$\eta_{\text {Earth: }}$ Current guesses \& Future constraints

Jack J. Lissauer NASA Ames

Navigator Forum - 2007, May 17

Why do we care?

Why we care!

- The value of $\eta_{\text {Earth }}$ drives the sizes and costs of TPF space missions

Determining $\prod_{\text {Earth }}$

- Current exoplanet data

Determining $\eta_{\text {Earth }}$

- Current exoplanet data
- What do we mean by $\eta_{\text {Earth }}$?

Determining $\prod_{\text {Earth }}$

- Current exoplanet data
-What do we mean by $\eta_{\text {Earth }}$?
- Small planets around small stars:

Observations \& theories

Determining $\prod_{\text {Earth }}$

- Current exoplanet data
- What do we mean by $\eta_{\text {Earth }}$?
- Small planets around small stars:

Observations \& theories

- Expected constraints from Doppler RV

Determining $\prod_{\text {Earth }}$

- Current exoplanet data
-What do we mean by $\eta_{\text {Earth }}$?
- Small planets around small stars:

Observations \& theories

- Expected constraints from Doppler RV
- Expected constraints from microlensing

Determining $\prod_{\text {Earth }}$

- Current exoplanet data
- What do we mean by $\eta_{\text {Earth }}$?
- Small planets around small stars:

Observations \& theories

- Expected constraints from Doppler RV
- Expected constraints from microlensing
- Expected constraints from imaging

Determining $\prod_{\text {Earth }}$

- Current exoplanet data
- What do we mean by $\eta_{\text {Earth }}$?
- Small planets around small stars: Observations \& theories
- Expected constraints from Doppler RV
- Expected constraints from microlensing
- Expected constraints from imaging
- Expected constraints from SIM

Determining $\prod_{\text {Earth }}$

- Current exoplanet data
- What do we mean by $\eta_{\text {Earth }}$?
- Small planets around small stars: Observations \& theories
- Expected constraints from Doppler RV
- Expected constraints from microlensing
- Expected constraints from imaging
- Expected constraints from SIM
- Expected constraints from Kepler

Extrasolar Planets: Key Findings

- $\quad \mathbf{1 \%}$ of sunlike stars have planets more massive than Saturn within 0.1 AU
- Most if not all are gas giants
- Models suggest these planets migrated inwards
- ~ 7\% of sunlike stars have planets more massive than Jupiter within 2 AU
- Some of these planets have very eccentric orbits
- At least a few \% of sunlike stars have Jupiter-like (0.5-2 M, $4 \mathrm{AU}<a<10 \mathrm{AU}$) companions, but $>20 \%$ do not
- Small planets are more common than more massive ones
- More (giant) planets around stars with more metals

Extrasolar Planets: Key Findings

- $\quad \mathbf{1 \%}$ of sunlike stars have planets more massive than Saturn within 0.1 AU
- Most if not all are gas giants
- Models suggest these planets migrated inwards
- ~ 7\% of sunlike stars have planets more massive than Jupiter within 2 AU
- Some of these planets have very eccentric orbits
- At least a few \% of sunlike stars have Jupiter-like (0.5-2 M, $4 \mathrm{AU}<a<10 \mathrm{AU}$) companions, but $>20 \%$ do not
- Small planets are more common than more massive ones
- More (giant) planets around stars with more metals
- Note: Key findings relate to planets quite different from Earth.

What do we require to consider a planet Earthlike?

QuickTime ${ }^{\text {TM }}$ and a
TIFF (Uncompressed) decompressor are needed to see this picture.

The first habitable exoplanet?

QuickTime ${ }^{T \mathrm{M}}$ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Properties of GJ 581 c

- $M \sin i \sim 5-6 \mathrm{M}_{\text {Earth }}$, so $M \sim 6-9 \mathrm{M}_{\text {Earth }}$
- Composition unknown
- Local growth requires dense disk, yields few volatiles
- Migration suggests gas-rich (especially because of more massive GJ 581 b orbiting interior)
- Stellar radiation very red
- Planet may orbit interior to habitable zone
- Bottom line: Very un-Earthlike

Properties of GJ 581 c

- $M \sin i \sim 5-6 \mathrm{M}_{\text {Earth }}$, so $M \sim 6-9 \mathrm{M}_{\text {Earth }}$
- Composition unknown
- Local growth requires dense disk, yields few volatiles
- Migration suggests gas-rich (especially because of more massive GJ 581 b orbiting interior)
- Stellar radiation very red
- Planet may orbit interior to habitable zone
- Bottom line: Very un-Earthlike
- Observational issue: Small angular separation

Planets around M dwarfs may be Hellish places

Anticipated constraints from Doppler RV

Planets down to a few $\mathrm{M}_{\text {Earth }}$ in HZ's of M dwarfs
$\sim 10 \mathrm{M}_{\text {Earth }}$ in HZ's of sunlike stars

Anticipated constraints from Microlensing

Planets down to $\sim \mathrm{M}_{\text {Earth }}$ orbiting a few AU from (in most cases) M dwarfs

Might do better from space

Anticipated constraints from Imaging

Outer giant planets from the ground

Capabilities from space depend on technology advances and \$\$

Anticipated constraints from Imaging

Outer giant planets from the ground

Capabilities from space depend on technology advances and \$\$

Space imaging most promising for characterizing exoearths; not a costeffective way to determine $\eta_{\text {Earth }}$

Anticipated constraints from SIM

A few true Earth analogs ($1 \mathrm{M}_{\text {Earth }}$ in Habitable Zones of sunlike stars) if $\eta_{\text {Earth }} \sim 1$

Anticipated constraints from SIM

A few true Earth analogs ($1 \mathrm{M}_{\text {Earth }}$ in Habitable Zones of sunlike stars) if $\eta_{\text {Earth }} \sim 1$ But timeframe bad news for TPF.

Anticipated constraints from Kepler

HZ for 4 years \& 3 Transits, and Magnitude < 16

Anticipated constraints from Kepler

KEPLER EXPECTED TO DETECT TRUE EARTH ANALOGS

-Two dozen $1 R_{\text {Earth }}$ planets orbiting 1 AU from G stars will be detected if such planets are the norm. More if Kepler lasts 6 years. -More Earth-sized planets can be found in HZ's of K and M stars than of G stars.

- Numbers for G and K stars increase substantially if 1.3 $R_{\text {Earth }}$ planets are common.

"Well, this mission answers at deast one big question: Are there othèr "plànets like "uif's thi the univiverse?"

$\eta_{\text {Earth: }}:$ Current guesses \& Future constraints

- Observations don't yet constrain $\eta_{\text {Earth }}$; not even close
- Theoretical uncertainties: Initial conditions, migration, ... (Theory is far better for interpolation than extrapolation)
- Kepler should provide estimate of $\eta_{\text {Earth }}$, and give even better numbers for larger terrestrial planets in HZ

Disk around $1 / 3 \mathrm{M}_{\text {Sun }}$ Star with Giant Planets

4 Runs
(Lissauer 2007, Ap.J.Lett.)

Terrestrial Planet Growth Sun-Jupiter-Saturn

