Don Savage Headquarters, Washington, DC April 15, 1996 (Phone: 202/358-1547) Tammy Jones Goddard Space Flight Center, Greenbelt, MD (Phone: 301/286-5566) Ray Villard Space Telescope Science Institute, Baltimore, MD (Phone: 410/338-4514) Lia Unrau Rice University, Houston, TX (Phone: 713/831-4793) RELEASE: 96-74H HUBBLE FINDS THOUSANDS OF GASEOUS FRAGMENTS AROUND STAR Resembling a bizarre setting from a science fiction movie, dramatic images sent back by NASA's Hubble Space Telescope have surprised astronomers by uncovering thousands of gigantic tadpole- shaped objects surrounding a dying star. Dubbed "cometary knots" because their glowing heads and gossamer tails superficially resemble comets, they are probably the result of a dying star's final outbursts. Although ground-based telescopic observations have hinted at such objects, they have not previously been seen in such abundance, say researchers. The knots were detected by Hubble astronomer C. Robert O'Dell and graduate student Kerry P. Handron of Rice University in Houston, TX, while exploring the Helix nebula, a ring of glowing gases blown off the surface of a sunlike star late in its life. O'Dell expects the gaseous knots, which are each several billion miles across, will eventually dissipate and vanish into the cold emptiness of interstellar space. However, he speculates that if the objects contract to form permanent solid bodies, they may contribute to a fraction (less than ten percent) of the missing mass of our galaxy, simply because of their sheer abundance around a typical dying star. The mysterious "space pods" came into view as O'Dell used Hubble's Wide Field Planetary Camera 2 to survey the Helix nebula, located 450 light-years away in the constellation Aquarius and the closest planetary nebula to Earth -- so close that its angular size is almost half that of the full Moon. The most visible cometary knots all lie along the inner edge of the ring, at a distance of trillions of miles from the central star. Their comet-like tails, each stretching a hundred billion miles, form a radial pattern around the star like the spokes on a wagon wheel. Though previous ground-based observations show a spoke pattern in the Helix, and some structure, O'Dell emphasizes that the Hubble images reveal an underlying population of many more smaller objects. O'Dell made the observation because he was curious if these objects were the result of the star's final outburst which would bring comets out of "cold storage" by boiling off the icy, solid comet nuclei. This is how comets behave as they swing near our Sun. The knots have just the right appearance and are at just the right distance from the dying star to be a long-sought comet cloud -- much like the hypothesized Oort cloud encircling our solar system. However, each gaseous cometary "head" is at least twice the diameter of our solar system -- far too large for the gaseous shell, called a coma, that surrounds an active comet as we know it. The most likely explanation is the objects have been formed during the final years of a star's life when it ejects shells of gas into space. This "planetary nebula" formation happens in stages where, toward the end of the process, a faster moving shell of gas ejected off the doomed star collides with slower moving gas released ten thousand years before. Standard models predict that the knots should expand and dissipate within a few hundred thousand years. However, dust particles inside each gas ball might collide and stick together, snowballing to planet-sized bodies over time. The resulting objects would be like Earth-sized copies of the frigid, icy planet Pluto. These icy worlds would escape the dead star and presumably roam interstellar space forever. If this phenomena is common among stars, then our galaxy could be littered with trillions of these objects, O'Dell concludes. "Planetary nebulae have been formed in our galaxy for billions of years and about one new one is created every year since this is the usual ending for the billions of sunlike stars inhabiting our Milky Way galaxy." Hubble will be used to search more distant planetary nebulae for similar features. O'Dell hopes to revisit the Helix in a few years and take more images which might reveal the outward motion of the knots. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). - end - EDITOR'S NOTE: Two images to accompany this release are available to media representatives by calling the Imaging Branch on 202/358-1900. Photo numbers are: Color B&W Helix Nebula: 96-HC-215 96-H-215 Helix detail 96-HC-216 96-H-216 Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from ftp.stsci.edu in /pubinfo GIF JPEG PRC96-13a Helix Nebula gif/HelixF.gif jpeg/HelixF.jpg PRC96-13b Helix Detail gif/HelixD.gif jpeg/HelixD.jpg Higher resolution digital versions (300dpi JPEG) of the release photographs will be available temporarily in /pubinfo/hrtemp: 96-13a.jpg, 96-13b.jpg (color), 96-13aBW.jpg and 96-13bBW.jpg (black/white). GIF and JPEG images, captions and press release text are available via World Wide Web at: http://www.stsci.edu/pubinfo/PR/96/13.html and via links in: http://www.stsci.edu/pubinfo/Latest.html or http://www.stsci.edu/pubinfo/Pictures.html. NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the message (not the subject line) users should type the words "subscribe press-release" (no quotes). The system will reply with a confirmation via E-mail of each subscription. A second automatic message will include additional information on the service. NASA releases also are available via CompuServe using the command GO NASA.