NEarth: Current guesses & Future constraints

Jack J. Lissauer NASA Ames

Navigator Forum - 2007, May 17

Why do we care?

Why we care!

Current exoplanet data

- Current exoplanet data
- What do we mean by η_{Earth} ?

- Current exoplanet data
- What do we mean by η_{Earth} ?
- Small planets around small stars: Observations & theories

- Current exoplanet data
- What do we mean by η_{Earth} ?
- Small planets around small stars: Observations & theories
- Expected constraints from Doppler RV

- Current exoplanet data
- What do we mean by η_{Earth} ?
- Small planets around small stars: Observations & theories
- Expected constraints from Doppler RV
- Expected constraints from microlensing

- Current exoplanet data
- What do we mean by η_{Earth} ?
- Small planets around small stars: Observations & theories
- Expected constraints from Doppler RV
- Expected constraints from microlensing
- Expected constraints from imaging

- Current exoplanet data
- What do we mean by η_{Earth} ?
- Small planets around small stars: Observations & theories
- Expected constraints from Doppler RV
- Expected constraints from microlensing
- Expected constraints from imaging
- Expected constraints from SIM

- Current exoplanet data
- What do we mean by η_{Earth} ?
- Small planets around small stars: Observations & theories
- Expected constraints from Doppler RV
- Expected constraints from microlensing
- Expected constraints from imaging
- Expected constraints from SIM
- Expected constraints from Kepler

Extrasolar Planets: Key Findings

- ~ 1% of sunlike stars have planets more massive than Saturn within 0.1 AU
 - Most if not all are gas giants
 - Models suggest these planets migrated inwards
- ~ 7% of sunlike stars have planets more massive than Jupiter within 2 AU
 - Some of these planets have very eccentric orbits
- At least a few % of sunlike stars have Jupiter-like $(0.5 2 M_J, 4 AU < a < 10 AU)$ companions, but > 20% do not
- Small planets are more common than more massive ones
- More (giant) planets around stars with more metals

Extrasolar Planets: Key Findings

- ~ 1% of sunlike stars have planets more massive than Saturn within 0.1 AU
 - Most if not all are gas giants
 - Models suggest these planets migrated inwards
- ~ 7% of sunlike stars have planets more massive than Jupiter within 2 AU
 - Some of these planets have very eccentric orbits
- At least a few % of sunlike stars have Jupiter-like $(0.5 2 M_J)$, 4 AU < a < 10 AU) companions, but > 20% do not
- Small planets are more common than more massive ones
- More (giant) planets around stars with more metals
- Note: Key findings relate to planets quite different from Earth.

What do we require to consider a planet **Earthlike**?

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

NASA/JPL-Caltech/R. Hurt (SSC)

Gliese 581 c

The first habitable exoplanet?

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Properties of GJ 581 c

- $M \sin i \sim 5 6 M_{\text{Earth}}$, so $M \sim 6 9 M_{\text{Earth}}$
- Composition unknown
 - Local growth requires dense disk, yields few volatiles
 - Migration suggests gas-rich (especially because of more massive GJ 581 b orbiting interior)
- Stellar radiation very red
 - Planet may orbit interior to habitable zone
- Bottom line: Very un-Earthlike

Properties of GJ 581 c

- $M \sin i \sim 5 6 M_{\text{Earth}}$, so $M \sim 6 9 M_{\text{Earth}}$
- Composition unknown
 - Local growth requires dense disk, yields few volatiles
 - Migration suggests gas-rich (especially because of more massive GJ 581 b orbiting interior)
- Stellar radiation very red
 - Planet may orbit interior to habitable zone
- Bottom line: Very un-Earthlike
- Observational issue: Small angular separation

Planets around M dwarfs may be Hellish places

Anticipated constraints from Doppler RV

Planets down to a few M_{Earth} in HZ's of M dwarfs

~ 10 M_{Earth} in HZ's of sunlike stars

Anticipated constraints from Microlensing

Planets down to ~ M_{Earth} orbiting a few AU from (in most cases) M dwarfs

Might do better from space

Anticipated constraints from Imaging

Outer giant planets from the ground

Capabilities from space depend on technology advances and \$\$

Anticipated constraints from Imaging

Outer giant planets from the ground

Capabilities from space depend on technology advances and \$\$

Space imaging most promising for characterizing exoearths; not a cost-effective way to determine η_{Earth}

Anticipated constraints from SIM

A few true Earth analogs (1 M_{Earth} in Habitable Zones of sunlike stars) if $\eta_{Earth} \sim 1$

Anticipated constraints from SIM

A few true Earth analogs (1 M_{Earth} in Habitable Zones of sunlike stars) if $\eta_{Earth} \sim 1$

But timeframe bad news for TPF.

Anticipated constraints from Kepler

HZ for 4 years & 3 Transits, and Magnitude < 16

Anticipated constraints from Kepler

KEPLER EXPECTED TO DETECT **TRUE EARTH ANALOGS**

Two dozen 1 R_{Earth} planets orbiting 1 AU from G stars will be detected if such planets are the norm. More if *Kepler* lasts 6 years.
More Earth-sized planets can be found in HZ's of K and M stars than of G stars.

•Numbers for G and K stars increase substantially if 1.3 R_{Earth} planets are common.

"Well, this mission answers at least one big question: Are thereDrawing by H. N
The New Yorkerother planets like ours in the universe?"

η_{Earth}: Current guesses & Future constraints

- Observations don't yet constrain η_{Earth} ; not even close
- Theoretical uncertainties: Initial conditions, migration, ... (Theory is far better for interpolation than extrapolation)
- *Kepler* should provide estimate of η_{Earth} , and give even better numbers for larger terrestrial planets in HZ

Disk around 1/3 M_{Sun} Star with Giant Planets

4 Runs (Lissauer 2007, Ap.J.Lett.)

Terrestrial Planet Growth Sun-Jupiter-Saturn

