

Double-Beta Decay and the Neutrino

Steve Elliott

July 11, 2005

Outline

- Double-Beta Decay and its relationship to the neutrino
- The experimental context
 - Where we're at and where we need to go
- Proposed future work

 A focus on the Majorana Project

Why Neutrinos?

v properties are critical input to many physics questions

• Particle/Nuclear Physics

- Cosmology
- Astrophysics

Neutrinos: What do we want to know?

Oscillations and Hierarchy Possibilities

v_e is composed of a large fraction of v_1 .

July 11, 2005

Example $\beta\beta$ **Decay Scheme**

$\beta\beta(2\nu)$: Allowed weak decay

$\beta\beta(0\nu)$: requires massive Majorana ν

Energy Spectrum for the 2 e⁻

ββ Decay Rates

$$\Gamma_{2\nu} = G_{2\nu} |M_{2\nu}|^2$$

$$\Gamma_{0\nu} = G_{0\nu} |M_{0\nu}|^2 m_{\nu}^2$$

G are calculable phase space factors. $G_{0\nu} \sim Q^5$ |M| are nuclear physics matrix elements. Hard to calculate.

 m_{ν} is where the interesting physics lies.

What about mixing, $m_v \& \beta \beta (0v)$?

No mixing:
$$\langle m_{\beta\beta} \rangle = m_{\nu_e} = m_1$$

$$\langle m_{\beta\beta} \rangle = \sum_{i=1}^{3} |U_{ei}|^2 m_i \varepsilon_i$$
 virtual v
exchange

 $\varepsilon = \pm 1$, CP cons.

Compare to β decay result:

$$\left\langle m_{\beta} \right\rangle = \sqrt{\sum_{i=1}^{3} \left| U_{ei} \right|^2 m_i^2}$$

July 11, 2005

real v emission **Compare to cosmology:**

$$\sum = \sum m_i$$

Double Beta Decay

⁴⁸ Ca	>1.4x10 ²² y	<(7.2-44.7) eV
⁷⁶ Ge	>1.9x10 ²⁵ y	<0.35 eV
⁷⁶ Ge	>1.6x10 ²⁵ y	<(0.33-1.35) eV
⁷⁶ Ge	=1.2x10 ²⁵ y	=0.44 eV
⁸² Se	>1.9x10 ²³ y	<(1.3-3.2) eV
¹⁰⁰ Mo	>3.5x10 ²³ y	<(0.7-1.2) eV
¹¹⁶ Cd	>1.7x10 ²³ y	<1.7 eV
¹²⁸ Te	>7.7x10 ²⁴ y	<(1.1-1.5) eV
¹³⁰ Te	>5.5x10 ²³ y	<(0.37-1.9) eV
¹³⁶ Xe	>4.4x10 ²³ y	<(1.8-5.2) eV
¹⁵⁰ Nd	>1.2x10 ²¹ y	<3.0 eV

July 11, 2005

A Recent Claim

The "feature" at 2038 keV is arguably present. This will probably require experimental testing.

The UCI ⁸²Se Experiment

July 11, 2005

The Heidelberg-Moscow Experiment

Foundations of Physics, 32, (2002)

A Great Number of Proposed Experiments

CARVEL	Ca-48	100 kg ⁴⁸ CaWO ₄ crystal scintillators				
COBRA	Te-130	10 kg CdTe semiconductors				
DCBA	Nd-150	20 kg Nd layers between tracking chambers				
NEMO	Mo-100, Various	10 kg of $\beta\beta$ isotopes (7 kg of Mo), expand to superNEMO				
CAMEO	Cd-114	1 t CdWO ₄ crystals				
CANDLES	Ca-48	Several tons CaF ₂ crystals in liquid scint.				
CUORE	Te-130	750 kg TeO ₂ bolometers				
EXO	Xe-136	1 ton Xe TPC (gas or liquid)				
GEM	Ge-76	1 ton Ge diodes in liquid nitrogen				
GENIUS	Ge-76	1 ton Ge diodes in liquid nitrogen				
GERDA	Ge-76	~30-40 kg Ge diodes in LN, expand to larger masses				
GSO	Gd-160	2 t Gd ₂ SiO ₅ :Ce crystal scint. in liquid scint.				
Majorana	Ge-76	~180 kg Ge diodes, expand to larger masses				
MOON	Мо-100	Mo sheets between plastic scint., or liq. scint.				
Хе	Xe-136	1.56 t of Xe in liq. Scint.				
XMASS	Xe-136	10 t of liquid Xe				

"Selected" Projects

Majorana

CUORE	TeO ₂ Crystal bolometers		
EXO	Liquid Xe TPC, daughter tag		
GERDA	Bare Ge detectors in LN		
Majorana	Ge det. in traditional cryostat		
MOON	Scint. sandwiching Mo foils		
SuperNEMO	Foils, tracking and scint.		

CUORE

EXO

July 11, 2005

GERDA

MOON

An exciting time for $\beta\beta!$

For at least one neutrino:

$$m_i > \sqrt{\delta m_{atmos}^2} \approx 50 meV$$

For the next experiments:

$$\langle m_{\beta\beta} \rangle \leq 50 meV$$

$< m_{\beta\beta} >$ in the range near 50 meV is very interesting.

APS Study and M-180

The APS neutrino study on the future US Neutrino Program made a few things clear. (http://www.aps.org/neutrino/)

- Double-beta decay as one of the highest priorities.
- It recommends a staged approach beginning with 100-200 kg scaling later to 1 ton.
 - Precision measurement at degenerate scale
 - Followed by discovery potential at atmospheric scale

Majorana has responded by developing a proposal for a <u>180-kg detector.</u>

Why a precision measurement?

If $< m_{\beta\beta} >$ is near the degenerate scale:

- We will want to compare results from several isotopes to fully understand the underlying physics.
- A 10-20% decay rate measurement will allow effective comparisons between isotopes, when the matrix element uncertainty nears ~50%.

Observation of $\beta\beta(0\nu)$ implies massive Majorana neutrinos, but:

- Relative rates between isotopes might discern light neutrino exchange and heavy particle exchange as the $\beta\beta$ mechanism.
- Relative rates between the ground and excited states might discern light neutrino exchange and right handed current mechanisms.

Effective comparisons require experimental uncertainties to be small wrt theoretical uncertainties.

An Ideal Experiment

Maximize Rate/Minimize Background

Large Mass (~ 1 ton) **Good source radiopurity Demonstrated technology Natural isotope** Small volume, source = detector **Good energy resolution Ease of operation** Large Q value, fast $\beta\beta(0\nu)$ Slow $\beta\beta(2\nu)$ rate **Identify daughter Event reconstruction Nuclear theory**

Ge Basics

Large Mass (~ 1 ton): **Good source radiopurity: Demonstrated technology:** Natural isotope Small volume, source = det: **Good energy resolution: Ease of operation** Large Q value, fast $\beta\beta(0\nu)$ Slow $\beta\beta(2\nu)$ rate **Identify daughter** Event reconstruction **Nuclear theory**

120-500 kg of ^{enr}Ge Intrinsic Ge, well understood "Ready to Go"

Fiorini "internal source method 3-4 keV at 2039 keV, 0.2% High duty cycle operation 2039 keV, above most radioactivities 10²¹ yrs

segmentation, modularity, PSD Low A - Shell Model and QRPA

Advantages for Majorana

⁷⁶Ge offers the best combination of capabilities and sensitivities. Majorana is ready to proceed, with demonstrated technologies.

- Favorable nuclear matrix element <M⁰>=2.4 [Rod05].
- Reasonably slow $2\nu\beta\beta$ rate ($T_{1/2} = 1.4 \times 10^{21}$ y).
- Demonstrated ability to enrich from 7.44% to 86%.
- Ge as source & detectors.
- Elemental Ge maximizes the source-to-total mass ratio.
- Intrinsic high-purity Ge diodes.

- Excellent energy resolution 0.16% at 2.039 MeV, for a ROI of 4 keV.
- Powerful background rejection.

Segmentation, granularity, timing, pulse shape discrimination

- Best limits on $0\nu\beta\beta$ decay used Ge (IGEX & Heidelberg-Moscow) $T_{1/2} > 1.9 \times 10^{25}$ y
- Well-understood technologies
 - Commercial Ge diodes
 - Existing, well-characterized large Ge arrays (Gammasphere)

Majorana is scalable, allowing expansion to 1000 kg.

The 180 kg Experiment (M180)

- Reference Design
 - 171 segmented, n-type, 86% enriched ⁷⁶Ge crystals.
 - 3 independent, ultra-clean, electroformed Cu cryostat modules.
 - Surrounded by a low-background passive shield and active veto.
 - Located deep underground (6000 mwe).
- Background Specification in the $0\nu\beta\beta$ peak ROI

1 count/t-y

Expected Sensitivity to 0vββ
 (for 3 years, or 0.46 t-y of ⁷⁶Ge exposure)

 $T_{1/2} >= 5.5 \times 10^{26} \text{ y} (90\% \text{ CL})$

 $< m_v > < 100 \text{ meV}$ (90% CL) ([Rod05] RQRPA matrix elements)

or a 10% measurement assuming a 400 meV value.

The Majorana Modular Approach

• 57 crystal module

- Conventional vacuum cryostat made with electroformed Cu.
- Three-crystal stack are individually removable.

The Majorana Shield - Conceptual Design

Top view

- Allows modular deployment, early operation
- contains up to eight 57-crystal modules (M180 populates 3 of the 8 modules)
- four independent, sliding units
- 40 cm bulk Pb, 10 cm ultra-low background shield
- active 4π veto detector

The Majorana Reference Plan

- Enrichment: Ge ~200 kg of intrinsic Ge metal, enriched to 86% in ⁷⁶Ge, from the ECP in Russia
- Transport: surface ship this Ge to a detector manufacturing company in North America to produce Ge crystals, suitable for detector fabrication
- Crystals: produce approximately 180 1.1-kg, n-type, segmented Ge detectors with each segmentation geometry consisting of 2 segments
- Module Assembly: install detectors into Cu cryostats that have been electroformed underground
- Module Installation: install modules into an ultra-pure graded shield
- Shielding: incorporate an active, neutron and cosmic ray anticoincidence detector (a veto system) into the Pb shield, deep underground
- Front End Signals: electronically read out the Ge detector signals with one high-bandwidth electronic channel per crystal and one low-bandwidth electronic channel per segment
- Acquisition: use commercial electronics technology for the data acquisition electronics

Majorana Sensitivity vs. Background

Reducing Backgrounds - Two Basic Strategies

- Directly reduce intrinsic, extrinsic, & cosmogenic activities
 - Select and use ultra-pure materials
 - Minimize all non "source" materials
 - Clean passive shield
 - Go deep reduced μ 's & related induced activities
- Utilize background rejection techniques
 - Energy resolution
 Active veto detector
 - $\mathbf{0}\nu\beta\beta$ is a single site phenomenon
 - Many backgrounds have multiple site interactions — Pulse shape discrimination (PSD)
 - Granularity [multiple detectors] Segmentation
 - Single Site Time Correlated events (SSTC)

Demonstrating backgrounds requires:

- Sensitive assay capabilities
- Reliable and verified simulations

Cuts vs. Background Estimates

2039 keV peak plus cuts discriminates $0\nu\beta\beta$ -decay from backgrounds Only known activities that occur at 2039 keV are very weak branches, with corresponding strong peaks that will appear elsewhere in the spectrum

Estimated backgrounds in the $0\nu\beta\beta$ -decay ROI

Background Source		Gross a Impo	Gross and Net Rates for Important Isotopes			
		Cour	Counts in ROI per t-y			
		⁶⁸ Ge	⁶⁰ Co			_
Germanium	Gross	2.54	1.22			Crystals are
(100 day exp)	Net	0.01	0.02		0.03 🗲	
		²⁰⁸ TI	²¹⁴ Bi	⁶⁰ Co		ciean
Inner Mount	Gross	0.12	0.03	0.26		
	Net	0.01	0.00	0.00	0.01	
Cryostat	Gross	0.77	0.16	0.58		
oryostat	Net	0.22	0.04	0.00	0.26 🗲	Dominated by
Copper Shield	Gross	2.28	0.30	0.02		
	Net	0.64	0.06	0.00	0.70 🗲	²³² I h in Cu
Small Parts	Gross	0.18	0.04	0.34		
	Net	0.02	0.01	0.00	0.03	
External Sources (6000 mwe)		muons	cosmic activity	(α,n)		
	Gross	0.03	1.33	0.003		
	Net	0.003	0.18	0.003	0.18 🗲	
$2v \beta\beta$ -decay					< 0.01	deep
	TOTAL SUM				1.21	

• "Gross" indicates level of activity before any analysis cuts are applied.

• "Net" indicates level of activity after cuts have been applied.

Maybe we'll go to SNOLab

Backgrounds for Majorana vs. Depth

At Sudbury depth, 6000 mwe, calculate that about 15-20% of the expected background in ROI will be from μ induced activities in Ge and the nearby cryostat materials (dominated by fast neutrons).

Readiness - Backgrounds

- Simulations
 - MaGe GEANT4 based development package
 - being developed in cooperation with GERDA
 - Verified against a variety of Majorana low-background counting systems as well as others, e.g. MSU Segmented Ge, GERDA.
 - Fluka for μ -induced calculations, tested against UG lab data.
- Assay
 - Radiometric (Current sensitivity ~8 μBq/kg (2 pg/g) for ²³²Th)
 - Counting facilities at PNNL, Oroville (LBNL), WIPP, Soudan, Sudbury.
 - Mass Spect. (Current sensitivity 2-4 μ Bq/kg (0.5-1 pg/g) for ²³²Th)
 - Using Inductively Coupled Plasma Mass Spectrometry, have made recent progress on using ²²⁹Th tracer.
 - ICPMS has the requisite sensitivity (fg/g).
 - Present limitations on reagents being addressed by sub-boiling distillation.
 - ICPMS expected to reach needed 1 µBq/kg sensitivity.

Key specifications

- -Cu at 1 μ Bq/kg (current \leq 8 μ Bq/kg)
- -cleanliness on a large scale (100 kg)

Readiness - Ultra-Pure Cu

- Constructed electroformed Cu cryostat
 - 30 cm dia x 30 cm high
 - Vacuum tested

• Th chain purity in Cu is key

- Ra and Th must be eliminated
- Remove Ra, Th by ion exchange during electroforming
- Starting stock <9 μ Bq/kg ²³²Th
- Using ²²⁹Th tracer, demonstrated a factor of > 8000 Th rejection via electroforming

We expect to achieve the 1 µBq/kg ²³²Th specification

WIPP

3 Andler

- DOE Facility
- Impressive infrastructure
- Modest depth (1600 mwe)
- Science as add-on to primary mission
- Low background counting lab being built MEGA-SEGA

WIPP Construction

W hasten

Assembling MEGA at WIPP

Readiness - Crystal Segmentation

Segmentation

- Multiple conductive contacts
- Additional electronics and small parts
- Rejection greater for more segments

Background discrimination

- Multi-site energy deposition
 - Simple two-segment rejection
 - Sophisticated multi-segment signal processing can provide 2 mm reconstruction of events

Demonstrated

(Note: reference plan has 2 segments)

- MSU experiment (4x8 segments)
- LANL Clover detector (2 segments)
- LLNL+LBNL detector (8x5 segments)

Segmentation test & simulation comparison

Experiment with MSU/NSCL Segmented Ge Array

- N-type, 8 cm long, 7 cm diameter
- 4x8 segmentation scheme: 4 angular 90 degrees each, 8 longitudinal, 1 cm each
- ⁶⁰Co source
- Segmentation successfully rejects backgrounds.
- In good agreement with the simulations

- - Excellent rejection for internal ⁶⁸Ge and ⁶⁰Co (x4)
 - Moderate rejection of external 2615 keV (x0.8)
 - Shown to work well with segmentation
 - **Demonstrated capability**
 - central contact
 - outer contacts

July 11, 2005

PSD uses off-the-shelf waveform digitizers

Demonstration of Segmentation & PSD

2

We have data that demonstrates the hypothesis that the PSD and segmentation cuts are independent.

Array Granularity detector-to-detector rejection

- Simultaneous signals in two detectors cannot be 0vββ
- Requires tightly packed Ge
- Successful against:
 - ²⁰⁸TI and ²¹⁴Bi
 - Supports/small parts (~5x)
 - Cryostat/shield (~2x)
 - Some neutrons
 - Muons (~10x)
- Simulation and validation with Clover

Granularity is basically free and a powerful background suppressor.

Readiness - Time Correlations

Schedule

Majorana Sensitivity: Realistic runtime

To deduce $m_{\beta\beta}$ from τ , one needs Matrix Elements

$$\frac{1}{\tau_{0\nu}} = G_{0\nu} |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

- If ββ is observed, the qualitative physics conclusions are profound regardless of [M].
- There are many calculations of [M]. Which should be used to deduce $m_{\beta\beta}$?
- How do we interpret the uncertainty associated with the nuclear physics?

Progress in Understanding the Matrix Element Uncertainty

- Previous spread is mostly due to the various implementations of QRPA.
- Rodin et al. show that QRPA results tighten up (typically to ~20% uncertainty in half life):
 - When implementation differences are accounted for
 - One uses $\beta\beta(2\nu)$ to set the free parameter
- Recent shell model numbers are comparable (differ < factor of 2). But these calculations are still evolving.

Progress in testing the matrix elements

- Rodin *et al.* used $\beta\beta(2\nu)$ to set free parameter in QRPA. They found that this removed most of the spread in the $\beta\beta(0\nu)$ QRPA values. (nucl-th/0503063)
- Subonen showed that this technique for setting g_{pp} predicted poor β and β^+ rates. He advocates using those measurements to set the parameter. (nuclth/0412064)
- We'll be watching this productive debate closely.

Summary

- Science:
 - Neutrino mass interest
 - Potential for discovery
 - Even null results will be interesting
- Infrastructure:
 - Enrichment availability/Underground facility development
- Moderate-sized apparatus:
 - Modest footprint
 - No need for large underground cavity
- Low Risk:
 - Proven technology/ Modular instrument / Re-configurable
- Experienced and Substantial Collaboration
 - Long neutrino science track record, many technical resources

The Majorana Collaboration

Pacific Northwest National Laboratory

CHICAGO

OAK RIDGE NATIONAL LABORATORY

Brown University, Providence, Rhode Island Michael Attisha, Rick Gaitskell, John-Paul Thompson

Institute for Theoretical and Experimental Physics, Moscow, Russia Alexander Barabash, Sergey Konovalov, Igor Vanushin, Vladimir Yumatov

Joint Institute for Nuclear Research, Dubna, Russia

Viktor Brudanin, Slava Egorov, K. Gusey, S. Katulina, Oleg Kochetov, M. Shirchenko, Yu. Shitov, V. Timkin, T. Vvlov, E. Yakushev, Yu. Yurkowski

Lawrence Berkeley National Laboratory, Berkeley, California

Yuen-Dat Chan, Mario Cromaz, Martina Descovich, Paul Fallon, Brian Fujikawa, Bill Goward, Reyco Henning, Donna Hurley, Kevin Lesko, Paul Luke, Augusto O. Macchiavelli, Akbar Mokhtarani, Alan Poon, Gersende Prior, Al Smith, Craig Tull

Lawrence Livermore National Laboratory, Livermore, California Dave Campbell, Kai Vetter

Los Alamos National Laboratory, Los Alamos, New Mexico

Mark Boulay, Steven Elliott, Gerry Garvey, Victor M. Gehman, Andrew Green, Andrew Hime, Bill Louis, Gordon McGregor, Dongming Mei, Geoffrey Mills, Larry Rodriguez, Richard Schirato, Richard Van de Water, Hywel White, Jan Wouters

Oak Ridge National Laboratory, Oak Ridge, Tennessee

Cyrus Baktash, Jim Beene, Fred Bertrand, Thomas V. Cianciolo, David Radford, Krzysztof Rykaczewski *Osaka University, Osaka, Japan* Hiroyasu Ejiri, Ryuta Hazama, Masaharu Nomachi

SOUTH CAROLINA.

Pacific Northwest National Laboratory, Richland, Washington

Craig Aalseth, Dale Anderson, Richard Arthur, Ronald Brodzinski, Glen Dunham, James Ely, Tom Farmer, Eric Hoppe, David Jordan, Jeremy Kephart, Richard T. Kouzes, Harry Miley, John Orrell, Jim Reeves, Robert Runkle, Bob Schenter, Ray Warner, Glen Warren

> *Queen's University, Kingston, Ontario* Marie Di Marco, Aksel Hallin, Art McDonald

Triangle Universities Nuclear Laboratory, Durham, North Carolina and Physics Departments at Duke University and North Carolina State University Henning Back, James Esterline, Mary Kidd, Werner Tornow, Albert Young

> University of Chicago, Chicago, Illinois Juan Collar

University of South Carolina, Columbia, South Carolina Frank Avignone, Richard Creswick, Horatio A. Farach, Todd Hossbach, George King

> *University of Tennessee, Knoxville, Tennessee* William Bugg, Yuri Efremenko

University of Washington, Seattle, Washington

John Amsbaugh, Tom Burritt, Jason Detwiler, Peter J. Doe, Joe Formaggio, Mark Howe, Rob Johnson, Kareem Kazkaz, Michael Marino, Sean McGee, Dejan Nilic, R. G. Hamish Robertson, Alexis Schubert, John F. Wilkerson

July 11, 2005 *Note: Red text indicates students*