
Fast Messages:
Efficient, Portable Communication
for Workstation Clusters and MPPs
Scott Pakin, Vijay Karamcheti, and Andrew A. Chien
University of Illinois at Urbana-Champaign

Prognostications of the National Information Infrastructure’s
future structure typically include high-performance servers
of information, computation, and other specialized services
embedded in a high-speed network fabric with hundreds of
millions of other hosts. Two system architectures are likely

candidates for these servers: massively parallel processors and networks
of workstations. Both are attractive because of their ability to scale. How-
ever, both critically depend on internal communication performance to
be effective servers, and any NII server depends on excellent external net-
working to support NII service. Interestingly, in recent years, MPP and
NOW hardware have become increasingly similar, as both are driven by
the significant cost advantages of high-volume products. Hence, many
issues involved in delivering communication performance in such sys-
tems have converged as well.

The Illinois Fast Messages project intends to exploit this convergence to
develop communications technology that spans both MPPs and NOWs,
supporting both intracluster communication and high-speed external net-
working. FM is a portable, low-level messaging interface that can deliver
high network data rates, even for small messages. It delivers the low-
latency communication that is essential for efficient coordination and data
movement on large-scale parallel systems. FM implementations not only
deliver high performance but also provide the high-level guarantees that
enable streamlined implementations of higher-level protocols atop FM.
FM delivers performance to the higher-level layers, not just to applica-
tions written directly to the messaging layer.

We’ve implemented FM 1.1 on the Cray T3D MPP and on Myrinet-
based workstation clusters. Both implementations perform substantially
better than the vendor-supplied messaging layers. We’ve also implemented
two widely accepted standard interfaces—Unix sockets and the Message

60 1063-6552/97/$10.00 © 1997 IEEE IEEE Concurrency

Illinois Fast
Messages is a low-level
software messaging
layer designed to meet
the demands of high-
performance network
hardware. Imple-
mentations on a Cray
T3D and a Myrinet-
based workstation
cluster demonstrate
that FM can deliver
much of the under-
lying hardware’s
performance to both
higher-level messaging
layers and
applications.

Multiprocessor Operating Systems

.

April–June 1997 61

Passing Interface (MPI)1—atop FM to build higher-level
protocols that deliver much of the underlying hardware’s
performance.

Illinois Fast Messages

The FM 1.1 interface is modeled after Berkeley’s CM-
5 Active Messages2 (see the “Comparing Fast Messages
and Active Messages” and the “Related work” sidebars).
Primarily, FM borrows the notion of message handlers
and uses essentially the same API. However, FM ex-
pands on Active Messages by imposing stronger guar-
antees on the underlying communication.

FM consists of three functions:

• FM_send(dest,handler,buf,size),
• FM_send_4(dest,handler,i0,i1,i2,i3),

and
• FM_extract().

The FM_send() and FM_send_4() calls inject
messages into the network. FM_send() sends a long
message; FM_send_4() sends a four-word message.
(The latter call sends data from registers, thereby elim-

inating the need for memory traffic.) Each message has
a corresponding handler function, indicated in its
header, which is executed to process the message data.

The FM_extract()call processes received messages.
It services the network, dequeueing pending messages
and executing their corresponding handlers. Handlers
move the message data (if necessary) from temporary
FM buffers into user memory. The FM interface pro-
vides a simple buffer-management protocol: once an FM
send function returns, FM guarantees that the buffer
containing the message can be safely reused.
FM_extract()need not be called for the network to

make progress. FM provides buffering so that senders can
make progress while their corresponding receivers are
computing and not servicing the network. This buffer-
ing allows the decoupling of the processor and network
(which we’ll discuss in the next section). Also, in contrast
to Active Messages, where the send calls implicitly poll
the network, FM’s send calls do not normally process
incoming messages. (FM_send() and FM_send_4()
call FM_extract()only when necessary to avoid buffer
deadlock.) This lets a program control when commu-
nications are processed.

The Illinois Fast Messages 1.1 inter-
face is closely modeled on that of
Berkeley Active Messages.1 AM, in
turn, has as its intellectual antecedents
hardware architectures that closely
integrated communication and com-
putation in message-driven,2 dataflow,3
and even systolic4 architectures.

FM adopts features validated by
AM’s design and success. First, FM
associates small “handlers” with mes-
sages, which incorporate incoming
data into the ongoing computation.
Second, these handlers are user-spec-
ified and can be used to implement
protocols atop the primitive commu-
nication layer. Because these similari-
ties give AM and FM a similar API,
simple program examples are often
nearly identical.

The crucial differences between FM
and AM involve data reception, buffer-
ing, deadlock avoidance, and message
ordering. AM systems include both
explicit and implicit polling operations
in each message send. This ensures
that data is removed from the network,
eliminating the possibility of internal
network and store-and-forward dead-
lock. In contrast, FM provides explicit
polling operations but includes no

implicit poll in send operations. This
subtle difference has two important
implications. First, in FM programs,
control through extract placement over
when a message is processed allows
control over data locality in the re-
ceiver’s memory hierarchy. Second, a
receiver cannot process network mes-
sages for a long time, so FM requires a
modest amount of buffering and flow
control to eliminate the possibility of
deadlock. In contrast, AM systems can
benefit from buffering but do not
require it. However, the implicit poll
involved in sends does reduce the pro-
gram’s control over the scheduling of
message reception. Finally, FM guar-
antees that messages are delivered in
order, while AM makes no such guar-
antee.

The implications of these differences
are only now being investigated in
research and prototype systems. For
instance, the AM approach normally
avoids buffering and might therefore
more efficiently integrate direct trans-
fer operations such as put/get into an
implementation or interface. On the
other hand, FM’s decoupling of the
processor and network through a
buffered, flow-controlled stream of data

might support efficient multitasking or
scaling to networks with long latencies.
We look forward to the exploration of
these issues in future high-performance
communication systems.

References
1. T. von Eicken et al., “Active Messages:

A Mechanism for Integrated Com-
munication and Computation,” Proc.
19th Ann. Int’l Symp. Computer Archi-
tecture, IEEE Computer Society Press,
Los Alamitos, Calif., 1992, pp. 256–266;
http://www.cs.cornell.edu/Info/Projects/
CAM/isca92.ps.

2. W.J. Dally et al., “Architecture of a
Message-Driven Processor,” Proc. 14th
Ann. Int’l Symp. Computer Architecture,
IEEE CS Press, 1987, pp. 189–196.

3. J. Hicks et al., “Performance Studies
of Id on the Monsoon Dataflow Sys-
tem,” J. Parallel and Distributed Com-
puting, Vol. 18, No. 3, July 1993, pp.
273–300; ftp://csg-ftp.lcs.mit.edu/pub/
papers/csgmemo/memo-345-3.ps.gz or
http://www.csg.lcs .mit.edu:8001/
monsoon/monsoon-performance/monsoon-
performance.html.

4. S. Borkar et al., “Supporting Systolic
and Memory Communication in
iWarp,” Proc. 17th Int’l Symp. Com-
puter Architecture, IEEE CS Press,
1990, pp. 70–81.

Comparing Fast Messages and Active Messages

.

62 IEEE Concurrency

GUARANTEES

The most important facet of messaging layer design is
the service guarantees that the layer provides to higher-
level messaging layers and applications. If these guar-
antees are too weak (that is, they do not provide the
functionality that applications expect), other messaging
layers built on top will need to supply the missing func-
tionality, thereby incurring additional overhead. On the
other hand, if the guarantees are too strong (that is, they
provide more functionality than is generally needed),
the messaging layer’s common-case performance might
be needlessly degraded. Analysis of the literature and
our ongoing studies to support fine-grained parallel
computing3–5 have led us to conclude that a low-level
messaging layer should provide these guarantees:

• Reliable delivery,
• In-order delivery, and

• Control over scheduling of communication work
(decoupling of the processor and network).

We designed the FM interface to provide these guar-
antees. Although FM is certainly not the only approach
to delivering high-performance communication,2,6 these
guarantees make it distinctly useful.

Reliability
Previous studies of communication cost in the CM-5
indicate that software overhead for reliability, fault tol-
erance, and ordering can increase communication cost
by over 200%.3 Yet many low-level communication sys-
tems simplify their implementation by discarding pack-
ets. When networks were unreliable, this practice made
sense. However, modern networks are highly reliable, so
such discarding is the major source of data—and there-
fore, performance—loss.

Related work

Hardware architects have long pursued
high performance for short messages
by integrating the network interface
with the CPU.1,2 Innovations included
interfacing the network to the instruc-
tion set and register file, message-field-
based dispatch, and communication-
driven scheduling. However, none of
these innovations persisted into main-
stream high-performance processors,
because they required changes deep in
the processor. Also, these innovations
did not address the network and out-
put contention that Pull FM (see “Pull
FM on the T3D” in the main article)
is designed to tolerate.

Less aggressive parallel architectures
use commodity microprocessors and
add external communication logic (for
example, the Thinking Machines CM-
5 and Cray T3D). These machines are
quite similar to workstation clusters
based on, for example, Myricom’s
Myrinet or DEC’s Memory Channel.

Active Messages (see the “Compar-
ing Fast Messages and Active Mes-
sages” sidebar) bridged the gap be-
tween the aggressive integration of
communication into the processor and
these hybrid systems, showing how
commodity microprocessor-based sys-
tems could reap much of the commu-
nication performance benefit.3 Active
Messages crystallized a basic low-level
communication model that is embod-

ied in many communication layers,
including FM.

A number of recent projects have
explored novel low-level communica-
tion interfaces. U-Net provides buffer
management but no flow control,
implying that data can be lost because
of rate mismatch.4 The low-level inter-
face supporting the Hamlyn architec-
ture provides flow control but no buffer
management, implying that higher-
level messaging layers must provide
their own buffer-management routines
to prevent data from being overwrit-
ten.5 FM provides a more complete
solution to ensuring message delivery.
By removing the responsibility for flow
control and buffer management from
higher-level messaging layers, the FM
interface permits platform-specific
implementations—hence, optimiza-
tions—of flow control and buffer man-
agement. The Real World Computing
Partnership’s PM, like FM, runs on
Myrinet-connected workstations and
performs both flow control and buffer
management.6 However, the PM im-
plementation uses an optimistic flow-
control mechanism and variable-sized
packets. We are exploring opportuni-
ties for a detailed comparison.

References
1. S. Borkar et al., “Supporting Systolic

and Memory Communication in

iWarp,” Proc. 17th Int’l Symp. Com-
puter Architecture, IEEE Computer
Society Press, Los Alamitos, Calif.,
1990, pp. 70–81.

2. W.J. Dally et al., “Architecture of a
Message-Driven Processor,” Proc. 14th
Ann. Int’l Symp. Computer Architecture,
IEEE CS Press, 1987, pp. 189–196.

3. T. von Eicken et al., “Active Messages:
A Mechanism for Integrated Com-
munication and Computation,” Proc.
19th Ann. Int’l Symp. Computer Archi-
tecture, IEEE CS Press, 1992, pp.
256–266; http://www.cs.cornell.edu/Info/
Projects/CAM/isca92.ps.

4. T. von Eicken et al., “U-Net: A User-
Level Network Interface for Parallel
and Distributed Computing,” Proc.
15th ACM Symp. Operating Systems
Principles, ACM Press, New York,
1995, pp. 40–53; http://www2.cs.cornell.
edu/U-Net/papers/sosp.pdf.

5. G. Buzzard et al., “A High-Perfor-
mance Network Interface with Sender-
Based Memory Management,” Proc.
IEEE Hot Interconnects Symp., 1995;
http://www.hpl .hp.com/personal/
John_Wilkes/papers/HamlynHot
IntIII.pdf.

6. H. Tezuka, A. Hori, and Y. Ishikawa,
“PM: A High-Performance Commu-
nication Library for Multi-user Paral-
lel Environments,” Tech. Report TR-
96-015, Real World Computing
Partnership, Tsukuba Research Cen-
ter, Tsukuba, Japan, 1996; http://
www.rwcp.or.jp/papers/1996/mpsoft/
tr96015.ps.gz.

.

April–June 1997 63

FM ensures delivery in all cases except uncorrectable
hardware communication errors. Such reliable delivery
lets protocols eliminate retransmission techniques when
dealing with lost packets.

While many high-speed networks have extremely low
channel-error rates, reliable delivery also requires buffer
management and flow control. FM not only provides
these, but its performance demonstrates that these guar-
antees need not be costly. The small cost these guaran-
tees do incur is offset by the additional performance
gains they offer to higher protocol levels, in the form of
more simplified, streamlined control.

In-order delivery
In-order delivery lifts the burden of storing and reorder-
ing messages off higher protocols. Because FM provides
such delivery, we can simplify higher-level protocols by
eliminating reordering code.

Decoupling of the processor and the network
Experience with messaging layers in multicomputers,
shared-memory systems, and high-speed wide-area net-
works indicates that cache interference is critical to both
communication and local computational performance.
Providing control over the scheduling of communication
allows programs to control their cache performance, in
many cases enabling more efficient computation and
communication. However, allowing such scheduling con-
trol requires decoupling the processor from the network,
so that senders are not blocked because they are waiting
for receivers to extract messages from the network.

FM decouples the processor and network through
buffering. This allows communication to be truly one-
sided. That is, a computation can control when it processes
communications, and the sender can still make some
progress even if the receiver defers servicing the network.

EXTENSIBILITY

FM also allows easy extension of functionality. For
example, some applications might require absolute data
integrity. The use of memory buffers at the FM inter-
face allows easy addition of buffer-redundancy schemes.
Likewise, applications requiring data security can easily
layer encryption atop FM by incorporating a routine
that encrypts data in place when they are passed a
pointer to a memory buffer. Also, features can be lay-
ered above FM with a minimal performance penalty.

PORTABILITY

Often, a tradeoff exists between portability and perfor-

mance. For FM, however, we identified the key simi-
larities between MPPs and NOWs (present and future)
and included in the interface only those features that are
generally useful and that can be implemented efficiently
on both types of systems. That is, we made the FM
interface as portable as possible, up to the point where
performance would have been sacrificed. This porta-
bility is demonstrated by our multiple implementations
on the T3D and workstation cluster.

Cray T3D FM implementation

We first implemented FM on the Cray T3D. Our
implementations exploit the T3D’s high-speed inter-
connect and feature-rich network interface to achieve
excellent communication performance. The T3D sup-
ports up to 4,096 Alpha processors and is a shared-
address-space machine with no hardware support for
cache coherence. However, because memory access is
nonuniform both in mechanism (special addressing
mechanisms for remote locations) and performance
(four to five times slower than accesses to remote mem-
ory), a message-passing programming style can benefit
performance as well as portability and relative ease of
programming.

Figure 1 diagrams one node of the Cray T3D. The
main components of a node are the two processing ele-
ments (for clarity, the figure shows only one), the block
transfer engine (BLT), and the network interface. Each
processing element contains an Alpha microprocessor,
local memory, and some communication-specific logic.
The parts of the node that are the most relevant to FM
are the

• data-translation buffer (DTB) annex, which is needed
to set up a logical connection with other nodes. The
annex supports remote reads and writes as well as
atomic fetch & increment and atomic swap opera-
tions that can be accessed by remote processors.

• fetch & increment unit, which is used for push mes-
saging.

• atomic swap unit and prefetch queue, which are used for
pull messaging.

(We’ll describe push and pull messaging in the next two
sections.)

Because the network already guarantees reliable, in-
order delivery, the most important aspects of imple-
menting the FM interface on the T3D are decoupling
communication and computation and achieving high
performance. The multiplicity of mechanisms in the

.

64 IEEE Concurrency

network interface and support circuitry enables distinct
implementations of the FM interface, each optimized
for different communication and performance patterns.
We have constructed two such implementations: Push
FM and Pull FM.

PUSH FM
Push FM is a traditional style of messaging implemen-
tation that pushes data from the source to the destina-
tion, and buffers it for the receiving processor. With
push messaging, FM “eagerly” propagates messages
(that is, right when FM_send() is called) from the
sender to the receiving node’s memory.

As Figure 2 illustrates, the sender
uses the fetch & increment operation
against the receiver’s fetch & increment
register to acquire a unique index into
a preallocated message buffer at the
receiving node (Step 1). With this
index, the sender moves the message
data into that buffer, using remote write
operations (Step 2). Because the fetch
& increment operation atomically han-
dles the buffer allocation among com-
peting senders, no other node will try
to use the buffer simultaneously. When
the receiver wishes to process the mes-
sage, it simply reads the message from
the buffer in its local memory (Step 3).

Although push messaging minimizes
latency at low network loads, perfor-
mance can degrade if output con-
tention exists or if the receiver allows
its incoming buffers to fill by not ser-
vicing the network often enough.4 If
messages arrive at a receiver faster than
the receiver’s memory can process
them or than the receiver extracts
them, the writes back up into the net-
work, adding to network contention
and increasing average latency. This
effect, which occurs in many irregular
parallel computations, provides the
impetus for Pull FM.

PULL FM
To avoid output contention, Pull FM
moves data “lazily”—only when the
receiver is ready to process it. Pull mes-
saging is enabled by the T3D’s shared

address space, which allows receivers to reach into the
sender’s memory and pull the message data into local
memory. Pull messaging effectively eliminates output
contention and is therefore important for irregular com-
putations.

As Figure 3 illustrates, Pull FM first copies the mes-
sage data into a local memory buffer (Step 1) and then
uses atomic swap to link the message into the receiver’s
receive queue (Steps 2 and 3). This queue is a distributed
linked list whose head and tail are stored at the receiver.
Data remains in the sender’s local memory. When the
receiver wants to read a message, it pulls the message
into its local memory using remote-memory read oper-

CPU

Memory
(DRAM)

Data

Local
addressing

Remote
addressing

BLT
control

BLT
(block

transfer
engine)

DTB
annex

Message
queue
control

Prefetch
queue

Barrier
synchronization

Atomic
swap

BLT
status

PE control
& status

Support circuitry
Address

Data

Fetch &
increment

Input
buffers

Output
buffers

Barrier
synchronization
bypass control

Routing
tag table Addressing

(virtual logical)

Network interface

Node
control

& status

Addressing
(remote/local)

Interconnection network

Processing element

Address

Figure 1. A T3D node.

Processor ProcessorMemory Memory

1 Fetch & increment +1

Data transfer

Source Destination

Remote
stores

2

Extract3

Figure 2. Push messaging.

.

ations (Step 4). Push FM uses the
T3D’s prefetch hardware to mask the
latency of these remote reads. Finally,
the receiver deallocates the message
buffer by storing a “reclaim” flag into the
buffer (Step 5).

Because each receiver pulls data
across at its own pace, nodes are never swamped with
data. This effectively eliminates output contention,
because the data arrival rate is matched to the receiver’s
pulling rate. Furthermore, enqueuing messages is a
comparatively low-overhead operation and is therefore
beneficial for fine-grained applications. Pull messaging
also serendipitously eliminates message-buffer overflow.
Responsibility for buffer allocation is transferred back to
the senders, where flow control is easily achieved. One
drawback of Pull FM is that pulling data across the net-
work requires extra work, increasing the overhead and
latency slightly, compared to Push FM.4

PERFORMANCE

We’ll now compare T3D FM’s performance to two
other vendor-supplied communication layers on the
T3D: Shmem and PVM. Shmem is a low-level data-
movement (not messaging) library that copies data
between addresses in the shared address space. It is lit-
tle more than a set of functions for directly accessing
the raw hardware, and therefore is extremely efficient.
The Shmem layer provides two main mechanisms: put
and get. PVM is a widely used, full-featured messaging
layer that does both the end-to-end synchronization and
the buffer management required for traditional mes-
saging. The PVM implementation was optimized by
Cray for the T3D.

Latency
Figure 4a compares FM’s one-way latency to that of
PVM and Shmem (with put and get semantics).
Push FM’s latency curve is essentially level until
around 256 bytes, after which it increases linearly.
This is because the fixed overheads—especially the
fetch & increment—dominate the latency until that
point; afterwards, the per-byte costs dominate. Push
FM’s latency is 6.1 µs for an 8-byte message and 366.8
µs for a 32-Kbyte message. These times are close to
the best achievable on the T3D hardware. Pull FM’s
latency is comparable to Push FM’s for small mes-
sages. However, for larger messages, Push FM is quite
a bit slower because of the limited performance of the
prefetch hardware. The jump in Pull FM’s latency

from 64 to 128 bytes stems from FM’s use of 112-byte
packet buffers. Messages larger than 112 bytes require
segmentation and reassembly, adding overhead and
reducing bandwidth. Still, for the types of messages
Pull FM was designed to handle (that is, the small
messages used by fine-grained programs), its 8.7-µs,

Processor ProcessorMemory Memory

1

Source Destination

Atomic swap

Release
buffer

Remote
loads

4

Remote store to old tail pointer

Source
buffer
data 3

5

2

Figure 3. Pull messaging.

(a)

(b)

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K
Message size (bytes)

1

10

100

1,000
On

e-
w

ay
 la

te
nc

y
(m

ic
ro

se
co

nd
s)

PVM
Pull FM
Push FM
Shmem get
Shmem put

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K
Message size (bytes)

0

20

40

60

80

100

120

140

Ba
nd

w
id

th
 (M

by
te

s/
s)

PVM
Pull FM
Push FM
Shmem get
Shmem put

Figure 4. FM performance on the T3D: (a) latency; (b)
bandwidth.

April–June 1997 65

.

66 IEEE Concurrency

8-byte latency is good, even if its 213.2-µs, 4-Kbyte
latency (messages in Pull FM are limited to 4 Kbytes)
is a bit high.

PVM’s latency parallels Push FM’s. However, PVM’s
latency is much higher than Push FM’s for large mes-
sages and than both FMs for small messages. Its latency
ranges from 28.0 µs for 8-byte messages to 850.2 µs for
32-Kbyte messages. So, even though FM also provides
a messaging interface that supplies buffer management
and flow control, its no-frills operation delivers perfor-
mance superior to PVM’s.

Because Shmem put performs neither flow control,
buffer management, nor notification of message arrival,
its latency is fairly good: 1.4 µs for an 8-byte message,
increasing almost linearly to only 260.9 µs for a 32-Kbyte
message. However, Push FM’s latency approaches
Shmem put’s as the message size increases. Because
Push FM and Shmem put both rely on remote stores
for data movement, this behavior is expected.

Shmem get, however, uses a different mechanism—
remote loads. Because remote stores are nonblocking
but remote loads block, Push FM’s latency exceeds
Shmem get’s for messages larger than 128 bytes, after
which Push FM’s fixed overhead is sufficiently amor-
tized. Still, Shmem get can retrieve an 8-byte message
in only 1.2 µs, although its 32-Kbyte latency, 885.9 µs,
exceeds even PVM’s. Figure 4a shows, therefore, that
even though FM performs flow control and buffer man-
agement as PVM does, its latency is comparable to that
of the lower-level Shmem layer.

Bandwidth
Figure 4b demonstrates FM’s bandwidth over a range of
message sizes. In general, the performance follows the
same ordering as in Figure 4a. However, there are fewer
crossovers than in the latency graph. Push FM’s band-
width increases smoothly until the message size exceeds
8 Kbytes, where it drops slightly. Cache effects cause
that drop—the Alpha processor has only 8 Kbytes of
data cache, and the T3D has no additional off-chip
cache. Even so, Push FM’s 112.9 Mbytes/s for 8-Kbyte
messages is quite good and reflects the limitation of the
Alpha’s write buffer, which peaks at approximately 130
Mbytes/s.

Pull FM’s bandwidth is comparable to Push FM’s
bandwidth for small messages, but is lower for large
messages. The lower large-message bandwidth is due
primarily to the prefetch queue’s peak bandwidth,
approximately 32 Mbytes/s. As in the latency curve, Pull
FM’s bandwidth decreases from 64 to 128 bytes because

of the segmentation and reassembly used for messages
larger than 112 bytes. Pull FM’s bandwidth ranges from
3.1 Mbytes/s for 8-byte messages to 23.8 Mbytes/s for
4-Kbyte messages.

Both versions of FM have much better bandwidth
than PVM for small messages. For 8-byte messages,
PVM’s bandwidth—0.6 Mbytes/s—is one-fifth of FM’s.
For larger messages, Push FM’s bandwidth is still over
twice PVM’s. However, because PVM’s bandwidth is
not limited by the prefetch queue, its bandwidth even-
tually surpasses Pull FM’s. PVM’s bandwidth is 37.5
Mbytes/s for 32-Kbyte messages.

As expected, Shmem put’s bandwidth exceeds FM’s.
However, for messages between 1 and 8 Kbytes, Push
FM’s bandwidth is almost identical to Shmem put’s.
Unlike Push FM, however, Shmem put does not suf-
fer from cache effects for messages larger than 8 Kbytes.
Therefore, its bandwidth does not drop after reaching
its peak of 120.0 Mbytes/s for 32-Kbyte messages.
Because Shmem put does no buffer management, its
fixed overhead is reduced enough to give it an 8-byte
message bandwidth of 10.5 Mbytes/s. Shmem get’s
bandwidth is less than Shmem put’s, and even less than
Push FM’s for messages larger than 32 bytes. However,
it performs better than Pull FM. While Shmem get’s
8-byte bandwidth is a reasonably high 6.2 Mbytes/s,
remote loads limit its bandwidth to 35.3 Mbytes/s for
32-Kbyte messages.

Two useful implementations
Figure 4 demonstrates that while FM supplies PVM-
like delivery guarantees, it does so at a cost comparable
to the raw data-movement cost (Shmem put). Although
Pull FM might appear unnecessary—Push FM exhibits
superior latency and bandwidth—it performs much bet-
ter than Push FM for heavy network traffic, especially
when communication patterns are irregular.4 The Con-
cert runtime,5 for instance, uses Pull FM exclusively,
because the communication irregularity inherent to
Concert programs makes communication robustness
dominate overall performance more than baseline
latency or bandwidth does.

These two FM implementations demonstrate the
advantages of a well-defined communication interface.
The FM interface’s design enabled two distinct imple-
mentations which, although suitable for different appli-
cation and network behaviors, can be used interchange-
ably. Because the implementations have significantly
different performance characteristics, application pro-
grams benefit from selective use of the two libraries—

.

even in the same program. FM delivers communication
performance close to the maximum achievable by the
underlying hardware, demonstrating that its interface
need not incur significant overhead.

Myrinet FM implementation

Our workstation cluster implementation of FM uses
Myricom’s 640-million (106, as opposed to megabits—
220) bits-per-second switched network7 and a collection
of Sun Sparcstation workstations. The network exhibits
per-hop latencies of approximately 0.5 µs. Packets are
wormhole-routed, so if an output port is busy, the packet
is blocked in place. Packets blocked for greater than 50
ms are dropped.

In place of the DTB annex on the T3D nodes’ mem-
ory bus, the Myrinet card has the LANai, a programma-
ble CPU that has 128 Kbytes of SRAM and attaches to
the Sparcstation’s I/O bus (SBus) (see Figure 5). (Our
Myrinet cards contain LANai version 3.2, a prototype
of the LANai 4.0 processor, but with less memory band-
width and more limited clock speeds—less than 25
MHz.) The LANai contains three DMA (direct mem-
ory access) engines—one that transfers between the
LANai and host memory (shown in the
figure) and two that transfer between the
network and the LANai memory (not
shown, but included in the Myrinet inte-
face). The host and the LANai commu-
nicate through the sharing of LANai
memory (mapped into the host’s address
space) or host memory (via DMA to or
from the LANai).

While the FM interface for Myrinet is
identical to that on the T3D, the differ-
ences in hardware structure dictate a
substantially different implementation.

FULFILLING THE GUARANTEES

Of course, the three guarantees (reliable
delivery, in-order delivery, and decoupling
of the network and processor) also apply to
FM implementations for workstation clus-
ters. Decoupling is particularly important
in workstation clusters, which often operate
without coordinated process scheduling.
Tens or even hundreds of milliseconds
might pass before a receiver process is
scheduled. These challenges are exacer-
bated by several additional hardware
constraints:

• The LANai processor is approximately 20 times
slower than the host processor;

• The LANai has insufficient memory to effectively
buffer messages—only 1.5 milliseconds’ worth at net-
work speed; and

• DMA to or from host memory requires that the pages
be pinned (that is, marked unswappable).

Myrinet FM’s design ensures reliable, in-order deliv-
ery with end-to-end window-based flow control and
FIFO queueing at all levels. FM uses three queues: a
send queue in the LANai, a receive queue in the LANai
(used as a staging area), and a larger receive queue in the
host’s memory (in a pinned-down region).

Message transmission consists of four steps (see Fig-
ure 6). In Step 1, the host processor uses double word
stores to move the message data directly into the send
queue. Processor I/O eliminates the cost of copying the
data into a pinned DMA-able buffer accessible by the
network interface. (In our SBus-based Sparcstation 20’s,
processor I/O cannot use burst transaction mode. Hence,
this solution improves latency at the expense of band-
width. We expect this penalty will be eliminated in future

Myrinet
interface

Packet
interface

DMA
engineCPU

Data bus

Address bus

Memory
(SRAM)

I/O bus interface

M
yr

in
et

sw
itc

h

LANai
chip

Bus-specific
logic

Figure 5. The Myrinet interface.

Source Destination

ProcessorMemory LANai Processor MemoryLANai

1
Store into

send queue

DMA into
network

2
3

4 DMA into
host memory

DMA into
LANai memory

Figure 6. Messaging on the Myrinet.

April–June 1997 67

.

68 IEEE Concurrency

machine designs—particularly those based on PCI—
thereby doubling or tripling FM’s peak bandwidth.)

The host LANai detects the outgoing packet and
sends it via DMA into the network (Step 2). The remote
LANai then detects the incoming packet and receives
it into its memory (Step 3). Finally, the remote LANai
sends the message data buffered in its memory to the
host, where the receiving process can directly access it
with high efficiency (Step 4). This last step ensures good
bandwidth, quick delivery of the packet, and prompt
draining of the network, even when the host process is
busy or not available (that is, if the FM host program is
descheduled).

Myrinet FM’s end-to-end window flow-control
scheme ensures that no packets are lost because of buffer
overflow. Each sender is allocated a fraction of a receiv-
ing node’s host memory queue size (credits), and the
sum of the allocated fractions cannot exceed the total
storage in the queue. So, even if a process neglects to
remove data from the network, eventually all of the
senders will stop, having used up their credits (that is,

filled their allocated buffers), and no message data will
be lost. Furthermore, because FM decouples the host
and the network, host unresponsiveness will not pre-
vent messages from being drained from the network.
Thus, the Myrinet 50-ms time-out never occurs, and
packets are never dropped. Whenever a receiver does
remove a message from the queue, however, it sends a
credit to the sender to recycle the buffers. (We aggre-
gate credit messages and—when possible—piggyback
credit on ordinary messages for greater efficiency.)
Because the network and all the queues in the sender
and receiver are FIFO, message ordering is preserved.

PERFORMANCE

We’ll now compare FM to Myricom’s Myrinet API, a
similar low-level messaging layer. Like FM, the Myrinet
API is a combination of LANai and host code. The
API’s structure is similar to that of traditional network-
ing interfaces for Ethernet.

The Myrinet API has three significant differences
from the FM API. First, in the Myrinet API, the host
and the LANai communicate through command FIFOs
(for example, the host tells the LANai it has a packet to
send by writing a send command into a queue). Using
command queues requires additional synchronization
between the host and the LANai, increasing the over-
head for communication. Second, the Myrinet API uses
DMA on the send side. This requires an extra memory
copy (to move the data from the user’s data structures
into the pinned memory region) and some host-LANai
synchronization, which increases overhead. FM uses
programmed I/O on the send side to eliminate this over-
head. Third, the Myrinet API does not guarantee reli-
able, in-order delivery. The user must allocate receive
buffers in a timely manner (coupling the processor and
network), or message data might be lost. These differ-
ences produce significantly worse latency for the
Myrinet API, as we’ll show next.

Although FM provides much stronger guarantees
than the Myrinet API, it still delivers superior perfor-
mance. Figure 7 illustrates the one-way latency and
bandwidth of Myrinet FM running on a Myrinet net-
work containing a pair of Sparcstation 20s with 75-MHz
SuperSparc-II processors and 1 Mbyte of level 2 cache.

Myrinet FM 1.1 uses 128-byte fixed-size packet frames.
Messages greater than 128 bytes require segmentation
and reassembly, which produces some slight performance
anomalies in the transitional region around that message
size. Hence, the latency curve is flat up to 128 bytes and
then increases linearly with message size. FM’s bandwidth

(a)

(b)

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
1

10

100

1000

10,000

On
e-

w
ay

 la
te

nc
y

(m
ic

ro
se

co
nd

s)

FM
Myrinet API

8 16 32 64 128 256 512 1K 2K 4K 8K 16K
Message size (bytes)

0

10

20

30

40

50

Ba
nd

w
id

th
 (M

by
te

s/
s)

FM
Myrinet API

Message size (bytes)

Figure 7. Myrinet FM versus the Myrinet API: (a)
latency; (b) bandwidth.

.

April–June 1997 69

peaks at 17.5 Mbytes/s, limited by the I/O bus bridge
implementations. This limit disappears with I/O bus
bridges that support write aggregation (that is, exploit
bus burst mode for programmed I/O), such as Pentium
Pro systems with PCI buses. As in the T3D version,
Myrinet FM’s performance approaches the maximum
possible by the hardware (in the Sparcstation’s case,
approximately 23 Mbytes/s for programmed I/O band-
width over the bus bridge).

The Myrinet FM implementation demonstrates that
FM ports well to rather different types of hardware.
Because the underlying hardware does not provide all the
needed guarantees, our implementation includes some
LANai firmware and a host-processor library that together
provide the requisite service guarantees. The cost for sup-
porting these guarantees is not excessive, as the high
absolute performance of Myrinet FM demonstrates. Also,
the resulting performance is significantly better than that
of the traditional organization presented by the Myrinet
API, especially for small to medium messages.

Delivering performance to higher
layers
Many high-speed messaging layers achieve good per-
formance by relegating costly operations to higher-level
layers. Although this makes the low-level layer appear
fast, it generally degrades actual, application-level per-
formance. This is because higher-level layers must add
the missing functionality, often at a higher price than
the lower-level layer would have paid.

A successful low-level messaging layer must enable
the construction of efficient higher-level messaging soft-
ware. It must also be able to deliver a significant amount
of its performance to that software and, ultimately, to
applications.

To evaluate FM from this perspective, we built two
higher-level messaging interfaces atop it: MPI1 and Unix
sockets. MPI is a standard of increasing importance for
both parallel and distributed message-passing programs.
Sockets are a long-standing standard for building multi-
process and, particularly, client-server applications. Our
implementation of MPI is a port of the mpich8 version.
However, we significantly restructured the code to
reduce both buffer copies and control-path overhead.9
We ran this version of FM on the same system we used
to test Myrinet FM.

Figure 8 indicates that FM makes the high perfor-
mance of the underlying network hardware accessible
to higher-level messaging layers. MPI imposes addi-

tional processing overhead (approximately 5 µs, which
is modest compared to many other implementations),
which reduces performance for short messages. How-
ever, we have worked hard to minimize this effect, and
messages of modest size—as small as 256 bytes—achieve
near-peak network performance.9

For comparison, Figure 8 includes performance data
for the IBM SP2’s two versions of MPI. Mpich (SP2) is
a port of mpich to the SP2, and MPIF (SP2) is an MPI
implementation written and optimized specifically for
the SP2. MPI-FM exhibits latency and bandwidth supe-
rior to both SP2 MPIs for messages smaller than 4
Kbytes. At that point, MPI-FM’s performance levels off
because of the limited programmed I/O bandwidth over
the SBus bridge.

To implement the Unix sockets interface, we built a
user-level library that is linked to an application pro-
gram and that makes calls to the underlying FM imple-
mentation. FM Sockets supports a socket interface to
both byte-stream and datagram transport services (such
as TCP and UDP). Preliminary performance numbers

8 16 32 64 128 256 512 1K 2K 4K 8K 16K32K64K
Message size (bytes)

0

5

10

15

20

25

30

35

Ba
nd

w
id

th
 (M

by
te

s/
s)

mpich (SP2)
MPIF (SP2)
MPI-FM
FM

(a)

(b)

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K
Message size (bytes)

1

10

100

1,000

On
e-

w
ay

 la
te

nc
y

(m
ic

ro
se

co
nd

s)

mpich (SP2)
MPIF (SP2)
MPI-FM
FM

Figure 8. MPI-FM performance: (a) latency; (b)
bandwidth.

.

70 IEEE Concurrency

for FM Sockets (see Figure 9) indicate a much larger
control overhead than the MPI-FM implementation.
The major reason is the rather complex means by which
sockets implementations exchange data with applica-
tions and the network. Because sockets implement byte
streams without clear message boundaries, both appli-
cations and the socket layer itself cannot easily optimize
buffer allocation and data movement. (Some sockets
implement datagrams, but byte streams are the general
case.) The latency numbers reflect the additional con-
trol overhead from dealing with irregular and unpre-
dictable amounts of data.

Also, FM Sockets does not achieve raw FM’s band-
width of 17.5 Mbytes/s, because FM’s receive queue
needs to be marked uncacheable to ensure consistency
when using hyperSparc CPUs (as were used in Figure
9). Hence, the cost of segmentation and reassembly
greatly increases.

Given those limitations, FM Sockets achieves good
performance, partly because FM already provides reli-
able, in-order delivery, thereby obviating the need to

implement it in the socket layer. Because FM provides
the important guarantees, higher-level messaging layers
can achieve performance approaching FM’s.

We compared FM Sockets to Myricom’s TCP and
UDP implementations. (The Myricom results are based
on third-party measurements.10) As Table 1 shows, FM
Sockets outperforms the Myricom implementation. In
particular, FM Socket’s latency is an order of magni-
tude better than that of Myricom’s TCP and UDP.
However, this is not really a fair comparison. Myricom
implemented TCP and UDP as standard, kernel-level
drivers, while FM Sockets runs entirely at the user level.
Still, it illustrates the benefits of implementing sockets
on top of FM.

FM sacrifices a tiny amount of its raw performance
for a large increase to the system’s overall performance.11

By providing generally useful service guarantees such
as reliable, in-order delivery, FM saves messaging lay-
ers and applications built on top of it from the burden
and performance penalty of adding those features.
Hence, not only is FM capable of low-latency, high-
bandwidth communication, but so are the messaging
layers built on top of it.

However, while we have achieved good performance,
the design of the MPI and Unix sockets interfaces has
given us insight into ways to improve the FM interface,
which we’ve incorporated into FM 2.0 (see the “FM
2.0” sidebar).

Although FM’s original goal was to support
more efficient parallel computation, such
high-speed communication systems can
have a much broader impact on distrib-
uted computing. Such a system’s addi-

tional requirements include

• support for multiple users and processes per node,
• coordinated scheduling,
• integrating separately managed computing domains,

and
• interoperability with traditional networks and net-

working protocol structures.

Distributed systems typically run multitasking oper-
ating systems on each node. This implies that if multi-
ple, independent processes on the same node want to
use the network concurrently, the communication sub-

(a)

(b)

16 32 64 128 256 512 1K 2K 4K
Message size (bytes)

1

10

100

1,000

On
e-

w
ay

 la
te

nc
y

(m
ic

ro
se

co
nd

s)

Byte streams
Datagrams

16 32 64 128 256 512 1K 2K 4K
Message size (bytes)

0

2

4

6

8

10

12

Ba
nd

w
id

th
 (M

by
te

s/
s)

Byte streams
Datagrams

Figure 9. FM Sockets performance: (a) latency; (b)
bandwidth.

.

April–June 1997 71

system must prevent inadvertent interactions. Messag-
ing layers such as FM should therefore provide protec-
tion between processes as well as a way to demultiplex
messages to the appropriate process on a destination
node. The challenge in doing so efficiently involves a
complex tradeoff between dedicating resources and
inline interpretation overhead.

Because each node runs its operating system inde-
pendently from other nodes, communicating processes
are often not scheduled simultaneously. This lack of
coscheduling can drastically increase response time—
often into the tens-of-milliseconds range—and thereby
severely reduce performance. Gang scheduling is inap-
propriate in the context of multiuser, multitasking oper-
ating systems because it requires scheduling decisions
to be globally agreed upon. This is costly and scales
poorly. A better approach is to integrate communica-
tion and scheduling. That is, FM and the operating sys-
tem should work together to coschedule communicat-
ing processes by exploiting local process information
and information about message arrival and launch. We
have already implemented a version of FM that does
exactly that, but our implementation is limited to a sin-
gle communicating thread per node. Ongoing work
involves generalizing the algorithm and implementa-
tion to support an arbitrary number of threads and
processes per node.

Among the challenges in converting from a strictly
parallel to an integrated parallel and distributed model is
support for large-scale computing—computing on sys-
tems with more nodes than fit in a single administrative
domain. For such systems, communication layers sup-
port extremely large numbers of nodes. Again, this entails
challenges in resource management. For example, we
might need to replace FM’s static window-based flow-
control scheme with something more dynamic.

Finally, much networking code exists and low-speed
networks still predominate. To incrementally integrate
high-speed communication systems into existing net-
works running legacy software, these high-speed and
low-speed systems must interoperate. That is, messag-
ing layers such as FM must be able to interact with
established networking protocol structures without sac-
rificing an inordinate amount of performance on high-
speed networks.

ACKNOWLEDGMENTS

The research described in this article was supported in part by DARPA
Order #E313 through US Air Force Rome Laboratory Contract

F30602-96-1-0286, NSF Grant MIP-92-23732, and NASA Grant
NAG 1-163. We also gratefully acknowledge support from the Intel
Corp., Tandem Computers, Hewlett-Packard, Microsoft, and
Motorola. Andrew Chien is supported in part by NSF Young Inves-
tigator Award CCR-94-57809.

REFERENCES
1. Message Passing Interface Forum, MPI: A Message Passing Inter-

face Standard, Tech. Report Version 1.1, Univ. of Tennessee,
Knoxville, Tenn., 1995; ftp://ftp.mcs.anl.gov/pub/mpi/mpi-1.
jun95/mpi-report.ps.Z.

2. T. von Eicken et al., “Active Messages: A Mechanism for Inte-
grated Communication and Computation,” Proc. 19th Ann. Int’l
Symp. Computer Architecture, IEEE Computer Society Press, Los
Alamitos, Calif., 1992, pp. 256–266; http://www.cs.cornell.edu/
Info/Projects/CAM/isca92.ps.

3. V. Karamcheti and A.A. Chien, “Software Overhead in Messag-
ing Layers: Where Does the Time Go?” Proc. Sixth Symp. Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS-VI), ACM Press, New York, 1994, pp. 51–60; http://
www-csag.cs.uiuc.edu/papers/asplos94.ps.

4. V. Karamcheti and A.A. Chien, “A Comparison of Architectural
Support for Messaging on the TMC CM-5 and the Cray T3D,”
Proc. 22nd Ann. Int’l Symp. Computer Architecture, IEEE CS Press, 1995,
pp. 298–307; http://www-csag.cs.uiuc.edu/papers/cm5-t3d-messaging.ps.

5. V. Karamcheti, J. Plevyak, and A.A. Chien. “Runtime Mecha-
nisms for Efficient Dynamic Multithreading,” J. Parallel and Dis-
tributed Computing, Vol. 37, No. 1, 1996, pp. 21–40; http://
www-csag.cs.uiuc.edu/papers/rtperf.ps.

6. H. Tezuka, A. Hori, and Y. Ishikawa, “PM: A High-Performance
Communication Library for Multi-user Parallel Environments,”
Tech. Report TR-96-015, Real World Computing Partnership,
Tsukuba Research Center, Tsukuba, Japan, 1996; http://www.
rwcp.or.jp/papers/1996/mpsoft/tr96015.ps.gz.

7. N.J. Boden et al., “Myrinet: A Gigabit-per-Second Local-Area
Network,” IEEE Micro, Vol. 15, No. 1, Feb. 1995, pp. 29–36;
http://www.myri.com/research/publications/Hot.ps.

8. W. Gropp and E. Lusk, User’s Guide for mpich, a Portable Imple-
mentation of MPI, Tech. Report ANL/MCS-TM-ANL-96/6,
Mathematics and Computer Science Div., Argonne Nat’l Lab-
oratory, Argonne, Ill., 1996; http://www.mcs.anl.gov/mpi/
mpiuserguide/paper.html and ftp://info.mcs.anl.gov/pub/mpi/
userguide.ps.Z.

9. M. Lauria and A.A. Chien, “MPI-FM: High Performance MPI
on Workstation Clusters,” to appear in J. Parallel and Distributed
Computing, Feb. 1997; http://www-csag.cs.uiuc.edu/papers/jpdc97-
normal.ps.

Table 1. FM Sockets performance compared to
Myricom TCP and UDP. (Myricom results are

based on third-party measurements.10)

MESSAGING LAYER 8-BYTE, ONE-WAY PEAK BANDWIDTH

LATENCY (µS) (MBYTES/S)

FM Sockets—byte streams 34.8 11.3
Myricom TCP 751.0 9.4
FM Sockets—datagrams 33.3 11.3
Myricom UDP 721.5 9.8

.

72 IEEE Concurrency

10. K.K. Keeton, T.E. Anderson, and D.A. Patterson, “LogP Quan-
tified: The Case for Low-Overhead Local Area Networks,” Hot
Interconnects III: A Symp. High Performance Interconnects, 1995;
http://now.cs.berkeley.edu/Papers/Papers/hotinter95-tcp.ps.

11. S. Pakin, M. Lauria, and A.A. Chien, “High Performance Mes-
saging on Workstations: Illinois Fast Messages (FM) for
Myrinet,” Proc. Supercomputing ’95 (on CD-ROM), IEEE CS
Press, 1995; http://www-csag.cs.uiuc.edu/papers/myrinet-fm-sc95.ps.

Scott Pakin is in the doctoral program in computer science at the
University of Illinois at Urbana-Champaign. He is also a member of
Andrew Chien’s Concurrent Systems Architecture Group. His
research interests include high-speed communication for workstation
clusters and coordinated scheduling. He received his MS in computer
science from the University of Illinois at Urbana-Champaign in 1995
and his BS in mathematics/computer science from Carnegie Mellon
University in 1992. He is a student member of the IEEE. He can be
contacted at 1304 W. Springfield Ave., Urbana, IL 61801; pakin@
cs.uiuc.edu.

Vijay Karamcheti is completing his PhD in the Electrical and
Computer Engineering Department at the University of Illinois at
Urbana-Champaign. He is also a member of Andrew Chien’s Con-
current Systems Architecture Group. His research interests include
high-performance communication for parallel machines and runtime
system design for supporting irregular parallelism. He received his
MS in electrical and computer engineering from the University of
Texas, Austin, in 1990 and his B.Tech. in electrical engineering from
the Indian Institute of Technology, Kanpur, in 1988. He can be con-
tacted at 1304 W. Springfield Ave., Urbana, IL 61801; vijayk@
cs.uiuc.edu.

Andrew A. Chien is an associate professor in the Department of
Computer Science at the University of Illinois at Urbana-Champaign,
where he holds a joint appointment as an associate professor in the
Department of Electrical and Computer Engineering and as a senior
research scientist with the National Center for Supercomputing Appli-
cations. He also leads the Concurrent Systems Architecture Group.
The primary goals of his research involve the interaction of pro-
gramming languages, compilers, system software, and machine archi-
tecture in high-performance parallel systems. He received his BS in
electrical engineering in 1984 and his MS and PhD in computer sci-
ence in 1987 and 1990, all from the Massachusetts Institute of Tech-
nology. He received an NSF Young Investigator Award in 1994, the
C.W. Gear Outstanding Junior Faculty Award in 1995, and the Xerox
Senior Faculty Award for Outstanding Research in 1996. He can be
contacted at 1304 W. Springfield Ave., Urbana, IL 61801; achien@
cs.uiuc.edu.

FM 2.0

The FM 2.0 interface consists of these functions:

• FM_begin_message(dest,size,handler)

opens a streamed message.
• FM_send_piece(stream,buf,size) adds data to

a streamed message.
• FM_end_message(stream) closes a streamed

message.
• FM_extract(maxbytes) processes up to maxbytes

of received messages.
• FM_receive(buf,stream,size) receives data

from a streamed message into a buffer.

It incorporates improvements based on our experience
with FM Sockets and MPI-FM (see “Delivering perfor-
mance to higher layers” in the main article). Although FM
1.1 supports ordered, reliable delivery and decoupling of
communication and computation, it sometimes still
requires higher-level messaging layers to perform mem-
ory copies, because it lacks network pacing and gather/scat-
ter functionality.

NETWORK PACING

FM Sockets exposed the need for network pacing.
FM_extract() is called only when an FM Sockets -
program posts a receive (that is, calls recv(),
recvfrom(), or recvmsg()). But because FM_
extract() processes the entire receive queue, FM Sock-
ets is forced to buffer (that is, copy) a potentially large
amount of data. When subsequent receives are posted, FM
Sockets must again copy data, this time from the unposted
receive buffer into a program-specified location.

FM 2.0 reduces such additional memory copying by
allowing higher-level messaging layers to pace message
processing by specifying the maximum number of bytes
that FM_extract() processes. Thus, rather than pro-
cessing all available data on a socket receive operation, FM
Sockets needs to process data only until the overlying pro-
gram’s receive request is satisfied. This control also lets
FM 2.0 programs more effectively schedule communica-
tion processing with computation (for example, to amor-
tize communication costs behind computation time).

GATHER/SCATTER

MPI-FM validated the importance of gather/scatter—
initially deferred to higher-level messaging layers for imple-
mentation if needed. MPI-FM adds protocol-specific head-
ers to the beginning of each message. Without gather/scat-
ter built into FM, higher-level messaging layers must copy

For further reference

FM software distributions and the latest information
about the FM project are available from http://www-
csag.cs.uiuc.edu/projects/comm/fm.html.

.

April–June 1997 73

program data twice: once on the send side to append proto-
col-specific headers and once on the receive side to strip those
headers. These extra copies hurt performance significantly.1
Traditional gather vectors (lists of <length,offset> pairs sent
in sequence) remove copies on the send side, but traditional
scatter vectors are insufficient for removing copies on the
receive side, because a message’s target location is known only
when the message header is parsed.

Instead of gather/scatter vectors, FM 2.0 implements gather
and scatter using streaming messages. Message data is written
and read piecewise via a stream abstraction. On the send side,
a higher-level messaging layer opens a message with
FM_begin_message(), appends zero or more pieces of
data to the message with FM_send_piece() (for example,
a header followed by program data), and finally closes the
message with FM_end_message(). On the receive side, a
message handler is passed an opaque “stream” object instead
of a pointer to a piece of memory. The handler receives data
piecewise from the stream object, specifying a target mem-
ory location for each FM_receive(). Because each mes-
sage is a stream of bytes (unlike TCP, which does not possess
the concept of a message), the size of each piece received need
not equal the size of each piece sent, as long as the total mes-
sage sizes match. Thus, higher-level receivers can examine a
message header and, based on its contents, scatter the message
data to appropriate locations. The streaming interface is pos-
sible only because FM provides end-to-end flow control.

The streaming-message interface also allows the pipelin-
ing of individual messages; message processing can begin at
the receiver even before the sender has finished. This
increases the throughput of higher-level messaging layers
built atop FM.

PERFORMANCE

Although FM 2.0 is more powerful than FM 1.1, this strength
does not necessarily penalize performance severely. Figure A
shows the performance of Myrinet FM 2.0 on a pair of Dell
Optiplex GXPros (200-MHz Pentium Pro-based PCs) and
a pair of Sun Ultra-1 computers.

This figure shows the performance of FM 2.0 on two dif-
ferent types of workstations. As a rough point of compari-
son, the figure also repeats the FM 1.1 results from the main
text of this article. Even with the streaming-message inter-
face, FM 2.0 exhibits low latency and high bandwidth. FM
2.0’s minimum latency is similar on the two types of sys-
tems—11.7 ms on the Dells and 12.81 ms on the Ultra-1s.
However, FM 2.0’s maximum bandwidth is far superior on
the Dells than on the Ultra-1s (56.3 ms versus 32.0 ms). This
is because FM 2.0 takes advantage of the Dell’s PCI bus,
which is much faster than the Ultra-1’s SBus. Specifically,

FM 2.0 employs PCI write combining on the send side,
which enables consecutive writes to occur as rapid burst
transactions.

FM 2.02, a heavily optimized but fully compatible imple-
mentation of the FM 2.0 interface, achieves a minimum
latency of 8.0 ms and a maximum bandwidth of 88.0 Mbytes/s
on the same Dells as we used above. FM 2.02 will be avail-
able soon from http://www-csag.cs.uiuc.edu/projects/comm/ sw-
releases.html.

Reference
1. M. Lauria and A.A. Chien, “MPI-FM: High Performance MPI

on Workstation Clusters,” to appear in J. Parallel and Distrib-
uted Computing, Feb. 1997; http://www-csag.cs.uiuc.edu/papers/
jpdc97-normal.ps.

8 16 32 64 128 256 512 1K 2K 4K 8K 16K
Message size (bytes)

0

10

20

30

40

50

60

Ba
nd

w
id

th
 (M

by
te

s/
s)

FM 2.0 on Pentium Pro PCs
FM 2.0 on Sun Ultra-1s
FM 1.1 on SS20s

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
Message size (bytes)

1

10

100

1,000

10,000

On
e-

w
ay

 la
te

nc
y

(m
ic

ro
se

co
nd

s)

FM 2.0 on Pentium Pro PCs
FM 2.0 on Sun Ultra-1s
FM 1.1 on SS20s

Figure A. FM 2.0 performance: (a) latency;
(b) bandwidth.

.

