These observations reveal that the normalized creep rates for Al are higher than those for Ag by as much as three to
four orders of magnitude (Fig. 11). An important outcome of these results is that the power-law breaks down at
about a constant value of (σ/G)PLB ≈  5×10

–4
 irrespective of the stacking fault energy. Similarly, (σ/G)PLB ≈ 3×10

–4

for NaCl single crystals (Fig. 10) (Raj and Pharr, 1989) and 5.5×10
–4

 for an Al-3% Mg alloy (Wang, at al. 1993). In
contrast, the normalized creep rate, (ε̇ kT/DlGb)PLB, where Dl is the diffusion coefficient for lattice self diffusion, at
which the power-law relation deviates from n ≈ 4.5 for the pure metals decreases with decreasing Γ/Gb as (̇ε kT/
DlGb)PLB α (Γ/Gb)

3.5
 (Fig. 12) (Raj and Langdon, 1991(b)). This exponent is similar to the values q = 3.0 to 3.5

observed in the class M creep regime (Barrett and Sherby, 1965; Mohamed and Langdon, 1974).
Three important points can be made regarding Figs. 11 and 12. First, the existence of an almost constant

value of (σ/G)PLB for these materials (Fig. 11) is significant since a number of substructural features depends on
normalized stress (Bird et al., 1969; Takeuchi and Argon, 1976; Raj and Pharr, 1986(a)). Therefore, the results
shown in Fig. 11 appear to imply that the power-law breaks down, at least, in part due to a change in one or more of
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these micro-structural characteristics. Second, the decrease in (ε̇ kT/DlGb)PLB with decreasing (Γ/Gb) (Fig. 12) can
be attributed to the increasing dominance of nondiffusional creep mechanisms, such as obstacle-controlled glide,
over H.T. climb at lower values of normalized creep rates in the low stacking fault energy metals. This is to be ex-
pected since it is well established that the extent of recovery decreases with decreasing stacking fault energy. The
significant implication of this observation is that the transition temperature, Tc, above which Qc ≈ Ql in a plot of Qc
against T/Tm is expected to increase as the stacking fault energy decreases. Indeed, as shown in Table II (Raj and
Langdon, 1991(b)), this appears to be the case when the values of Tc are compared with Γ/Gb for Al, Cu and Sn, but
it is cautioned that more experimental data are required to confirm this trend. Third, the Sherby-Burke criterion,
which predicts that the power-law breaks down at an almost constant value of ε̇ /Dl ≈ 10

13
 m

–2
 (or equivalently,

( ε̇ kT/DlGb)PLB ≈  10
–8

) (Sherby and Burke, 1967), appears to be valid only for high stacking fault energy materials
(Γ > 150 J m

–2
) (Fig. 12) (Raj, 1986).

3.0 SUBSTRUCTURE FORMATION IN NACL SINGLE CRYSTALS IN THE CLASS M  AND
EXPONENTIAL CREEP REGIMES

Any attempt to develop realistic creep models must rest on a reasonable understanding of the processes
leading to the formation and evolution of dislocation substructures during creep and the effect of stress, temperature
and strain on the microstructure. These modeling efforts require detailed qualitative and quantitative characterization
of the microstructure to provide a truer picture of creep. In particular, a microstructural characterization of both the
class M and the exponential creep regions is essential in understanding why the power-law relation breaks down.
For example, it is not clear at present whether the transition to an exponential stress dependence involves a sudden
breakdown in the subgrain microstructure (Pharr, 1981) or whether it is due to a more gradual transformation in the
substructure from a subgrain morphology present at high temperatures and low stresses to a microstructure consist-
ing  of dislocation tangles and cells characteristic of low temperature deformation (Michel et al., 1973; Challenger
and Moteff, 1973; Kestenbach et al., 1976, 1978).

3.1 Effect of Normalized Stress on Creep Substructure 

3.1.1 Distinction Between Cells and Subgrains
The terms “cells” (C) and “subgrains” (SG) have been traditionally used to describe the morphologies of

certain low energy dislocation substructures formed as a result of the clustering of a uniform distribution of disloca-
tions. The distinction between cells and subgrains is generally made with respect to differences in the appearance of
the cell walls and the subgrain boundaries (Thompson, 1977). Cells consist of broad and diffused boundaries con-
taining dislocation tangles. In contrast, subboundaries (Sb) are narrow and well defined, where the boundaries have
a larger misorientation than the cell walls.

Figure 13(a) shows examples of these two substructural features in an etched NaCl single crystal after
creep. The cell walls are resolvable into individual etch pits in contrast to the subboundaries. Each individual etch
pit represents the point of termination of the dislocation line at the free surface. The cell boundary misorientation
angle has been estimated to be about 0.1

0
 (Raj and Pharr, 1989). A close examination of Fig. 13 reveals that there

are very few dislocations inside the cells. Two types of subboundaries, primary (P) and secondary (S), have been
identified (Fig. 13(b)) (Raj and Pharr, 1989). In comparison to the primary subboundaries, where the etch pits along
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Figure 13.—Creep substructure in a NaCl single crystal
   specimen deformed to (a) a true strain of 0.9 at 873 K
   under a normalized stress of 2.2x10–4 showing cells
   (C) and subboundaries (Sb); (b) a true strain of 0.37 at
   973 K under a normalized stress of 7.5x10–5 showing
   cells (C), primary (P), and secondary (S) subboundaries
   (Raj and Pharr, 1989) (with kind permission from
   Elsevier Science Ltd.).

the boundary cannot not be distinguished individually at high magnification, the secondary subboundaries consist of
individually distinct, but partially overlapping, etch pits. Thus, the primary subboundaries have a larger
misorientation angle than the secondary subboundaries which in turn are more misoriented than the cell boundaries.

Dislocation substructures may not always conform to these ideal definitions so that a precise identification
of the microstructure may not always be possible in some instances. Additional difficulties may arise due to limita-
tions of the observation technique used for studying the microstructures. For example, a cell boundary can be
misidentified as a subboundary in transmission electron microscopy (TEM) due to the smaller field of view in the
latter technique. For this reason, dislocation substructures are best studied using etch pit techniques (Takeuchi and
Argon, 1976; Blum, 1993) although TEM has a decided advantage in the measurements of the boundary
misorientation angles. As a result, there is some confusion in the use of these terms especially in the earlier litera-
ture, where the terms, “cells” and “subgrains”, are used alternatively to describe the same substructural feature (e.g.,
Feltham and Sinclair, 1962, 1963).
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3.1.2 Qualitative Descriptions of the Microstructures Formed in the Class M and Exponential Creep Regions
The fact that (σ/G)PLB is similar for NaCl single crystals (Fig. 10) (Raj and Pharr, 1989) and for several

f.c.c. metals (Fig. 11) (Raj, 1986; Raj and Langdon, 1991(b)) is interesting from the standpoint that many creep mi-
crostructural parameters, such as ds and ρ, are stress dependent. This observation suggests that the transition from
class M  to exponential creep with increasing values of normalized stress, σ/G, and decreasing homologous tempera-
tures, T/Tm, occurs when there is some critical transformation in the microstructure. Although there is now a wide
body of compiled information available on creep substructure (Sherby and Burke, 1967; Bird et al., 1969; Takeuchi
and Argon, 1976; Nix and Ilschner, 1980), most of these observations were conducted in a limited range of stresses
and temperatures primarily corresponding to the class M creep regime. As a result, these early studies do not gener-
ally provide much information regarding the exponential creep region although they form the basis of our current
understanding of class M creep.

Limited microstructural studies have been conducted on AISI 316 stainless steels in the class M and expo-
nential creep regions (Michel et al., 1973; Challenger and Moteff, 1973; Kestenbach et al., 1976, 1978). These ob-
servations suggest that the equiaxed subgrain microstructure, formed at low stresses and high temperatures
corresponding to the class M creep region, is replaced by a uniform distribution of dislocations at high stresses and
low temperatures well within the exponential creep regime (Fig. 14) (Kestenbach et al., 1976, 1978). This transfor-
mation from a subgrain microstructure occurs gradually passing through several intermediate stages involving the
formation of other substructural features, such as elongated subgrains and cells (Michel et al. 1973; Kestenbach et
al., 1978).

Similar observations were also reported for NaCl single crystals deformed in the [001] direction under a
constant compressive stress (Raj et al., 1989; Raj and Pharr, 1989). Large equiaxed primary subgrains were ob-
served at 973 K and at a value of σ/G = 7.5×10

–5
 (Fig. 13 (b)) corresponding to the class M creep region in Fig. 10.

Two other microstructural features are also visible within the primary subgrains: secondary subboundaries, which
divide the primary subgrains by forming random interconnecting networks, and equiaxed cells, which are present
within the secondary subgrains. These microstructures were generally clean and well defined in comparison to those
produced at lower temperatures and higher stresses. True steady-state creep behavior was observed under these

Figure 14.—Types of creep substructures formed in 316
   stainless steels at different stresses and temperatures
   (Kestenbach et al., 1976) (courtesy Metallurgical and
   Materials Transactions).
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conditions so that these microstructures represent steady-state creep substructures (Raj et al., 1989; Raj and Pharr,
1989). These secondary boundaries and cellular features are also evident in the published micrographs of creep-
deformed LiF (Streb and Reppich, 1973) and NaCl (Eggeler and Blum, 1981) single crystals.

The primary and secondary boundaries also form at a higher value of σ/G = 10
–4

 as observed in the sec-
tions transverse (Fig. 15 (a)) and parallel (Figs. 15(b) and (c)) to the stress axis. The longitudinal section was
cleaved from the crystal and the cleavage facets are visible in Figs. 15(b) and (c). Equiaxed primary subgrains, sub-
divided by secondary subboundaries and cells, are visible in Fig. 15(a). Similarly, a single primary subboundary and
several intercon-necting secondary subboundaries can be seen in Fig. 15(b). A high magnification view of region B
in Fig. 15(b) shows that the cell boundaries consist of a loose configuration of etch pits whereas those in the second-
ary sub-boundaries are present as distinguishable but nonresolvable etch pits (Fig. 15 (c)). The similar microstruc-
tures observed in the transverse (Fig. 15(a)) and longitudinal (Figs. 15(b) and (c)) sections clearly demonstrate that
these substructural features are representative of the bulk and that they are not due to any polishing artifact as sug-
gested by Vogler et al., (1991). More importantly, cells have been reported to form in a large number of materials
both in compression and tension creep thereby suggesting that they are not specific to NaCl, testing conditions or
metallographic preparation techniques (Gupta and Strutt, 1967; Hasegawa et al., 1970, 1971; Feltham and Sinclair,
1972; Streb and Reppich, 1973; Goel et al., 1983; Soliman et al., 1983; Ginter et al., 1984; Lee and Nam, 1988).

A comparison of Figs. 13(b) and 15(a) reveals that there is a significant increase in the width of a few cell
boundaries within some of the primary subgrains with an increase in σ/G. (e.g,. A in Fig. 15(a)). This widening of
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Figure 15.—Microstructure of a specimen deformed to a true strain of 0.35 at 973 K under a normalized stress of
   about 10–4 showing sections (a) transverse, and (b), (c) parallel to the stress axis; (c) is a high magnification view
   of region B in (b). An increase in the cell width (e.g. at A) is evident in (a) (Raj and Pharr, 1989) (with kind per-
   mission from Elsevier Science Ltd.).
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the cell boundaries becomes increasingly predominant with increasing normalized stresses. The increase in the width
of the cell boundaries appears to be correlated with a corresponding decrease in the number of secondary
subboundaries and a tendency towards nonsteady state creep behavior (Raj et al., 1989; Raj and Pharr, 1989). An
example of this microstructural variation is shown in Fig. 16(a) for a specimen deformed at a value of σ/G =
2.2×10

–4
, where it is seen that, while the primary subgrains are still equiaxed, the cell boundaries within many of

them are extremely coarse (e.g., A in Fig. 16(a)) in contrast to with those shown in Fig. 13(b). In this case, second-
ary subboundaries were rarely observed. However, narrow cell boundaries and secondary subboundaries are evident
within some of the primary subgrains in other regions of the specimen (e.g., B in Fig. 16(a)). It is clear from a com-
parison of Figs. 13(b) and 16(a) that the steady-state microstructure involves a refinement of the cell boundaries and
the formation of secondary subboundaries. It is important to note that these microstructures are formed under class
M creep conditions when n ≈ 5 (Fig. 10), although no real steady-state was attained when σ/G > 10

–4
. These obser-

vations contradict the commonly-held opinion that subgrain formation is a sufficient condition for the occurrence of
steady-state creep (Volger et al., 1991; Blum, 1993). Similarly, Mo single crystals did not exhibit steady-state creep
behavior even after 42 percent strain despite the fact that a subgrain microstructure had developed during deforma-
tion (Clauer et al., 1970).

The first evidence of a change in the appearance of the primary subgrains occurs at a value of σ/G =
3.3×10

–4
 which is close to the point of transition from class M  to exponential creep (Fig. 10). In this case, some of

the subgrains are more elongated (e.g. A in Fig. 16(b)) compared to others (e.g. B in Fig. 16(b)), and this increase is
more pronounced at σ/G = 4.0×10

–4
 as is evident through a comparison of subgrains A and B in Fig. 16(c). These

elongated subgrains exhibit a ladder-like morphology with their long boundaries oriented along the 〈110〉 primary
slip direction. Similar microstructures of elongated and equiaxed subgrains, often distributed in alternate bands of
narrow and wide subgrains, have been observed in many materials (Gupta and Strutt, 1967, Clauer et al., 1970;
Hasegawa et al., 1970, 1971; Feltham and Sinclair, 1972; Poirier, 1972; Orlová et al, 1972(a); Hüther and Reppich,
1973; Takeuchi and Argon, 1976; Kestenbach et al. 1978). Significantly, there is also a variation in the internal mi-
crostructures within these two types of subgrains. The elongated subgrains (e.g., A in Fig. 16(c)) have a higher dislo-
cation density, a larger number of cells with coarser boundaries and fewer secondary subboundaries than their
equiaxed neighbors (e.g., B in Fig. 16(c)). These observations suggest that there is an apparent correlation between
the aspect ratio of a subgrain and its internal microstructure. Hasegawa et al. (1970, 1971) have reported similar
observations on Cu single crystals, where the elongated subgrains appeared to creep at slower rates than the
equiaxed ones. These results suggest that the elongated subgrains are harder than their equiaxed neighbors due to
differences in their internal dislocation microstructure. Earlier observations have shown that the elongated subgrains
tend to become equiaxed by subboundary migration (Hasegawa et al., 1970, 1971; Clauer et al., 1970).

At a value of σ/G = 7.5×10
–4

 and 473 K, corresponding to well within the exponential creep region (Fig.
10), no cells and subgrains are observed below ε ≤ 0.2 (Fig. 16(d)). Instead, the microstructure consists of an uni-
form distribution of dislocations interspersed with light patches of lower etch pit density and long subboundaries
oriented approximately along the 〈100〉 direction. These light patches of low dislocation density are probably the
first indications of cell formation through dislocation annihilation since they were not observed at lower tempera-
tures and higher stresses. However, well developed subgrains were observed at ε ≈ 1.0 although their formation did
not result in steady-state creep. At very high values of normalized stress corresponding to σ/G = 1.4×10

–3
, the

microstructure consists primarily of a uniform distribution of dislocations and little or no subboundaries (Fig. 16(e)).
The substructure in the exponential creep regime is strongly dependent on strain and temperature, where an increase
in both these parameters tends to promote subgrain formation (Raj and Pharr, 1989).

The general picture that emerges from these results is that the transition from class M  to exponential creep
is associated with gradual variations in  the microstructure which involve a complex and subtle interaction between
different elements of the substructure. These substructural changes occur both at the coarser level of the primary
subgrains as well as at the finer levels of the cells, secondary subboundaries and dislocations. Steady-state creep
occurs when there is a dynamic equilibrium in the evolution of all these microstructural features. Figure 17 sche-
matically summarizes the microstructural observations reported on NaCl single crystals (Raj et al., 1991). The lower
portion of the figure illustrates the idealized microstructures formed at different values of normalized stress above
and below (σ/G)PLB while the upper portion correlates the major substructural processes occurring at each micro-
structure with a corresponding simplified geometrical representation. Figure 17 also lists the increasing probability
of the recovery mechanisms which are likely to dominate at different values of normalized stress. Typical values
of ε̇ kT/DlGb are also included in Fig. 17. The effect of strain or temperature would be essentially to increase the
probability of attaining this equilibrium substructure (i.e., from right to left in Fig. 17).
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Figure 16.—Variation in the creep substructure in NaCl single crystals deformed at different values of normalized
   stress. (a) s/G ≈ 2.2x10–4; substructure in the class M creep region showing that the cell boundaries are wider
   in subgrain A than in subgrain B although both primary subgrains are equiaxed. (b) s/G ≈ 3.3x10–4; elongated
   (A) and equiaxed (B) subgrains containing coarser and narrower cell boundaries, respectively, are visible close
   to (s/G)PLB. (c) s/G ≈ 4.0x10–4; elongated (A) and equiaxed (B) primary subgrains showing different internal
    cellular and dislocation microstructures within them. The elongated subgrain boundaries are oriented along
   the <110> crystallographic direction and these subgrains exhibit a "ladder-like" appearance. (d) s/G ≈ 7.5x10–4;
   microstructure of the exponential creep region showing long subboundaries and light patches in an otherwise
   uniform distribution of dislocations.
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Figure 16.—(e) s/G ≈ 1.4x10–3; uniform distribution of
   dislocations (Raj et al., 1989; Raj and Pharr, 1989)
   (with kind permission from Elsevier Science Ltd.).

(e) 100 mm

At high stresses and low temperatures corresponding to the exponential creep regime, the substructure con-
sists predominantly of forest dislocations and a few subboundaries lying along secondary slip planes at low values of
strain, and mainly of subgrains when ε ≥ 1 (Fig. 17(a)). Glide polygonization can lead to the formation of the light
patches with lower dislocation density. As mentioned earlier, these light patches appear to be the first evidence of
cell formation. Other recovery processes, such as cross-slip and dynamic recrystallization, can be important depend-
ing on strain, temperature and stacking fault energy. At lower stresses and higher temperatures close to the power-
law breakdown criterion, but still within the exponential creep regime, the substructure consists of a mixture of
elongated (‘hard’) and equiaxed (‘soft’) subgrains (Fig. 17(b)). The elongated subgrains contain a high density of
dislocations and coarse-walled cells. In contrast, the equiaxed subgrains have an internal microstructure of thin-
walled cells, secondary subboundaries and fewer “free” dislocations. This difference in the internal microstructures
of these two types of subgrains is expected to provide the driving force for subboundary migration which ultimately
leads to the formation of equiaxed primary subgrains (Fig. 17(c)). There is now considerable evidence which sug-
gests that subboundary migration can contribute typically between 3 to 25 percent to the total creep strain although
contributions as much as 100 percent have also been reported (Exell and Warrington, 1972; Vollertsen et al., 1984;
Caillard and Martin, 1987; Biberger and Blum, 1988, 1992(a and b)). Careful experiments suggest that subboundary
migration occurs after large stress reductions which allows the microstructure to attain the equilibrium subgrain size
characteristic of the reduced stress (Ferreira and Stang, 1979, 1983; Eggeler and Blum, 1981; Goel et al., 1983;
Soliman et al., 1983; Mohamed et al., 1985).

Other recovery mechanisms, such as dislocation climb, cross-slip and subgrain rotation, are also expected
to play an important role. The shape of the primary subgrains is essentially equiaxed and stable in the class M  creep
region but there are differences in their internal microstructures from one subgrain to another. Some contain a large
number of thick-walled cells while others contain mainly thin-walled cells. Cell boundary refinement is dominant in
this region leading to a narrowing of the cell walls. There is also a corresponding decrease in the dislocation density
within the cells and an increase in the density of secondary subboundaries (Fig. 17(c)). Steady-state creep does not
occur until cell boundary refinement is completed and a dynamic equilibrium exists between different elements of
the microstructure (Fig. 17(d)). Under these conditions, the microstructure consists of equiaxed primary subgrains
containing cells and a network of secondary subboundaries. The cell boundaries appear to be the major sources of
dislocations since they are likely to breakup more easily than a subboundary to accommodate strain inhomogeneity
in the material (Fig. 18) (Raj and Langdon, 1991(b)). Evidence that subboundaries are mechanically stable in con-
trast to cell boundaries at high stresses is presented in § 4. Similar interpretations were also advanced by Gupta and
Strutt (1967), who also suggested that cell boundary disintegration during creep provided mobile dislocations for
deformation.
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Figure 17.—Schematic idealized creep substructures, and their simplified geometric representation, formed in sodium 
   chloride single crystals in the exponential and class M creep regions. The different recovery mechanisms which are
   likely to dominate under various creep conditions are also indicated. (a) A high density of dislocations interspersed with
   light patches and a few subboundaries form when e < 0.2 but are transformed to well-formed subgrains when e > 1.0 if
   recovery mechanisms are sufficiently rapid. Some materials may recrystallize if cross-slip and glide polygonization do
   not occur rapidly enough to bring about significant recovery. (b) Elongated and equiaxed subgrains with different internal
   cellular and dislocation microstructures result in subboundary migration. Cell boundary refinement probably occurs by
   cross-slip and dislocation climb. (c) Equiaxed subgrains, cell boundary refinement and secondary subboundary
   formation occur in the class M region. Steady-state creep is not observed. (d) An equilibrium substructure of equiaxed
   primary subgrains, secondary subboundaries and narrow-walled cells is observed under conditions where steady-state
   creep is observed.
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3.1.3. Quantitative Descriptions of the Stress Dependence of the Dislocation Substructure
Figure 19 shows the variation of dc/b and ds/b with σ/G for NaCl single crystals, where the data have been

obtained at different temperatures and various values of strain (Raj et al., 1989; Raj and Pharr, 1989). The magni-
tude of (σ/G)PLB is also indicated on the figure. Three points may be noted from Fig. 19. First, cells and subgrains,
once formed, attain an equilibrium size inversely proportional and primarily determined by the normalized stress.
The cell and subgrain sizes do not vary significantly with strain and temperature, which is consistent with previous
observations (Bird et al., 1969). Second, subgrains and cells are stable even when σ/G > (σ/G)PLB, thereby suggest-
ing that the class M to exponential creep transition does not involve any catastrophic break-up of cells and subgrains
as postulated by Pharr (1981). Third, the two plots appear to converge at a value of σ/G > 2×10

–3
. This convergence

in the two plots is expected to occur when both dc and ds approach the average spacing between the “forest” disloca-
tions i.e., dc ≈ ds ≈ (ρ)

–0.5
.

It is evident from Fig. 19 that both dc and ds decrease with increasing stress in accordance with the
experimentally-determined equations
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d /b G/c = 930 150 45( ) ( ).σ a

d /b G/s = 15 151 1( ) ( ).σ b

Equations (15a) and (b) suggest that the cell size exhibits a weaker dependence on the normalized stress than the
subgrain size. Although cells have been observed in several materials (Gupta and Strutt, 1967; Hasegawa et al.,
1970, 1971; Feltham and Sinclair, 1972; Streb and Reppich, 1973; Goel et al., 1983; Mohamed et al., 1985; Lee and
Nam, 1988), quantitative information on the stress dependence of dc was not always reported. Previous measure-
ments reported by Goel et al., (1983) on an Al-Zn alloy also suggest that dc is weakly dependent on the applied
stress.

The stress dependence of ds (or dc) can be expressed in a general form as

d /bs = K G m( / ) ( )σ 16
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Figure 19.—Variations in the normalized cell and sub-
   grain sizes with normalized stress for sodium chloride
   single crystals (Raj and Pharr, 1989) (with kind per-
   mission from Elsevier Science Ltd.).

Figure 18.—Schematic showing (a) cells and
   dislocations within a primary subgrain and (b)
   emission of extended dislocations from a cell
   wall and its glide toward the opposite cell
   wall; b1 and b2 are the Burgers vectors of
   the partial dislocations (Raj and Langdon,
   1991 (b)) (with kind permission from Elsevier
   Science Ltd.).
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where m and K are constants. A comparison of equations (15b) and (16) suggests that K = 15 and m = 1.1. The mag-
nitudes of these constants fall within the range of values reported for other ionic crystals (Raj and Pharr, 1986(a)). A
compilation of the experimental values of m and K for several materials suggests that 0 < m < 2 and 0.01 < K < 10

5

(Raj and Pharr, 1986(a)). Although several values of m and K have been reported in the literature, it was demon-
strated in an earlier study that these variations in the magnitudes of m and K are due to random error in the experi-
mental measurements of subgrain size for most materials (Raj and Pharr, 1986(a)). As a result of this statistical
scatter, the experimental values of K were shown to be dependent on m through

log . . ( )K m= − +2 8 4 2 17

so that K ≈ 23 when m = 1. These values were shown to fit most experimental data reasonably well so that equa-
tion (16) can be expressed as the universal relation

d /b G/s = 23 18( ) ( )σ a

Owing to the unique relation between m and K expressed by equation (17), several other combinations of
these constants exist which would predict almost identical values of ds/b for a constant magnitude of σ/G. Neverthe-
less, a value of m = 1 appears to be justified since experimental values of m approach unity whenever the number of
meas-urements of the subgrain size exceeds 15 (Raj and Pharr, 1986(a)).

There is insufficient data relating dc/b with σ/G for high temperature creep in comparison to the vast
amount of similar data on ds. Thus, a universal relation, such as equation (18a), is unavailable. However, equation
(15a) can be reformulated assuming m = 0.5 to give

d /b G/c ≈ 600 180 5( ) ( ).σ b

One reason for this apparent lack of data may be due to a misidentification of cells as subgrains in the lit-
erature. In addition, the terms “cells” and “subgrains” have been used interchangeably in the older literature (e.g.
Feltham and Sinclair, 1962 to 1963) which results in confusion in the proper identification of the microstructure.
The other possibility is that in some materials the random dislocations within the primary subgrains may prefer to
cluster themselves into three-dimensional dislocation networks rather than cells. Thus, the clustering of random dis-
locations may be envisioned as shown schematically in Fig. 20. In this case, the formation of primary subgrains is
always favored but additional dislocation rearrangement may sequentially favor the formation of either cells and
secondary subboundaries or three-dimensional dislocation networks as the steady-state microstructure. Other micro-
structural features, such as microbands and recrystallized grains (Hansen and Jensen, 1991), can also form under
certain deformation conditions so that the microstructural picture can be more complicated than that illustrated by
Fig. 20. Ultimately, the type of microstructure formed will be dictated by the need to lower the free energy of the
deforming solid.

As discussed in §2.4, the magnitude of (σ/G)PLB is approximately constant for many materials (Figs. 9
to 11) thereby suggesting that the transition from class M  to exponential creep is due to some definite microstruc-
tural changes occurring in the material. In an earlier study, Pharr (1981) proposed that this transition involves a cata-
strophic breakdown in the subgrain microstructure so that (σ/G)PLB then represents a measure of the average
strength of subboundaries in the material. However, the description of the microstructural changes occurring in the
class M and exponential creep regions in § 3.1.2 clearly suggest that there is no sudden breakdown in the
subgrain microstructure, which in fact can extend to values of σ/G > (σ/G)PLB. Instead, these observations suggest a
gradual increase in the width of cell boundaries which appear to result in an elongated subgrain microstructure at
the point of transition between class M  and exponential creep. Measurements of the average dimensions of the cell
walls, L

h
, and the cell interiors, L

s
, obtained over a wide range of strain, stress and temperature reveal a remarkable

correlation between the ratio, L
h
/L

s
 and (σ/G)PLB despite a large amount of scatter (Fig. 21) (Raj and Freed, 1992).

This scatter is largely influenced by the effect of strain and temperature, both of which affect the degree of refine-
ment of the cell boundaries (Raj and Pharr, 1986(b), 1992; Raj and Freed, 1992). Therefore, an increased tendency
towards a steady-state microstructure appears to result as L

h
/L

s
 tends towards a constant value of 0.2 assuming other

elements of the substructure also attain dynamic equilibrium. Noting that the volume fraction of the cell boundaries,
f
cb

, is related to L
h
/L

s
 through (Raj and Freed, 1992)
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Figure 20.—Schematic showing the different creep sub-
   structures that may develop from a clustering of an
   initial uniform distribution of dislocations.
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Figure 21.—Ratio of the average dimensions of the cell width to the cell interior
   versus normalized stress for sodium chloride single crystals deformed in the
   class M and exponential creep regimes. This ratio tends towards a constant
   value of about 0.2 under conditions when steady-state creep is attained (Raj
   and Freed, 1992) (with kind permission from Elsevier Science Ltd.).
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2
Equation (19) is a general derivation of f

cb
 in comparison to an earlier definition (Raj and Pharr, 1992) since it is independent of the geometry

of the cell.
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Figure 22.—Stress dependence of the dislocation density within
   the subgrain interiors in several crept materials (Takeuchi and
   Argon, 1976) (with kind permission from Chapman and Hall).

    f Lcb h= − +( )[ ]1 1 1 19
3

/Ls ( )

a value of L
h
/L

s
 = 0.2 corresponds to f

cb
 = 0.42

2
.

The dislocation density within the subgrains is dependent on the normalized applied stress as

    ρ α σ= ( ) ( )1/ /GMb 2 2 20( )

where 0.1 ≤ α ≤ 1, although typically α ≈ 0.5 for M = 2 (Fig. 22) (Bird et al., 1969; Takeuchi and Argon, 1976).
Equations (12) and (20) are similar in form when the terms are rearranged. In other words, equation (12) specifically
applies when the obstacles to dislocation motion are other dislocations in the network within the primary subgrains.
However, when cell boundaries are the obstacles, then equation (18)(b) suggests that σobs is better defined as

σobs G≈ ×4 10 215 2( ) ( )b/dc

especially since the steady-state microstructures show that the cell interiors contain little or no dislocations (Figs. 13
and 15).

3.2 Effect of Creep Strain on Substructure 

3.2.1 Class M Creep Regime
Although stress plays an important role in determining the nature, size and morphology of the substructure,

strain and temperature can also influence the creep microstructure. An increase in both these parameters generally
tends to favor cell and subgrain formation with a corresponding reduction in the dislocation density.
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Figure 23.—Schematic showing the development of the
   creep substructure during class M creep at different
   stages of the primary and secondary creep regions. (a) On
   loading; (b) early stages of primary creep; (c) later stage of
   primary creep; and (d) secondary creep (Takeuchi and
   Argon, 1976) (with kind permission from Chapman and
   Hall).
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Figure 24.—Variations in the (a) local creep rate and (b) sub-
  grain size for coarse and fine subgrains during primary
  and secondary stages of class M creep of copper single
  crystals (Hasegawa et al., 1971; Takeuchi and Argon, 1976)
  (with kind permission from Chapman and Hall).

It is fairly well established that the substructure morphology changes with creep strain for many materials,
where most of these studies have been conducted in the class M creep region (Takeuchi and Argon, 1976). These
investigations reveal a certain general trend in creep substructure formation, which has been summarized by
Takeuchi and Argon (1976) (Fig. 23). First, a uniform dislocation substructure forms on loading. As creep
progresses, recovery begins and the initial substructure transforms itself into a cellular or subgrain microstructure
resembling that formed during stage III deformation at low temperature deformation (Fig. 23(a)). Additional strain-
ing results in further clustering of the dislocations into a heterogeneous substructure consisting of some regions with
a high density of parallel dislocation walls and others with low dislocation density (Fig. 23(b)). Continued straining
produces a banded microstructure of alternate regions of elongated and equiaxed subgrains (Fig. 23(c)). The elon-
gated subgrains tend to become equiaxed as the banded microstructure transforms to a homogeneous distribution of
equiaxed subgrains with a cellular or a three-dimensional network within them (Fig. 23(d)). Experimental observa-
tions by Hasegawa et al. (1971) on a Cu single crystal suggest that the local creep rate is higher in the equiaxed (i.e.,
coarse) than in the elongated (i.e. fine) subgrains (Fig. 24(a)). However, the local creep rates in both regions ap-
proach a common strain rate as the subgrain size attains a uniform value throughout the specimen (Fig. 24(b)).

Figure 25 shows the variation of the total dislocation density, ρT, the dislocation density in the
subboundaries, ρsb, and that within the subgrains, ρsi, with creep strain (Orlová et al., 1972(a); Orlová and 

(
C adek,

1973; Takeuchi and Argon, 1976), where ρT = ρsb + ρsi. The total dislocation density and the dislocation density
within the sub-boundaries generally increase monotonically to steady-state values whereas ρsi first increases steeply
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and then decreases to a constant value with increasing creep strain.

3.2.2 Exponential Creep Regime
A similar progressive variation in substructure with creep strain is observed in NaCl single crystals de-

formed at 473 K and 10.0 MPa (i.e., σ/G = 7.5×10
–4

) in the exponential creep regime (Raj and Pharr, 1986(b)). The
microstructure consists predominantly of a mixture of regions consisting of a fairly uniform distribution of disloca-
tions interspersed with light patches and subboundaries after a creep strain of about 10 percent (Fig. 26(a)). Long
straight subboundaries, oriented approximately parallel to the 〈100〉 direction, form at ε ≈ 0.2 (Fig. 16(d)). The first
signs of the formation of rudimentary cells and subgrains become evident at ε ≈ 0.25 as the initial dislocation sub-
structure begins to recover (Fig. 26(b)). Continued deformation to ε ≈ 0.5 results in the formation of elongated
subgrains with higher dislocation density and equiaxed subgrains with lower dislocation density (Fig. 26(c)). Recent
observations suggest that L

h
/L

s
 decreases inversely with ε. The empirical relation

χ ε= ≈ +L /L 1/h s 0 2 1 22. ( ( )) ( )a

was observed to fit the experimental data fairly well (Raj and Freed, 1992). The smallest value of ε is ε0 at the start
of a creep test, where ε0 is the instantaneous creep strain on loading. Thus, equation (22)(a) suggests that L

h
/L

2
 ≈ 4

for a typical value of ε0 ≈ 0.05 at t = 0.
However, an alternative mathematical fit derived from the viscoplasticity literature (Armstrong and

Frederick, 1966) leads to a more attractive formulation for the functional form of χ in part because it contains hard-
ening and dynamic softening terms and in part because it is more conducive to numerical analysis than equation
(22a). Therefore, expressing the time derivative of χ as

˙ exp ˙ ( )χ χ ε ε= − − ( )[ ] −( )B B bo2 2 22A /B2 2

it can be shown that

χ χ ε= ( ) + − ( )[ ] −( )A /B A /B2 2 2 2o B cexp ( )2 22

where A2 and B2 are constants and χο  is the initial value of χ. The first term in the parenthesis in equation (22b)
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Figure 25.—Variations in the total dislocation density, and the
   dislocation densities in the subboundaries and within the
   subgrains with creep strain in a-iron (Orlova et al., 1972;
   Orlova and Cadek, 1973; Takeuchi and Argon, 1976) (with
   kind permission from Chapman and Hall).
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Figure 26.—Strain dependence of the creep substructure in the exponential creep region in sodium chloride
   single crystals crept at 473 K under a normalized stress of 7.5x10–4. (a) e = 0.10; (b) e = 0.25; and
   (c) e = 0.50. (Raj and Pharr, 1986 (b)).
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represents the hardening coefficient while the second term is the softening component. The ratio, A2/B2, represents
the steady-state value of χ so that from Fig. 21, A2/B2 ≈ 0.2. Equation (22c) fits the experimental data fairly well
for values of A2/B2 = 0.2, χο = 4.0 and B2 = 5.4 (Fig. 27). The value of χο = 4.0 corresponds to an initial value of
f
cb

 = 0.99
3
.

The above description of the creep microstructure reveals two important results. First, there are large simi-
larities between substructure formation during the transient stages of the class M creep regime (Fig. 23) (Takeuchi
and Argon) and that existing in the exponential creep region (Fig. 26). In other words, these observations suggest
that the constitutive law for primary creep is the exponential creep law which reduces to a power-law relation in the
limit of steady-state deformation. This is shown schematically in Fig. 28 for constant strain rate, constant stress and
constant load conditions involving compression and tension tests. Figure 28(a) shows the different stages A, B, C
and D in the primary and secondary creep regions. The structure parameters, Si, corresponding to the points A, B, C
and D are also marked on the creep curve. The thin curves in Fig. 28(b) represent the constitutive ε̇ exp(Qc/RT) –
σ/G relation, for a constant value of the structure parameter. The bold curve in Fig. 28(b) represents the experimen-
tally-observed class M and exponential creep relations with n > 3. The transition points A, B, C and D shown in
Fig. 28(a) are also marked in Fig. 28(b). Thus, based on the microstructural evidence presented earlier, primary
creep can be interpreted as transition stages along several constant structure exponential creep curves. Although the
same steady-state point, D, can be reached either by constant strain rate or constant stress deformation techniques
(Weertman, 1956), Fig. 28(b) reveals that the development of the steady-state microstructures does not follow the
same thermodynamic path.

An outcome from Fig. 28 is a rationalization for the deviations of the experimental values of the stress ex-
ponent from the universal creep law. The broken line with n = 3 shown in Fig. 28 represents the universal creep law
predicted by all climb-controlled models (Weertman, 1975). These models ignore contributions from other mecha-
nisms so that this line is a limiting case. Therefore, based on Fig. 28, the higher values of n ≈ 4.5 observed for many
materials (Bird et al., 1969) suggest that the contributions from nondiffusional processes are sufficient to increase n
from 3 to 4.5. Additionally, the experimental values of V* can be explained by including contributions from non-
diffusional mechanisms. If class M behavior is solely due to dislocation climb, then theory predicts that V* ≈ 1 b

3

(Conrad, 1964; Evans and Rawlings, 1969). However, in actuality, V* ≈ 5×10
2
 to 10

4
 b

3
 for many materials in the

class M creep region (Balasubramanian and Li, 1970; Raj and Pharr, 1986(b); and Raj, 1989), which is several

3
It should be noted that cells have not formed during this early stage of deformation. Therefore, f

cb
 has no physical meaning in terms of de-

scribing the volume fraction of the cell boundaries. Instead, a high value of f
cb

 = 0.99 signifies that there is a homogeneous distribution of dislo-
cations formed in the material soon after loading.

Figure 27.—Changes in the ratio of the average dimensions of
   the cell width to the cell interior with creep strain in the expo-
   nential creep region in sodium chloride single crystals crept
   at 473 K under a normalized stress of 7.5x10–4 (data from
   Raj and Freed, 1992).
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Figure 28.—Schematic plot demonstrating that the transient
   primary creep stages, A, B, and C of the creep curve in (a)
   correspond to the structure-dependent (i. e. Si) exponential
   curves in the normalized creep rate-normalized stress
   relationship shown in (b); D is at or close to the steady-state
   point. The deformation paths followed in constant strain
   rate, constant stress and constant load tests are indicated
   in (b). The broken line with n = 3 represents the natural
   creep law.
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orders of magnitude higher than that expected for dislocation climb. The implication of these observations is that
experimental values of V* >> b

3
 cannot be rationalized if contributions from nondiffusional creep mechanisms are

ignored in the class M region.
Second, Figs. 26(a) to (c) reveal that a homogeneous dislocation microstructure is essentially unstable dur-

ing deformation and it tends to transform to a heterogeneous substructure comprising of ‘hard’ regions with high
dislocation densities (e.g., elongated subgrains, and cell and subgrain boundaries) and “soft” regions with low dislo-
cation densities (e.g., equiaxed subgrains, and cell and subgrain interiors). These observations imply that the one-
parameter modeling approach based solely on the stress dependence of the dislocation density is incomplete
(Mecking and Kocks, 1981; Estrin and Mecking, 1984). Nix et al. (1985(a) and (b)) proposed using a two-parameter
approach based on subgrain interior (‘soft’ regions) and subboundaries (‘hard’ regions), but in view of the actual
nature of the deformation microstructures, even this method is unrealistic. In this regard, the DSV model proposed
by Freed et al., (1992) provides a more realistic framework for developing a microstructural-based creep model.
3.3 Effect of Temperature on Substructure 
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Figure 30.—Changes in (a) the ratio of the average di-
   mensions of the cell width to the cell interior and (b) volume
   fraction of the cell boundaries with absolute temperature in
   sodium chloride single crystals crept in the class M and
   exponential creep regimes under a normalized stress of
   4.0x10–4 (data from Raj and Pharr, 1992).
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Figure 29.—Plot of creep rate versus true strain for NaCl
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Relatively few creep data exist in the literature where creep curves have been generated at a single value of

normalized applied stress over a wide range of temperatures. Such information is useful not only in evaluating the
specific form of equation (1) but also in isolating the effect of temperature on the development of the creep substruc-
ture. Figure 29 shows an example of the creep curves for NaCl generated over a temperature range of 573 to 873 K
at a nominal value of σ/G = 4×10

–4
 (Raj and Pharr, 1992). It is seen that while the creep rates decrease monotoni-

cally with increasing strain, there is an increased tendency towards steady-state behavior with increasing tempera-
ture. Detailed microstructural observations revealed that temperature variations affect the microstructure in a subtle
but significant manner, where microstructural refinement is greater at higher temperatures (Raj and Pharr, 1992).
The net effect of this increased tendency towards microstructural refinement with increasing temperature results in a
decrease in L

h
/L

s
 (Fig. 30(a)) and f

cb
 (Fig. 30(b)) with increasing temperature for the cells and cell boundaries.

Similar results are expected to be valid for the subgrains. These temperature dependencies are given by the regres-
sion equations

χ = =L L T ah s/ . exp(– . ) ( )13 8 0 005 23
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f T bcb = −3 74 0 003 23. exp( . ) ( )

As detailed in § 3.1, the stress dependence of the substructure, especially its effect on the subgrain size, is
well characterized for a number of materials (Bird et al., 1969; Takeuchi and Argon, 1976; Thompson, 1977;
Bendersky et al., 1985; Orlová and 

(
Cadek, 1986; Raj and Pharr, 1986). In contrast, there is relatively little informa-

tion available on the effect of temperature on the cell or subgrain size. Early investigations on the subject suggested
that temperature affects both the morphology and dimensions of the substructure (Myshlyaev, 1967; Orlová et al.,
1972; Belkin et al., 1973; Michel et al., 1973; Streb and Reppich, 1973; Kestenbach et al., 1976, 1978). For ex-
ample, it has been suggested that the substructure changes from a configuration of dislocation tangles and cells to
well-formed subgrains with increasing temperature (Michel et al., 1973; Kestenbach et al., 1976, 1978). Although an
increase in dc or ds with increasing temperature was reported in some instances (Myshlyaev, 1967; Orlová et al.,
1972(b); Belkin et al., 1973; Michel et al., 1973; Streb and Reppich, 1973), other observations suggest that dc and ds
are relatively independent of temperature (Orlová et al., 1972; Young and Sherby, 1973; Blum, et al., 1980). How-
ever, there is little direct evidence to confirm this lack of temperature dependence of the cell and subgrain size since
this conclusion has been drawn primarily from studies where the effects of temperature were of secondary impor-
tance to the effects of stress. For example, plots of ds/b against σ/G show the data are usually clustered around the
mean line, thereby suggesting the effects of temperature are small (Raj and Pharr, 1986(a)). Although these indirect
observations rule out strong temperature dependencies, they do not permit the separation of weak temperature-
dependent variations in dc and ds from experimental scatter.

These small temperature effects, if present, can be better identified from direct measurements of dc and ds
as a function of temperature at constant values of σ/G. Unfortunately, the number of investigations in which such
direct measurements have been made are small and the results ambiguous. Direct measurements of ds as a function
of temperature at constant values of σ (Orlová et al., 1972; Blum et al., 1980) revealed that ds is essentially
independent of temperature within experimental scatter. Recent results on NaCl suggest that ds increases by a factor
of about two with increasing temperature while dc is almost independent of temperature for a variation in tempera-
ture by 300 K (Fig. 31) (Raj and Pharr, 1992). Since errors in measuring dc and ds are within a factor of two, the
small temperature dependence of ds shown in Fig. 31 cannot be considered to be significant.

The limited direct measurements of the temperature dependence of the cell and subgrain sizes suggest that
the final dimensions of the creep substructure are influenced primarily by the applied stress, and strain, and only
secondarily by temperature. However, since diffusion-controlled recovery mechanisms, such as dislocation climb,
become significant at high temperatures, the kinetics of formation of the steady-state substructure increases with
increasing temperature. As a result, excess dislocations are annihilated and the width of the cell and subgrain walls
decreases with a corresponding increase in the dimensions of the cell interior (Fig. 30(a)).

3.4 Internal Stresses Associated with the Formation of Substructure

The concept of a long range internal back stress has a sound thermodynamic basis in the theory of deforma-
tion (Hirth and Nix, 1969; Kocks et al., 1975; Gibeling and Nix, 1980; Nadgornyi, 1988). There is now considerable
experimental evidence which suggests that the evolution of a steady-state creep substructure leads to a correspond-
ing build-up of the internal stresses within the material. This in turn results in a decrease in the creep rate during
primary creep to a constant value during steady-state creep. This close correlation between creep substructure and
σb is clearly revealed in Fig. 32 in the classic study by Hasegawa et al., (1972) on a Cu-16(at.%) Al alloy. This alloy
exhibits sigmoidal creep, where the creep rate first increases due to a corresponding rise in the total dislocation den-
sity and then decreases to a steady-state value with the advent of cell formation. The microstructure during the initial
period of creep consists of isolated dislocations, and σb/σ ≈ 0.3 remains virtually unchanged during this time. As
creep progresses, the isolated dislocations cluster themselves to form cells so that the dislocation density within the
cells decreases with creep time or creep strain. Thus, cell formation is associated with a steep increase in σb/σ and a
corresponding decrease in the creep rate. The development of internal stresses within the material due to cell or
subgrain formation is not unique to creep. The build-up of internal stresses can occur under other deformation
modes, such as fatigue and uniaxial constant strain rate deformation. For example, Fig. 33(a) shows the distribution
of the average global and local shear stresses present in the channels and walls of persistent slip bands in a fatigued
copper specimen, where these stresses were determined from measurements of the radii of curvature of bowed out
dislocations (Mughrabi, 1983). Figure 33(b) is a schematic of the idealized illustration of this stress distribution
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4
Note: The nomenclature B, F, σ and τ has been used in order to be consistent with the tensorial representations described in section 6.2. The

subscripts have been omitted for the unidirectional stresses so that B = σb and F = σf describe the special case of unidirectional local back and
forward stresses, respectively.

0.25
0.35
0.60

SubgrainCells

NaCl
<001>

ε

Figure 31.—Plot of the cell and subgrain size against
   absolute temperature for NaCl single crystals deformed
   under a normalized stress of about 4.0x10–4 (Raj and
   Pharr, 1992) (reprinted by permission of the American
   Ceramic Society).
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showing the relative magnitudes of the local tensorial back, B, and forward, F, stresses with respect to the tensorial
global stress, σ4

. Indirect evidence for the increase in σb with cell or subgrain formation is reflected in the decrease
in L

h
/L

s
 with increasing ε (Fig. 27).
The existence of an internal back stress acting on the dislocation within a cell or subgrain interior due to the

presence of the cell or subgrain boundaries suggests that the local effective stress, σe(x,t) = σ – σb(x,t), where the
spatial and time dependence of σe and σb arise due to the dynamic nature of the substructure. Thus, the average
creep rate can be expressed as ε̇ α (ΣNσe(x,t)/N)

n'
 α (σ-ΣNσb(x,t)/N)

n'
, where N is the number of cell or subgrain

boundaries and n' is the effective stress exponent. Since σb develops in response to microstructural changes occur-
ring under the action of an applied stress during the course of an uninterrupted creep test, the latter type of experi-
ments do not permit an effective separation of σb from σ. However, it is clear that σe < 0, and hence ε < 0, when σ <
σb. Therefore, reducing the applied stress from σ ≥ σb to σ < σb should lead to a decoupling σb from σ, and there-
fore provide a method for measuring σb.

The magnitude of σb is determined experimentally from either stress decrease (or “stress dip”) or stress
relaxation tests. Several methods based on one or the other technique have been reported in the literature (e.g.,
Davies et al., 1973; Gibeling and Nix, 1977; Blum and Finkel, 1982; Pahutová et al. 1977, 1993; Yamada and Li,
1975; Toma et al., 1976; Yoshinaga, 1993), but the interpretation of the results has been controversial and confusing
primarily since it is not always clear which specific microstructural event (e.g., dislocation bowing, grain boundary
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relaxation, dislocation run-off into the cell or subgrain boundaries, and subboundary migration) should be identified
with σb. Significantly, anelastic recovery strain associated with negative creep rates when σ < σb has been observed
in single crystals where grain boundary effects can be ruled out as the primary cause of σb (Fig. 34) (Gibeling and
Nix, 1981). These observations also confirm that back stresses arise as a consequence of the heterogeneous nature of
the creep substructure (Nix and Ilschner, 1980).

Recent calculations also suggest that the local effective stresses acting in the cell interior, σci, and on the
cell boundaries, σcb, change with increasing temperature as the dislocation substructure becomes increasingly het-
erogeneous (Fig. 35) (Raj and Pharr, 1992). Assuming a particular form for the temperature dependence of σb, these
calculations show that as the temperature increases, there is a steep increase in the forward stress, σf, acting on the
cell boundaries which also results in a corresponding increase in σcb (= σ + σf) and a decrease in σci (= σ – σb).
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Figure 35.—Calculated values of the internal stresses
   and dislocation densities in the cell boundaries and
   cell interiors as a function of temperature (Raj and
   Pharr, 1992) (reprinted by permission of the American
   Ceramic Society).
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These changes in the effective stresses arise due to a decrease in the dislocation density within the cells, ρci, and
increase in that in the cell boundaries, ρcb, with increasing temperature. Similar variations are expected for
subboundaries.

4.0 MICROSTRUCTURAL STABILITY

Although the microstructural observations reported in §3 provide important information on the qualitative
and quantitative aspects of creep substructure, they do not address the problem of microstructural stability involving
the morphological and dimensional variations in the substructure when the testing conditions are changed. Investiga-
tions on microstructural stability generally involve producing an initial microstructure which is then subjected to a
different set of deformation conditions to understand how it transforms to the final substructure.

There has been a considerable amount of discussion in the literature (Poirier, 1972; Robinson et al., 1974;
Pontikis and Poirier, 1975; Parker and Wilshire, 1976; Miller et al., 1977; Sherby et al., 1977; Ferreira and Stang,
1979, 1983; Blum et al., 1980; Langdon et al., 1980; Eggeler and Blum, 1981; Goel et al., 1983; Soliman et al.,
1983; Ginter et al., 1984; Mohamed et al., 1985; Raj et al., 1989) regarding the stability of subgrains after a stress
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reduction. Equation (16) implies that the subgrain size should increase if the stress is decreased. However, several
experimental observations have resulted in contradictory results. The first set of experiments conducted on NaCl
(Poirier, 1972), AgCl (Pontikis and Poirier, 1975), Cu (Parker and Wilshire, 1976) and Al-5% Zn (Langdon et al.,
1979) revealed that the subgrains formed at the higher stress are relatively stable after a stress reduction and do not
increase to a size consistent with the reduced stress. These experiments appeared to question the universality of
equation (16). Miller et al. (1977) criticized some of these early observations and pointed out that the creep strain
after the stress reduction was insufficient to permit the necessary amount of subgrain coarsening to allow the
subgrain size to attain its equilibrium value at the lower stress. Langdon et al., (1980) addressed this criticism by
measuring the subgrain size just after steady-state creep was re-established, but failed to observe any change in the
subgrain size.

The second set of experimental observations on Al (Ferreira and Stang, 1979, 1980; Soliman et al., 1983;
Mohamed et al., 1985), Al-5% Zn (Blum et al., 1980; Goel et al., 1983) and NaCl (Eggeler and Blum, 1981) clearly
demonstrated that substantial subgrain coarsening occurs after a stress reduction with a corresponding increase in the
creep rate. The new subgrain size, similar to that predicted by equation (18) for the reduced stress, was attained typi-
cally when the creep strain after the stress reduction was greater than 3 percent (Raj et al., 1989). It was observed
that subgrain coarsening after a stress reduction involves both the dissolution of some subboundaries and the migra-
tion of others (Eggeler and Blum, 1981; Goel et al., 1983; Soliman et al., 1983; Ginter et al., 1984; Mohamed et al.,
1985). Soliman et al. (1983) suggested that Langdon et al. (1980) may have erroneously measured the cell size
rather than the subgrain size which could account for the discrepancy in the two sets of observations.

The above stress change experiments have largely been conducted in the class M regime. However, they do
not address two interesting and related questions regarding microstructural stability and their relation to the constitu-
tive creep law. First, is the path along the class M to exponential creep plot, such as those shown in Figs. 9 and 10,
reversible? Second, is the microstructure formed in the exponential creep region stable in the class M regime and
vice versa? The experimental observations from experiments designed to address these questions are discussed
below.

4.1 Effect of Prior Deformation on Creep Substructure

Two types of experiments were conducted on NaCl single crystals in order to study the path dependence of
the constitutive equations for creep and microstructural stability (Raj et al., 1989). In the first series of experiments a
specimen was deformed in the exponential creep region (Fig. 10). The specimen was cleaved parallel to the stress
axis, and both halves were polished and etched. The substructure after creep under these conditions consisted of an
uniform distribution of etch pits and a few ill-formed subboundaries similar to that shown in Fig. 16(d). One half of
the cleaved specimen was then deformed further to a strain of ε ≈ 0.43 at 873 K and at a stress of 1.0 MPa (i.e.,
σ/G = 1.1×10

–4
) corresponding to the class M creep region (Fig. 10). The creep curve obtained under these condi-

tions is shown in Fig. 36 along with that for an as-received specimen. In order to ascertain the effect of static recov-
ery on the initial prestrained microstructure, the other half of the cleaved specimen was also placed in the creep
machine close to the test specimen in such a manner that there was no applied stress on it.

The initial creep rate of the prestrained specimen was less than 10
–8

 s
–1

, which was below the detection
limit of the strain-measuring equipment; measurable creep was detectable only after a period of 1 h. However, the
creep rate rises very rapidly to about 2×10

–5
 s

–1
 within the first few percent strain before decreasing gradually to

values close to that observed for the as-received specimen when ε > 0.3 (Fig. 36).
The microstructure of the prestrained specimen after subsequent creep to a true strain of about 0.43 is

shown in Fig. 37(a), where it is seen that the initial substructure (Fig. 16(d)) has transformed to a microstructure of
well developed primary subgrains, secondary subboundaries and cells. This microstructure is similar to that ob-
served on an as-received specimen deformed to an almost identical value of strain (Fig. 37(b)). The cell and
subgrain sizes of the prestrained and the as-received materials are in agreement to within a factor of two which is the
normal level of scatter associated with these measurements (Table III). For comparison, the predicted values of the
cell and subgrain sizes from equations (15a) and (b) are dc ≈ 22.5 and ds ≈ 135 µm, respectively.

Figure 37(c) shows the effect of static annealing on the initial predeformed microstructure (Fig. 16 (d)).
Although the extent of recovery due to static annealing is not as extensive as that during deformation, it is not negli-
gible, and as shown in Fig. 37(c), a few large subgrains, subdivided by cells, have already formed during this period.
A comparison of Figs. 37(a) and (c) clearly demonstrates that stress-assisted recovery is much faster than static
recovery.
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TABLE III.—COMPARISON OF THE AVERAGE SIZES
OF CELLS AND SUBGRAINS FORMED IN NaCl

SINGLE CRYSTALS AT 873 K UNDER A
STRESS OF 1.0 MPa IN THE CLASS M

REGIME IN PRESTRAINED AND
AS-RECEIVED SPECIMENS.

(Raj et al., 1989)

Material
condition

As-received

Prior creep at
T = 473 K and
σ = 10.0 MPa

ε = 0.2

Test
parameters

T = 873 K
σ = 1.0 MPa

ε = 0.40

T = 873 K
σ = 1.0 MPa

ε = 0.43

dc,
µm

19.5 ± 1.8

19.1 ± 2.1

ds,
µm

193.5 ± 30.5

126.3 ± 35.3

The sigmoidal primary creep observed in the prestrained material (Fig. 36) is analogous to similar behav-
ior reported for Cu-16 at.% Al (Fig. 32) (Hasegawa et al., 1972). Therefore, a similar rationale can be adopted to
explain the nature of the creep curve for the prestrained specimen. The high dislocation density representative of
that in the exponential creep region (Fig. 16(d)) suggests that few mobile dislocations are available initially for
measurable creep to occur. However, as the dislocation substructure begins to recover, the density of mobile dislo-
cations increases, which leads to the initial rise in the creep rate observed in Fig. 36. The subsequent decrease in
the creep rate beyond the peak value can be attributed to an increase in the long range internal stress in the speci-
men as cells and subgrains evolve during deformation.

In the second series of experiments, a specimen was first crept in the class M creep regime in Fig. 10. The
microstructure after this deformation consisted of large equiaxed primary subgrains and cells (Fig. 38). Next, the
specimen was retested at 473 K under a stress of 10.0 MPa (σ/G = 7.5×10

–4
), where the stress and temperature

conditions correspond to the exponential creep regime in Fig. 10. The creep rates for the prestrained specimen
were significantly lower than those for an as-received specimen deformed under similar stress and temperature
conditions (Fig. 39). The prestrained specimen was removed for microstructural examination at points X and Y
marked on the lower curve in Fig. 39.

Figure 36.—Comparison of the creep curves for as-
   received and prestrained sodium chloride single
   crystal specimens deformed at 873 K under a
   normalized stress of 1.1x10–4. The prestrained
   specimen was initially crept to e ≈ 0.2 in the expo-
   nential creep region at 473 K under a normalized
   stress of 7.5x10–4. The prestrained microstructure
   was similar to Fig. 16 (d) (Raj et al., 1989) (with kind
   permission from Elsevier Science Ltd.).
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Figure 37.—(a) Microstructure of a sodium chloride single crystal specimen prestrained in the exponential creep regime
   and subsequently deformed to e ≈ 0.43 at 843 K under a normalized stress of 1.1x10–4 corresponding to the class M
   creep regime. Equiaxed primary subgrains, secondary subboundaries and cells have formed from the initial micro-
   structure shown in Fig. 16 (d). (b) Microstructure of an as-received specimen deformed to e ≈ 0.40 at 843 K under a
   normalized stress of 1.1x10–4. (c) Effect of static annealing at 843 K on the prestrained microstructure shown in
   Fig. 16 (d) (i. e. s = 0 ). Comparison of Figs. 37 (a) and (c) reveals that the applied stress is the major driving force for
   substructure formation during creep (Raj et al., 1989) (with kind permission from Elsevier Science Ltd.).
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Figure 39.—Comparison of the creep curves for as-
  received and prestrained sodium chloride specimens
  deformed at 473 K under a normalized stress of 7.5x10–4

  corresponding to the exponential creep regime. The pre-
  strained specimen was initially crept to e ≈ 0.2 at 923 K
  under a normalized stress of 7.5x10–5 corresponding to
  the class M regime. Microstructural observations were
  conducted on the prestrained specimen after defor-
  mation to points marked 'X' and 'Y' (Raj et al., 1989)
  (with kind permission from Elsevier Science Ltd.).
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Figure 38.—Microstructure of a sodium chloride single crystal
   specimen prestrained to e ≈ 0.20 at 923 K under a normal-
   ized stress of 7.5x10–5 in the class M regime (Raj et al., 1989)
   (with kind permission from Elsevier Science Ltd.).
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Soon after loading (i.e., X in Fig. 39), the surface microstructure of the prestrained specimen perpendicular
to the stress axis showed evidence of slip bands traversing the original subboundaries (Fig. 40(a)). On repolishing
and re-etching the surface, it was found that the original subboundaries were still intact and there was no evidence of
any catastrophic rupture of these boundaries anywhere on the surface of observation (Fig. 40(b)). However, local-
ized migration of the subboundaries had occurred in some regions (e.g., A in Fig. 40(b)). The observation that the
subboundaries are mechanically stable directly contradicts theoretical predictions that exponential creep is due to the
mechanical instability of subboundaries (Pharr, 1981). Instead, the cellular microstructure, initially present within
the primary subgrains (Fig. 38), was more or less replaced by an uniform distribution of etch pits presumably due to
the rupture of the original cell boundaries; however, the generation of fresh dislocations from newly activated
sources at the higher stress can also account for some of this increase in the dislocation density.

Continued deformation to ε ≈ 0.18 (i.e., Y in Fig. 39) resulted in the formation of new subboundaries and in
the localized migration of the original subgrain boundaries (e.g., arrows in Fig. 41(a)). It was observed that the mi-
gration of the old subboundaries was partly responsible for nucleating new subgrains. For this to happen, the sub-
boundary segment must bow beyond a critical radius, dsb/2 ≈ β1Γsb/τ, where dsb is the subgrain diameter of the new
subgrains, Γsb is the surface energy of a subboundary and β1 is a constant. In many areas of the specimen, the ran-
dom dislocation microstructure shown in Fig. 40(b) was found to have been completely replaced by well developed
subgrains (Fig. 41(b)). It should be noted that this microstructure is vastly different than the one observed in an as-
received specimen deformed to ε ≈ 0.2 under similar stress and temperature conditions (Fig. 16(d)). However, a
mixture of elongated and equiaxed subgrains were observed in an as-received specimen after deformation to ε ≈ 0.5
(Fig. 26(c)). Therefore, the creep curve for the prestrained specimen in Fig. 39 can be viewed as a lateral shift of the
ε̇ – ε plot to lower values of strain relative to the unstrained material. In effect, the ready evolution of a subgrain
microstructure in the predeformed specimen also results in the development of a larger internal back stress in com-
parison to the as-received material.
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Figure 40.—Microstructures at the point marked 'X' in Fig. 39; e ≈ 0.034, T = 473 K, s/G = 7.5x10–4. (a) Un-
   polished and etched surface showing slip lines crossing a subboundary (Sb) originally formed after prior
   creep in the class M regime. (b) Polished and etched surface demonstrating that the original subboundaries
   after prestraining are mechanically intact. Local subboundary migration has occurred at some regions
   (e. g. at A) and the dislocation density in the subgrain interior has increased considerably compared to the
   prestrained microstructure shown in Fig. 38 (Raj et al., 1989) (with kind permission from Elsevier Science Ltd.).
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The above observations on the effect of prior deformation lead to some significant conclusions. First, mi-
crostructures formed in the exponential creep regime are inherently unstable and they will continue to transform
towards a steady-state substructure. The first series of experiments described in this section supports this conclu-
sion, which also provides an experimental basis for Fig. 28. Second, subboundaries exhibit considerable mechanical
stability and do not breakdown catastrophically into individual dislocations under high stress. Instead, a stress in-
crease is accommodated by subboundary migration, the probable break-up of cell boundaries and the activation of
new dislocation sources. Third, this irreversible nature of the subgrain microstructure also leads to a path dependent
flow behavior. In other words, the transition from the exponential region to the class M creep is irreversible and
path dependent.

5.0 NIX-GIBELING ONE-DIMENSIONAL TWO-PHASE CREEP MODEL

As discussed in §3 and 4, the deformation behavior of materials is influenced by the microstructure and the
microstructure in turn develops in response to external variables such as stress, temperature and the initial micro-
structure. Thus, there is a tendency towards steady-state flow behavior as the deformation substructure tends to-
wards an equilibrium configuration. It was also demonstrated that the deformation substructure is heterogeneous in
nature consisting of ‘hard’ and ‘soft’ regions with different deformation responses to the applied stress. The ‘hard’
regions consist of elongated subgrains with a high dislocation density within them (e.g., A in Fig. 16(b)), cell and
subgrain boundaries, and highly clustered regions with large dislocation densities. In contrast, the “soft” regions
consist of equiaxed subgrains with a low dislocation density within them (e.g., B in Fig. 16(b)), cell and subgrain
interiors, and regions of the crystal with low dislocation densities.

Although it has long been recognized that creep is influenced by the microstructure, initial attempts to
model creep deformation have failed to recognize the heterogeneous nature of the creep substructure. Thus, these



50

models have largely ignored contributions from processes other than dislocation climb so that the ensuing rate equa-
tion always resulted in n = 3, if no special assumptions are made, no matter which microstructural feature is consid-
ered to be important in the model (Weertman, 1975). However, as mentioned earlier, experimental observations
generally result in a value of n > 3 (Bird et al., 1969).

The first serious attempt to develop a creep model based on the heterogenous nature of the dislocation sub-
structure was proposed by Nix and Ilschner (1980). Simultaneously, Mughrabi (1980) and Mughrabi and Essmann
(1980) also considered the heterogeneity in the microstructure in understanding low temperature and cyclic defor-
mation. These approaches largely recognize the different deformation characteristics of the ‘hard’ and ‘soft’ regions.
Subsequently, several other models have been developed for uniaxial and cyclic deformation using a ‘hard’ and
‘soft’ microstructural-based deformation concepts (Mughrabi, 1981; Mughrabi, 1983; Vogler and Blum, 1990;
Argon and Haasen, 1993; Hofmann and Blum, 1993; Zhu and Blum, 1993). Typically, these models consider two
microstructural parameters involving the dislocation density and the cell or subgrain size.

Nix and Ilschner (1980) attempted to model class M and exponential creep behavior by assuming that the
creep rate is given by

˙ ˙ ˙ ( )ε ε ε= +g cl 24

where ̇εg is the creep rate for thermally activated glide given by equation (11) and ε̇cl is the dislocation climb-con-
trolled creep rate given by equation (3). It was assumed that ε̇g is the creep rate in the ‘soft’ regions of the subgrain
interior while ε̇cl is the creep rate in the ‘hard’ regions of the subboundaries. Although equation (24) suggests that
the class M to exponential creep transition will occur naturally as a consequence of the dominance of nondiffusional
creep mechanisms, its formulation is fundamentally flawed since it treats the deformation of the ‘hard’ and ‘soft’
regions as independent of each other.

Subsequently, while preserving the concept of ‘hard’ and ‘soft’ regions, Nix et al., (1985 (a) and (b)) pro-
posed a two-phase composite model for creep. This approach treats the microstructure as a composite of ‘hard’ and
‘soft’ regions, where the deformation occurring in the cell or subgrain interior is coupled with that taking place in

Figure 41.—Microstructures at the point marked 'Y' in Fig. 39; e ≈ 0.18, T = 473 K, s/G = 7.5x10–4. (a) The
   original subboundaries show evidence of localized migration as indicated by the arrows and recovery
   within the subgrain interior. (b) New subgrains have formed within the original subgrains in part due to
   subboundary migration (Raj et al., 1989) (with kind permission from Elsevier Science Ltd.).
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the cell or subgrain boundaries (Fig. 42). The model assumes that screw dislocations glide, multiply, cross-slip and
annihilate in the “soft” regions, while simultaneously depositing two edge components at the cell or subgrain walls.
Recovery is assumed to occur at elevated temperatures by the climb and annihilation of the dislocations in the cell or
subgrain walls. The original model was strictly valid for high stacking fault energy materials. However, a modified
derivation is presented here which should be applicable for low stacking fault energy materials as well.

5.1 Modified Nix-Gibeling Two-Phase Composite Model

The modified approach is shown in Fig. 43(a). The screw dislocations of unit Burgers vector, 
r
b, are as-

sumed to be separated into two partial dislocations of Burgers vectors, 
r
b1 and 

r
b2 , respectively, in the cell or

subgrain interior. These dislocations are assumed to glide in the extended state, while depositing edge components at
the boundaries by forming constrictions at the points marked 'A' (Fig. 43(b)). Subsequently, these edge components
are assumed to split into partial dislocations in the cell or subgrain walls. It follows from Fig. 43(a) that recovery
within the cell or subgrain interiors can occur by the cross-slip of the screw components after the two partials form a
constriction. In comparison, recovery in the cell or subgrain boundaries regions can occur by climb of the extended
dislocations in the walls or to a limited extent by cross-slip of the screw components at A (Fig. 43(c)). Dislocation
glide in the cell walls is assumed to occur along the X direction. In order to maintain compatibility and using the
Voigt approximation,

˙ ˙ ˙ ˙ ˙ ( )γ γ τ γ τ= + = +ps ph hs/G /G 25

where γ̇ ps  and γ̇ ph are the plastic strain rates in the 'soft' (s) and the ‘hard’ (h) regions, respectively, and τ̇s/G  and
τ̇h/G are the elastic shear strain rates in the 'soft' and 'hard' phases, respectively. A second condition that must be
satisfied in order to maintain mechanical equilibrium leads to (Mughrabi, 1983)

Figure 42.—Schematic illustration of a one-dimensional
   cell consisting of infinitely long cell walls. Screw dis-
   locations glide in the cell interior and deposit edge dis-
   locations in the cell walls (Nix and Gibeling, 1985; Nix
   et al., 1985) (courtesy Metallurgical and Materials
   Transactions).
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Figure 43.—(a) Schematic illustration of the one-dimensional
   cell model shown in Fig. 42 for the case when the dis-
   locations are split into partial dislocations. (b) Detailed
   view of the split dislocations of Burgers vectors b1 and b2
   showing their constriction at A and further separation in
   the cell walls.

τ τ τ= +f fh h s s ( )26

where τs
 and τh

 are the effective shear stresses acting in the ‘soft’ and ‘hard’ regions, respectively, and f
s
 and f

h
 are

the volume fractions of the ‘soft’ and the ‘hard’ regions, respectively, so that

f fh s+ = 1 27( )

Noting that τh
 = τ + τf and τs

 = τ – τb, where τf and τb are the forward and the back shear stresses acting on the
‘hard’ and ‘soft’ regions, respectively, equations (26) and (27) lead to

τ τf
s

bf= ( )/f h ( )28

As shown in Fig. 35, the forward stress is several times greater than the back stress implying that f
s
 > f

h
.

Assuming that dislocation glide in the ‘soft’ and ‘hard’ regions occurs by the intersection of rectangular
obstacles, the strain rates in the two regions can be formulated in terms of equation (11) as (Nix and Gibeling,
1985(a))
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˙ ˆ exp ˆ ( )γ τ τ τφ φ φ φp = × ( ) −( ) −( )[ ]4 10 1 2912 2
/G F/kT /∆

where φ = ‘h’ or ‘s’ and τ̂φ  is the shear strength of the obstacle in each region related to the appropriate dislocation
density, ρφ

, by (Taylor, 1934)

ˆ ( )
.

τ α ρφ φ φ= ( )/Gb
0 5

30

As deformation progresses, the strength of the obstacles constantly evolves in the two regions and it is nec-
essary to establish the structure evolution laws. Screw dislocations glide in the cell interior until they are stopped by
the elastic fields of other dislocations. Strain hardening occurs as these dislocations are statistically stored in the cell
interior. The plastic strain increment associated with this hardening event is given by

d b dps sγ ρ= Λ2 31( )
where Λs

, the average distance travelled by a dislocation in the cell interior before it is stopped, has a value of about
100/(ρs

)
0.5

. The rate of increase in the dislocation density is then

˙ ˙ ( )ρ ρ γs s psb( ) = 











+
100 32

The rate of decrease in the dislocation density, ( ˙ )ρs − , in the cell interior due to cross-slip and annihilation
of two screw dislocations is given by (Nix et al., 1985(b))

˙ exp ( )*ρ ρ νs s
D CSL G( ) = − 











−( )−
20 33∆ /kT

where νD is the Debye frequency and L* is the activated length for nucleating a single cross-slip event. Nix et al.,
(1985(a) and (b)) assumed that L* = 1000b but this is unrealistically large. Noting that A* ≈ 300 b

2
 for cross-slip

(Conrad, 1964; Evans and Rawlings, 1969; Bonneville and Escaig, 1979), and assuming a stacking fault width of 5
to 10b, it is more likely that L* ≈ 30 to 60b. Using equations (32) and (33), it can be shown that the rate of change of
the dislocation density in the ‘soft’ region, ρ̇s , is given by

˙ ˙ exp ( )*ρ ρ γ ρ νs s ps s
D CSb L G= 



 − 



 −( )100 20 34∆ /kT

The rate of change in the obstacle strength in the cell interior is given by (Nix et al., 1985(a) and (b))

d Gs ps
D

ps
CS

ˆ ( ) ( ˙ ) exp ( )*τ γ ν γ/d G/ b/L G/ /kT= − −( )200 10 35∆

The first term in equation (35) represents the linear work hardening rate while the second term accounts for
recovery within the cell or subgrain interior due to the annihilation of screw dislocations by cross slip. The inclusion
of the recovery term accounts for the finite probability that some of the screw dislocations can form a constriction
according to the Friedel-Escaig mechanism (Friedel, 1959, 1964 1977; Escaig, 1968(a) and (b)). The activation free
energy for cross-slip is given by equation (10). It is noted that Q01 in equation (10) increases as the stacking fault
energy decreases through its inverse dependence on the adjustable parameter α', so that the probability of forming
constrictions and the rate of recovery by cross slip also decrease with Γ/Gb. As noted earlier, it is expected that
Q01 ≈ 185 kJ mol

–1
 and α' ≈ 500 to 950 for NaCl single crystals based on the experimental data shown in Fig. 7.

Alternatively, the activation energy can be expressed in terms of equation (8).
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The glide of a screw dislocation in the cell interior deposits two edge components at the cell walls. Strain
hardening in the cell walls occurs as these edge dislocations knit into the walls with a corresponding increase in the
stress in the cell walls. The strain increment due to this process is similar to that given by equation (31) except that
the distance, Λh

, traversed by the dislocation in the cell walls is expected to be equal to the mesh spacing, h, in the
walls. The dislocation spacing in the boundaries is given by Λh

 ≈ h = (K1Gb/ τ̂h) and K1 is a constant equal to about
5. The rate of increase in the dislocation density in the cell walls is then

˙ ˙ ( )ρ ρ γh h phK b( ) = 











+
1 36

where ρh
 is the dislocation density in the cell walls.
Assuming that the recovery in the walls occurs only by the climb and annihilation of the extended disloca-

tions, the rate of decrease of redundant dislocations in the cell walls is given by (Prinz, et al., 1982)

˙ ( )ρ ρh( ) = −
−

2 37h
C/t

where tC is the characteristic time required for a pair of edge dislocations to climb a distance h/2 in the cell or
subgrain boundary before annihilating each other. The characteristic time is given by tC = h/2vC, where vC is the
climb velocity of the extended dislocations. Following Argon and Moffatt (1981)

v C b D GC j
h= ( ) ( )( )β τ2

2
1 38Γ Ω/Gb /kTb /Gˆ ( )

where Cj is the density of extended jogs per unit length along the dislocation line, and β2 is a constant equal to about
1000. Although recent studies suggest that Cj is dependent on Γ/Gb through a complex power-law relation (Kong
and Li, 1993), the magnitudes of several parameters used in the derivation of Cj are unknown. The magnitude of Cj
is assumed to be independent of Γ/Gb in the present paper for simplicity. Assuming Ω ≈ 0.7 b

3
 and using equation

(30) with αφ
 = αh

, the rate of decrease in the dislocation density in the cell walls is

˙ . ( )ρ β α ρh
j

h hC D Gb( ) ≈ −( )( ) ( ) ( )( )−
1 4 392 1

2 2
1

3 2
b/K /Gb /kTΓ

The total rate of change in the dislocation density in the cell walls is obtained by combining equations (37) and (39)

˙ ˙ . ( )ρ ρ γ β α ρh h ph
j

h hK b C D Gb( ) = 









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− ( )( ) ( ) ( )( )1 2 1

2 2
1

3 2
1 4 40b/K /Gb /kTΓ

Assuming K1 ≈ 5, β2 ≈ 1000 (Argon and Moffatt, 1981) and Cjb ≈ 0.01 (Prinz et al., 1982), equation (40) reduces to

˙ ˙ . ( )ρ ρ γ α ρh h ph h hb D Gb( ) = 











− ( )( ) ( ) ( )( )5 2 8 41
2 2

1
3 2

Γ/Gb /kT

The rate of change of the obstacle strength in the ‘hard’ regions is given by

d d dh ph h ph h phˆ ˆ ˆ ( )τ γ τ γ τ γ/d /d /d= ( ) + ( )+ −
42

where (d̂τh/dγph
)
+
 is the increase in the obstacle strength in the walls due to the deposition of the edge components

and (dτ̂s /dγph
)
–
 is the rate of decrease in the obstacle strength in the walls due to recovery. Noting that (Haasen,

et al., 1986)
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d dh ph h ph phˆ ˆ (˙ ) ˙ ( )τ γ τ ρ ρ γ/d /d /( ) = ( ) ( )+ + 1 43

The second term in equation (42) can be expressed as

d d th ph h phˆ ˙ ˆ ˙ ( )τ γ τ γ/d /d /( ) = ( ) ( )− − 1 44

where

d t Gbh h h hˆ ˆ ˙ ( )τ α τ ρ/d( ) = ( )



( )− −2

2 45

Combining equations (36), (39) and (42) to (45), the rate of change in the obstacle strength in the boundaries is

d G Gb D Gb kT G Gh ph h h phˆ ( / ) . / / ˆ ˙ ( )τ γ α τ γ/d / /( ) = ( ) − ( ) ( )( ) ( )10 1 4 462
1

3Γ

The second term in equation (46) exhibits the natural third power-law dependence on stress associated with
many creep theories (Weertman, 1975). The present treatment differs from that derived by Nix et al., (1985(a) and
(b)) in two important ways. First, the climb velocity is assumed to be dependent on the stacking fault energy so that
Γ/Gb enters the model in a natural manner. Second, Nix et al., (1985(a) and (b)) assumed that dislocations in the cell
wall glide a constant distance equal to L

h
 ≈ 100 nm. This is an unrealistic assumption since it implies that the edge

components do not interact with the dislocations forming the cell walls. Thus, this assumption has been discarded in
the present approach. Instead, the glide distance is assumed to be related to the mesh spacing in the cell walls in
order to allow the glide distance to change constantly during deformation as the microstructure evolves. It is impor-
tant to note that the recovery processes occurring in the cell interior as well at the boundaries are affected by the
magnitude of the stacking fault energy through its influence on cross slip and climb.

5.2 Limitations of the One-Dimensional Composite Model

Despite its usefulness in describing creep, the one-dimensional model is limited in a number of ways some
of which were discussed by Nix et al., (1985(a) and (b)). First, the model unrealistically assumes that cell and
subgrain boundaries extend infinitely in one direction, and therefore fails to account for the three-dimensional nature
of the substructure. Second, the model is strictly applicable for the special dislocation boundaries and processes il-
lustrated in Figs. 42 and 43. Thus, recovery events due to dislocation climb of edge components are ignored in the
“soft” regions and those due to cross-slip of screw dislocations occurring in other types of boundaries are not con-
sidered. Since both edge and screw dislocation components are expected to be present in the ‘hard’ and ‘soft’ re-
gions, the model artificially isolates cross-slip events to the cell or subgrain interior and climb to the cell or subgrain
walls. Third, the model implicitly assumes that cells or subgrains are present from the beginning of a creep test and
it does not consider the time dependent variation of f

h
 and f

s
 or the manner in which dislocations pattern themselves

into dislocation clusters (Kubin, 1993). Fourth, in view of the discussion in §3, the model assumes an idealized and
over simplified picture of the creep substructure. Fifth, the model is strictly valid for single phase, coarse-grained
materials and single crystals exhibiting class M behavior since all grain boundary effects are ignored. Sixth, the
number of slip systems activated in the material are not explicitly considered although the model implicitly assumes
that multiple slip results in high rates of dislocation storage. Despite these limitations, this simple model can explain
the development of internal stresses within a creeping solid as a natural consequence of the development of a hetero-
geneous microstructure. As will be demonstrated in §6.1, the Nix-Gibeling model is the limiting case of the more
realistic three-dimensional DSV analysis (Freed, et al., 1992).
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6.0 DEVELOPMENT OF A MULTIPHASE THREE-DIMENSIONAL CREEP MODEL

As discussed in §5.2, the one-dimensional, two-phase creep model has several limitations. Although several
similar two-phase deformation models have been proposed (e.g., Mughrabi, 1981, 1983, 1987; and Vogler and
Blum, 1991), they too are limited in a similar manner. Recently, Qian and Fan (1991) developed a three-dimensional
viscoplastic model based on dislocation substructure, but they did not provide for substructure strain compatibility.

6.1 Dislocation Substructure Viscoplasticity (DSV) Model

The present three-dimensional model accounts for this strain compatibility by using the Budiansky and Wu
(1962) self-consistent formalism with an Eshelby criterion (1957) for strain compatibility between the ‘hard’ and
‘soft’ regions. The model has been termed as the Dislocation Substructure Viscoplasticity (DSV) model (Freed et
al., 1992). The result is a rate dependent viscoplastic theory that incorporates a self-consistent effect of dislocation
substructure on material response. The internal state variables of this theory are the dislocation densities of the
‘hard’ and ‘soft’ regions, the average size of the dislocation substructure, and the relative volume fractions of the
two regions. The inclusion of variable geometric or size effects as well as the potential applicability to the deforma-
tion of several microstructural features (e.g. cells and subgrains) are unique features of the present model.

Several assumptions have been made in the construction of the model. First, the self-consistent method of
Budiansky and Wu (1962) adequately represents the ‘hard’ and ‘soft’ regions to a first approximation with both
regions having identical elastic moduli. Second, the cells and subgrains are treated as equiaxed, isotropic spherical
inclusions in the Eshelby (1957) analysis for strain compatibility. Third, deformation involves multiple slip systems
so that the material is isotropic and the plastic strain rate of each region is coaxial with its deviatoric stress. Conse-
quently, the constitutive equations of Prandtl (1924) and Reuss (1930) are taken to apply in each region (i.e., no
back stress is considered in the macroscopic flow law). Fourth, the von Mises (1913) criterion is used to describe the
topology of the nested set of flow surfaces. The von Mises equivalent stress and plastic strain rate are considered to
correlate with the stress and plastic strain rate of a critically resolved slip system via Taylor’s relation (1938). Fifth,
the local plastic strain rates of the ‘hard’ and ‘soft’ regions are governed by dislocation mechanics, where the dislo-
cation structure is assumed to evolve during deformation. Sixth, grain boundary effects are assumed to be negligible.
For simplicity the model is developed for a two-phase cellular substructure, but the procedure can be extended to
other substructures, including multiphase microstructures.

6.2 Composite Three-Dimensional Model

Through the volume averaging process, each global tensor field, say X
–

ij , is related to its local fields X
φ
ij

through the summation

X f X such that fij ij

n n

= =
= =

∑ ∑φ φ

φ

φ

φ1 1

1 47( )

where f
φ
 is the relative volume fraction associated with field X

φ
ij  of phase φ (i.e., each type of substructure, such as

cells and subgrains). This is a rule of mixtures relation, where each local field of the continuum represents an inte-
grated volume average of that field over its associated phase of a microcontinuum, which is designated by a unit
cell. A bar ‘–’ is placed over a variable to identify that it represents the volume average of its local variables over the
entire unit cell. In principle, equation (47) should describe a microstructure of several cells and subgrains such as
those illustrated schematically in Figs. 17 and 18(a). For simplicity, only a two phase composite structure consisting
of cell walls and cell interiors is considered here for which equation (47) reduces to

X f X f Xij
h

ij
s h

ij
h= −( ) +1 48, ( )
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where φ = h or s. It is cautioned that although the individual tensor fields are considered to add up according to the
rule of mixtures, mappings from one field to another (e.g., constitutive equations) need not satisfy such a rule. The

Prandtl-Reuss (Prandtl, 1924; Reuss, 1930) equations are used to relate the local stresses, σφ
ij , and strain rates, ε̇ φ

ij ,
in phase, φ, so that

˙ ˙ ˙ ˙
( )σ κ ε α δ κ

κ
σφ φ φ

kk kk c kk kkT= −( ) +3 49

˙ ˙ ˙
˙

( )S G E S
G

G
Sij ij ij ij

φ φ φ φ φλ= −( ) +2 50

where

S aij ij kk ij
φ φ φσ σ δ= − 1

3
51( )

and

E bij ij kk ij
φ φ φε ε δ= − 1

3
51( )

are the deviatoric stresses and strains, respectively, in phase φ, κ is the bulk modulus, αc is the mean coefficient of

thermal expansion, δij  is the Kronecker delta, λ̇φ  describes the kinetics of plastic flow, κ̇  = (∂κ/∂T) Ṫ  and Ġ  =
(∂G/∂T) Ṫ . These are the governing constitutive equations of a thermal-elastic-plastic isotropic Hookean material.
In plasticity (i.e., rate independent condition) λ̇φwould be described through a consistency condition; whereas, in
viscoplasticity (i.e., rate-dependent condition) λ̇φ  is described through a kinetics equation (an equation of state). A
significant but realistic assumption in the current treatment is that T, αc, G and κ are assumed to be identical in both
the ‘hard’ and ‘soft’ regions, which substantially simplifies the ensuing theory.

Writing the flow equation for plastic straining as

˙ ˙ ( )ε εφ φ
φ

φij
p ijS

S
= 3

2
52

implies that the kinetics of Prandtl (1924) and Reuss (1930) be described by

˙
˙

( )λ
εφ

φ

φ=
3

2
53

p

S

where

S S S andij ij
p

ij ij
φ φ φ φ φ φε ε ε= =3

2

2

3
54˙ ˙ ˙ ( )

Equation (54) gives the von Mises criteria for stress and plastic strain rate when normalized for tension. The
Prandtl-Reuss (Prandtl, 1924; Reuss, 1930) kinetic equation (53) can be expressed in terms of the local shear
stresses, τφ

, and plastic shear strain rates, γ̇ φp , acting on phase φ as

 ˙ ˙
( )λ γ

τ
φ

φ

φ= 3

2
552

p

M
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The Taylor factor, which has a value between 2.65 and 3.06 for cubic systems depending on the number of slip sys-
tems (Kocks, 1970), establishes the transformation

τ γ εφ φ φ φ= =S M and Mp p˙ ˙ ( )56

As shown in §5.1, ̇γ φp is a function of τφ
, T, ρφ

, cell or subgrain size, L (= L
h
 + L

s
) and f

h
. Thus, equation

(56) establishes a relationship between the Prandtl-Reuss (Prandtl, 1924; Reuss, 1930) kinetics and a set of micro-
structural variables, which naturally leads to a viscoplastic model based on dislocation physics.

Since the elastic and thermal moduli in the ‘hard’ and ‘soft’ regions are the same, the volume averaged
stress, σ–ij , and strain, ε–ij , that one measures in a laboratory experiment on an isotropic Hookean material are de-
scribed by

σ σ κ ε α δφ
kk kk kk c kkT T= = − −( )( )3 570 ( )

S G Eij ij ij
p= −( )2 58ε ( )

where T0 is a reference temperature and ε–p
ij  is the volume averaged plastic strain. It should be noted that σφ

kk = σ–kk is
a hydrostatic form of the Reuss (1929) composite approximation, and consequently, that εφ

kk = ε–kk is a hydrostatic
form of the Voigt (1889) composite approximation. Furthermore, since the Voigt and Reuss approximations are
upper and lower bounds, respectively, it then follows that the hydrostatic response is exact. However, this is not the
case for the deviatoric stress response. The self-consistent formulation that is employed here is a realistic approxi-
mation that lies between the extremes of the Voigt-Reuss bounds.

There are two long-range internal stress states that arise from this composite substructure; they are the
backward, Bij , and forward, Fi j  stress tensors, which were introduced in one-dimensional form in §5. The back stress
is a derived property in DSV; whereas, it is a phenomenological variable in the classical theories of plasticity and
viscoplasticity. It is defined as the difference between the averaged applied stress and the stress of the ‘soft’ region

B f aij ij ij
s h

ij
h

ij
s≡ − = −( )σ σ σ σ ( )59

B S S f S S bij ij ij
s h

ij
h

ij
s≡ − = −( ) ( )59

Similarly, the forward stress is defined as the difference between the stress in the ‘hard’ region and the
averaged applied stress

F f aij ij
h

ij
h

ij
h

ij
s≡ − = −( ) −( )σ σ σ σ1 60( )

F S S f S S bij ij
h

ij
h

ij
h

ij
s≡ − = −( ) −( )1 60( )

Therefore,

B
f

f
Fij

h

h ij=
−1

61( )

which is the three-dimensional analog of equation (28). These long-range internal stresses are deviatoric as a conse-
quence of the fact that the hydrostatic contributions for the stresses of the ‘hard’ and ‘soft’ regions are equivalent.
As expected, the rule of mixtures (eq. (48)) is satisfied for the data shown in Fig. 33(a) since it is the requirement for
equilibrium of the local stress fields.
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Compatibility between the strains in the ‘hard’ and ‘soft’ regions, as derived by the self-consistent method,
produces the local strain fields (Freed et al., 1992)

E E
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ij
ij= +

−
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


β
β1 2

63( )

where β = [2(4 – 5ν)/15(1 – ν)] ≈ 0.5 is the shape factor for a spherical inclusion and ν is Poisson’s ratio. Equa-
tions (62) and (63) also satisfy the rule of mixtures given by equation (48). Since the cells are assumed to be
equiaxed, and therefore isotropic in their properties, it is reasonable to approximate them as spheres in the Eshelby
analysis although in reality they are not spherical. Since cells are not spherical, it may be necessary to treat β as a
variable parameter rather than a constant as determined by the Eshelby analysis given above.

The last terms in equations (62) and (63) are the self-consistent correction to the Voigt (1889) approxima-
tion for strain compatibility, i.e., E

φ
ij  = E

–
ij . These correction terms are a consequence of the Eshelby (1957) approxi-

mation for strain compatibility when implemented into the self-consistent framework of Budiansky and Wu (1962)
as derived in Appendix A. The Voigt strain compatibility is achieved when β = 0 (i.e. ν = 0.8) in equations (62) and
(63). This compatibility condition has been used by several investigators (Mughrabi (1983, 1987); Nix et al.,
(1985(a), (b)); Vogler and Blum, 1990; Lan et al., 1992) to analyze the deformation behavior of ‘hard’ and ‘soft’
regions in the one-dimensional substructural model discussed in § 5 (Figs. 40 and 41). Equations (62) and (63) make
apparent the additional contributions brought into the theory by Eshelby strain compatibility and, as a consequence,
the importance of the role that the internal stresses play in assuring compatibility of the local strain fields. The order
of magnitude for these corrections is that of the elastic strain, and therefore, they are second-order corrections in
most inelastic applications. Nevertheless, they could significantly impact the overall response, for example, under
non-proportional loading histories.

6.3 Solution Algorithm for the DSV Model

At the current time, t, all variables are assumed to be known. In other words, the set of global variables, σ–ij ,
ε–ij ,

–p
ij  and T, and the set of local  variables, σh

ij , σ
s
ij , ε

h
ij , ε

s
ij , ε

ph
ij , ε

ps
ij , ρ

h
, ρs

, f
h
 and L have known values. At some future

time, t + δt, values are assigned to T and εij , while values for all remaining global and local variables are left to be
calculated. The theory contains four microstructural or internal state variables: ρh

, ρs
, f

h
 and L. The algorithm pre-

sented below is the solution for this problem statement resulting from the theoretical construction given above.
The first-order, ordinary, differential equations describing DSV that must be solved are
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˙ ˙ , , , , ( )L f L Th= [ ]L τ ρϕ ϕ 68

whose kinetics are described by
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Equations (64) and (65) are obtained by combining the Prandtl-Reuss (Prandtl, 1924; Reuss, 1930) equa-
tion (50) with the time rate-of-change of the local deviatoric strains given in equations (62) and (63). Representative
relationships describing γ̇ φp  and ρ̇φ  for each phase are given by equations (29), (34) and (41) for the simple one-
dimensional substructure model (i.e., when β = 0). The equations are likely to be more complex when the disloca-
tion mechanics are formulated for the more realistic three-dimensional cell or subgrain model. This formulation has
not been completed so that the present analysis is restricted to the one-dimensional case. The rate of change in the
volume fraction of the ‘hard’ regions is detailed in §6.4. The form of equation (68) describing the rate of change in
the cell or subgrain size, L̇ , is poorly understood at present. This change in the subgrain size influences the creep
rate through its influence on equations (64) to (66). The importance of including L̇  comes from the fact that there is
now considerable evidence to suggest that the subgrain size changes during primary creep (Fig. 18) (Hasegawa
et al., 1971) and that it grows to a new equilibrium value after the stress is reduced from an initial creep stress
(Eggeler and Blum, 1981; Ferreira and Stang, 1979, 1983; Goel et al., 1983; Soliman et al., 1983). However, as dis-
cussed in §4.0, measurements of the subgrain size after a reduction in the creep stress have resulted in contradictory
results. It is possible that the changes in the cell size with strain or time are much smaller than the subgrain size
(Goel et al., 1983; Soliman et al., 1983). It is clear that equation (68) should lead to equation (18) when a steady-
state is established after the stress drop. As discussed in §6.4, the present analysis assumes that L ∝ 1/ τ̂ , where ̂τ  is
the average strength of the obstacles in the ‘hard’ and ‘soft’ regions.

After integrating the local deviatoric stresses and the internal state variables, one updates the hydrostatic
response

σ κ ε α δkk kk c kkT T= − −( )( )3 700 ( )

and the remaining global and local variables
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ε ε
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76, ( )

whose derivations are given in the Appendix. As expected, equations (73) to (76) satisfy the rule of mixtures equa-
tion (48). It should be noted that Bij  and Fij  are related to S

s
ij  and S

h
ij  through equations (59b) and (60b).

The differential equations (64) and (65) for the evolution of the local stresses are strongly coupled and
highly nonlinear; therefore, they are best solved using either semi-implicit or implicit integration methods. The
nonlinearity is caused, for the most part, by the kinetics of λ̇φ . The right-hand side of these equations (i.e. the
nonhomogeneous contribution) is where the coupling is strongest. In particular, a change in the stress in one region
affects the change in stress of the other region, and vice versa. This coupling (in both the stress and stress rate) can
lead to numerical instabilities for unreasonable initial guesses of the stress and stress rate in the two regions. For
some integration algorithms, it may therefore be necessary to first implicitly integrate the uncoupled differential
equations for the local stresses obtained by using the Voigt approximation

˙ ˙ ˙ ˙ ( )S G S GEij ij ij
φ φ φλ+ −( ) =2 2 77G/G

to acquire a reasonable initial guess for S
φ
ij  and Ṡij

φ
.  These quantities should then be used to initiate an implicit inte-

gration of the more accurate differential equations (64) and (65) where, because of the coupling, the nonhomogen-
eous contributions of the right-hand sides are evaluated one iteration in arrears. Equation (77) is equivalent to
setting the shape factor β = 0 in equations (64) and (65). As stated earlier, the model is applied to the simpler case
of β = 0 corresponding to the substructure configuration described in §5.0 and illustrated by Figs. 42 and 43. The
case β = 0 is also examined using the one-dimensional dislocation model, although it is not strictly valid, in order to
study the effect of β on the stresses and strains developed within the material.

6.4 Rate of Change of Microstructural Parameters

Equations (64) to (68) require some knowledge of the rates of change of the microstructural parameters in
order to evaluate the validity of the DSV model for situations where β = 0. The rates of change in the dislocation
densities are given by equations (34) and (41) for the one-dimensional case but these formulations are likely to
change for a three-dimensional substructure model. The dislocation physics for the latter geometry is still to be for-
mulated. As mentioned in §6.3, the functional form of equation (68) is unknown at present. Defining τ̂  as

ˆ ˆ ( )ˆ ( )τ τ τ= + −f fh h h s1 78

L can be expressed as a function of τ̂  through

L bm m= ( ) ( ˆ) ( )K/M G/τ 79

Thus,

˙ ( ) ( ˆ) ( ˆ̇ ) ( )( )L m bm m= − +K/M G/ /Gτ τ1 80

Equations (18a) and (b) represent the steady-state forms of equation (79) when τ̂  is proportional to the applied
stress. In defining L in terms of τ̂ , it is clear that L will change in a natural way after a stress change due to
corresponding changes in f

h
, τ̂h

, τ̂s
 and τ̂ .
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The experimental data discussed in §3.0 can be used to formulate an empirical relation for f
h
 in terms of

strain.
Noting that

L L Lh s= + ( )81
it is found that
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Using equations (22b), (22c), (83) and (84), both f
h
 and ̇f h can be obtained as a function of strain.

The parameters f
h
 and χ can be used interchangeably as the independent variable. Equation (83) is similar

in form to that derived by Dobes and Orlová (1990) but differs from that used by other investigators (Mughrabi,
1981, 1983, 1987; Nix et al., 1985(a) and (b), and Qian and Fan, 1991) who defined f

h
 as a linear fraction and as-

sumed that the latter was equal to the volume fraction.

6.5 Coupling of DSV and Dislocation Physics

One of the objectives of this paper outlined in §1.2 was to develop the theoretical basis for interlinking
dislocation mechanisms occurring at the level of the substructure with the macroscopic stress state. The scale-up
from the local to the global state is achieved through DSV (Fig. 2). The treatment presented in §5.1, 6.2 to 6.4 dem-
onstrates that this coupling is fairly complex even for the relatively simple one-dimensional dislocation model.
Equations (64) and (65), together with equations (69) to (76), form the basis for this interlinkage between the local
and the global variables, provided that the functional forms for equations (66) to (68), ḟ h  and γ̇ φp  are known. The
local strain rates are described by equation (29) for the ‘hard’ and ‘soft’ regions, where the evolution of τ̂φ  during
deformation can be obtained from equations (35) and (46). Equations (34) and (41) give the rate of change in the
dislocation densities in the ‘hard’ and ‘soft’ phases for the one-dimensional dislocation model. These equations can
be used along with equation (30) to evaluate the change in τ̂φ  with strain. The evolution of τ̂φ  during deformation
also influences ̇Lthrough equation (80) so that the change in the cell or subgrain size can be evaluated in a natural
manner. An examination of equations (64), (65) and (71) shows that their solution requires some knowledge of f

h

and ḟ h , where the latter are related to χ and χ̇  through equations (83) and (84), respectively. Equations (22b) and
(c) give the specific functional forms for χ̇ and χ, respectively, based on the experimental data shown in figures 21
and 27. Since the global strain rate evolves with τ̂φ, the quantities χ and χ̇ , and hence f

h
 and ̇f h , also evolve with

τ̂φ. Equations (22b) and (c) are empirical representations for the evolution of χ and χ̇. In principle, the exact forms
could be derived from theories dealing with dislocation patterning (Kubin, 1993) although their computations are
likely to be quite involved.

7.0 SUMMARY

A detailed review of the current understanding of the effect of microstructural parameters on class M creep
behavior is presented. Microstructural observations conducted in the power-law and exponential creep regimes sug-
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gest that creep is influenced by a complex interaction between several elements of the microstructure, such as dislo-
cations, cells and subgrains, and steady-state behavior is attained when the microstructure reaches a dynamic equi-
librium between these different substructural features. Thus, the formation of equiaxed subgrains and the
observation of class M creep (i.e., power-law creep) need not be a sufficient condition for steady-state behavior.
Instead, recent observations reveal that the refinement of cell boundaries and the formation of secondary
subboundaries are equally important components of steady-state creep. Quantitative measurements of the ratio of the
dimensions of the cell boundary to the cell interior suggest that steady-state behavior is likely when this ratio is
about 0.2. It is demonstrated that the microstructures formed in the exponential creep region are similar to those
formed during the early stages of normal primary creep in the class M region. These experimental observations are
used to formulate a
phenomenological approach to understanding transient and steady-state deformation behavior in terms of the strain
rate-stress deformation laws. A three-dimensional dislocation substructure creep model is developed and coupled
with a modified one-dimensional dislocation model. Although the present dislocation analysis is still limited in
scope, nevertheless, it extends previous analyses by taking into account the dynamic evolution of the microstructure
during deformation.
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APPENDIX

A Derivation of the Coupled Differential Equations Used in the DSV Model

For a general anisotropic Hookean material, the averaged response is governed by

σ ε ε αij ijk k k
p

kD T T A= − − −( )( )l l l l 0 1( )

while the local responses of the ‘soft’ and ‘hard’ regions are governed by

σ ε ε αφ φ φ
ij ijk k k

p
kD T T A= − − −( )( )l l l l 0 2( )

where Dijkl  is the elastic moduli tensor and αkl is the coefficient of thermal expansion tensor. They are assumed to
be identical for the ‘hard’ and ‘soft’ regions, and for the averaged material. Similarly, T is assumed to be uniform
over both the phases.

Taking into account the fact that the elastic and thermal moduli of both regions are the same, one obtains
the following strain compatibility relation from the generalized self-consistent method (Gramoll et al., 1991)

ε ε ε εφ φ
ij ij ijk k

p
k
pS A= + −( )l l l ( )3

where Sijkl  is the Eshelby tensor (Eshelby, 1957), whose components are constant valued for the family of ellipsoi-
dal inclusions. Consequently, there is no transformation strain unless there is plastic strain. When substituted into
equation (A2), this condition for strain compatibility can be written in terms of the stresses as follows

σ σ ε εφ φ
ij ij ijk k mn k mn mn

p
mn
pD I S A= − −( ) −( )l l l ( )4

where Iklmn is the identity tensor for second-rank symmetric tensors. This result is analogous to the one derived by
Kröner (1961).

When the material is isotropic, the averaged stress-strain response described by equation (A1) becomes
equations (57) and (58), while the local response given by equation (A2) leads to equations (49) and (50) when dif-
ferentiated. In addition, the criterion for compatibility described by equation (A4) becomes

S S G Aij ij ij
p

ij
pφ φβ ε ε= − −( ) −( )2 1 5( )

where, the fourth-rank tensors Dijkl , Iklmn and Sklmn reduce to the scalars 2G, 1 and β, respectively. Equation (A5)
was first derived by Budiansky and Wu (1962) using another approach.

Solving for the deviatoric response, where the applied strain, E
–

ij , is given and the local stresses, S
φ
ij , are

known from integration, six tensor equations with six tensor unknowns are obtained. They are the constitutive
equations

S G E Aij ij ij
p= −( )2 6ε ( )

S G E Aij
s

ij
s

ij
ps= −( )2 7ε ( )

S G E Aij
h

ij
h

ij
ph= −( )2 8ε ( )
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the compatibility equations derived from equation (A5)

S G S G Aij
s

ij
ps

ij
h

ij
ph+ − = + −2 1 2 1 9( ) ( ) ( )β ε β ε

and the volume averages

S f S f S Aij
h

ij
s h

ij
h= −( ) +1 10, ( )

ε ε εij
p h

ij
ps h

ij
phf f A= −( ) +1 11, ( )

where {S
–
ij , ε

–p
ij , E

h
ij , E

s
ij , ε

ph
ij , ε

ps
ij } are the set of unknowns. Inverting this linear system of six equations to solve for

these six unknown variables in terms of the known variables {E
–

ij , S
h
ij , S

s
ij , f

h
} leads to equations (71) to (76). The

fact that the coefficients of the tensors in equations (A6) to (A11) are all scalar quantities instead of fourth rank ten-
sors greatly simplified the inversion of these equations.
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Modeling the Role of Dislocation Substructure During Class M and
Exponential Creep

S.V. Raj, Ilana Seiden Iskovitz and A.D. Freed

Creep; Dislocation substructure; Subgrains; Cells; Power-law creep; Exponential creep

The different substructures that form in the power-law and exponential creep regimes for single phase crystalline materi-
als under various conditions of stress, temperature and strain are reviewed.  The microstructure is correlated both qualita-
tively and quantitatively with power-law and exponential creep as well as with steady state and non-steady state deforma-
tion behavior.  These observations suggest that creep is influenced by a  complex interaction between several elements of
the microstructure, such as dislocations, cells and subgrains.  The stability of the creep substructure is examined in both of
these creep regimes during stress and temperature change experiments.  These observations are rationalized on the basis
of a phenomenological model, where normal primary creep is interpreted as a series of constant structure exponential
creep rate-stress relationships.  The implications of this viewpoint on the magnitude of the stress exponent and steady-
state behavior are discussed.  A theory is developed to predict the macroscopic creep behavior of a single phase material
using quantitative microstructural data.  In this technique the thermally activated deformation mechanisms  proposed by
dislocation physics are interlinked with a previously developed multiphase, three-dimensional, dislocation substructure
creep model.  This procedure leads to several coupled differential equations interrelating macroscopic creep plasticity
with microstructural evolution.

S.V. Raj and A.D. Freed, NASA Lewis Research Center; Ilana Seiden Iskovitz, Ohio Aerospace Institute, NASA Lewis Research Center, 21000

Brookpark Road, Cleveland, Ohio 44135.  Responsible person, S.V. Raj, organization code 5120, (216) 433–8195. Also published in “Unified
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