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Outline

• Double-Beta Decay and its 
relationship to the neutrino

• The experimental context
– Where we’re at and where we need to go

• Proposed future work
– A focus on the Majorana Project
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Why Neutrinos?

ν properties are critical input to many 
physics questions

• Particle/Nuclear Physics
• Cosmology
• Astrophysics
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Neutrinos: What do we want to know?
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Oscillations and  Hierarchy Possibilities
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Example ββ Decay Scheme
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ββ(2ν): Allowed weak decay

2n ⇒ 2 p + 2e− + 2ν e
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ββ(0ν): requires massive Majorana ν
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Energy Spectrum for the 2 e-

2.01.51.00.50.0
Sum Energy for the Two Electrons (MeV)

 Two Neutrino Spectrum
 Zero Neutrino Spectrum

1% resolution
Γ (2 ν ) = 100 * Γ (0 ν )

Endpoint
Energy
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ββ Decay Rates

Γ2 ν = G2ν M2 ν
2 Γ0 ν = G0ν M0 ν

2 mν
2

G are calculable phase space factors.
G0ν ~ Q5

|M| are nuclear physics matrix elements.
Hard to calculate.

mν is where the interesting physics lies.
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What about mixing, mν & ββ(0ν)?

mββ = Uei
2 mi

i=1

3
∑ εi

ε = ±1, CP cons.

Compare to β decay result:

mβ = Uei
2 mi

2

i=1

3
∑

virtual ν
exchange

real ν
emission

No mixing: mββ = mνe = m1

Compare to cosmology:
∑ = mi∑
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Double Beta 
Decay

Elliott & Vogel
Annu. Rev. Part. Sci. 2002 52:115
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48Ca >1.4x1022 y <(7.2-44.7) eV

76Ge >1.9x1025 y <0.35 eV

76Ge >1.6x1025 y <(0.33-1.35) eV

76Ge =1.2x1025 y =0.44 eV

82Se >1.9x1023 y <(1.3-3.2) eV

100Mo >3.5x1023 y <(0.7-1.2) eV

116Cd >1.7x1023 y <1.7 eV

128Te >7.7x1024 y <(1.1-1.5) eV

130Te >5.5x1023 y <(0.37-1.9) eV

136Xe >4.4x1023 y <(1.8-5.2) eV

150Nd >1.2x1021 y <3.0 eV
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A Recent 
Claim
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The “feature” at 2038 
keV is arguably 
present. This will 
probably require 
experimental testing.

Background level 
depends on intensity 
fit to other peaks.
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The UCI 82Se Experiment
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The Heidelberg-Moscow Experiment

Fo
un

da
tio

ns
 o

f P
hy

si
cs

, 3
2,

 (2
00

2)

8”



July 11, 2005 Steve Elliott

A Great Number of Proposed Experiments

CARVEL Ca-48 100 kg 48CaWO4 crystal scintillators

COBRA Te-130 10 kg CdTe semiconductors

GSO Gd-160 2 t Gd2SiO5:Ce crystal scint. in liquid scint.

Majorana Ge-76 ~180 kg Ge diodes, expand to larger masses

MOON Mo-100 Mo sheets between plastic scint., or liq. scint.

Xe Xe-136 1.56 t of Xe in liq. Scint.

XMASS Xe-136 10 t of liquid Xe

DCBA Nd-150 20 kg Nd layers between tracking chambers

NEMO Mo-100, Various 10 kg of ββ isotopes (7 kg of Mo), expand to superNEMO

CAMEO Cd-114 1 t CdWO4 crystals

CANDLES Ca-48 Several tons CaF2 crystals in liquid scint.

CUORE Te-130 750 kg TeO2 bolometers

EXO Xe-136 1 ton Xe TPC (gas or liquid)

GEM Ge-76 1 ton Ge diodes in liquid nitrogen

GENIUS Ge-76 1 ton Ge diodes in liquid nitrogen

GERDA ~30-40 kg Ge diodes in LN, expand to larger massesGe-76
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“Selected” Projects
CUORE TeO2 Crystal bolometers

EXO Liquid Xe TPC, daughter tag

GERDA Bare Ge detectors in LN

Majorana Ge det. in traditional cryostat

MOON Scint. sandwiching Mo foils 
SuperNEMO Foils, tracking and scint.EXO

Majorana
CUORE

MOON
GERDANEMO
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An exciting time for ββ!

< mββ > in the range
near 50 meV is very interesting.

For the next experiments:

For at least 
one neutrino: mi > δmatmos

2 ≈ 50meV

mββ ≤ 50meV
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APS Study and M-180

The APS neutrino study on the future US Neutrino 
Program made a few things clear. 

(http://www.aps.org/neutrino/)
• Double-beta decay as one of the highest priorities.
• It recommends a staged approach beginning with 

100-200 kg scaling later to 1 ton.
– Precision measurement at degenerate scale
– Followed by discovery potential at atmospheric scale

Majorana has responded by developing a proposal for a 
180-kg detector.
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Why a precision measurement?

If <mββ> is near the degenerate scale:
• We will want to compare results from 

several isotopes to fully understand 
the underlying physics.

• A 10-20% decay rate measurement 
will allow effective comparisons 
between isotopes, when the matrix 
element uncertainty nears ~50%.
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Observation of ββ(0ν) implies massive 
Majorana neutrinos, but:

• Relative rates between isotopes might discern 
light neutrino exchange and heavy particle 
exchange as the ββ mechanism.

• Relative rates between the ground and excited 
states might discern light neutrino exchange and 
right handed current mechanisms.

Effective comparisons require experimental 
uncertainties to be small wrt theoretical 

uncertainties.
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An Ideal Experiment
Maximize Rate/Minimize Background

Large Mass (~ 1 ton)
Good source radiopurity

Demonstrated technology 
Natural isotope

Small volume, source = detector
Good energy resolution

Ease of operation
Large Q value, fast ββ(0ν)

Slow ββ(2ν) rate
Identify daughter

Event reconstruction
Nuclear theory

mββ ∝
bΔE
Mtlive

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1
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Ge Basics

Large Mass (~ 1 ton): 120-500 kg of enrGe
Good source radiopurity: Intrinsic Ge, well understood
Demonstrated technology: “Ready to Go”
Natural isotope
Small volume, source = det: Fiorini “internal source method
Good energy resolution: 3-4 keV at 2039 keV, 0.2%
Ease of operation High duty cycle operation
Large Q value, fast ββ(0ν) 2039 keV, above most radioactivities
Slow ββ(2ν) rate 1021 yrs
Identify daughter
Event reconstruction segmentation, modularity, PSD
Nuclear theory Low A - Shell Model and QRPA
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• Favorable nuclear matrix 
element <M0ν>=2.4 [Rod05].

• Reasonably slow 2νββ rate
(Τ1/2 = 1.4 × 1021 y).

• Demonstrated ability to enrich 
from 7.44% to 86%. 

• Ge as source & detectors.
• Elemental Ge maximizes the 

source-to-total mass ratio.
• Intrinsic high-purity Ge diodes.

Advantages for Majorana

• Excellent energy resolution —
0.16% at 2.039 MeV, for a ROI 
of 4 keV.

• Powerful background 
rejection.

Segmentation, granularity, timing, 
pulse shape discrimination

• Best limits on 0νββ - decay 
used Ge (IGEX & Heidelberg-
Moscow) 

Τ1/2 > 1.9 × 1025 y
• Well-understood technologies

– Commercial Ge diodes
– Existing, well-characterized  large 

Ge arrays (Gammasphere)

76Ge offers the best combination of capabilities and 
sensitivities.  Majorana is ready to proceed, with 
demonstrated technologies.
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Majorana is scalable, allowing expansion to 1000 kg. 
The 180 kg Experiment (M180)

– Reference Design
• 171 segmented, n-type, 86% enriched 76Ge crystals.
• 3 independent, ultra-clean, electroformed Cu cryostat modules.
• Surrounded by a low-background passive shield and active veto.
• Located deep underground (6000 mwe).

– Background Specification in the 0νββ peak ROI
1 count/t-y

– Expected Sensitivity to 0νββ
(for 3 years, or 0.46 t-y of 76Ge exposure)

T1/2 >= 5.5 x 1026 y (90% CL)
<mν> < 100 meV (90% CL) ([Rod05] RQRPA matrix elements)

or a 10% measurement assuming a 400 meV value.

The Majorana 180 kg Experiment Overview
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• 57 crystal module 
– Conventional vacuum cryostat made with electroformed Cu.
– Three-crystal stack are individually removable.

The Majorana Modular Approach

Cold Plate

1.1 kg Crystal 

Thermal
Shroud

Vacuum jacket

Cold 
Finger

Bottom Closure 1 of 19 crystal stacks

CapCap

Tube 
(0.007”

wall)

Tube 
(0.007”

wall)

Ge
(62mm x 70 mm)

Ge
(62mm x 70 mm)

Tray
(Plastic, Si, etc)

Tray
(Plastic, Si, etc)



July 11, 2005 Steve Elliott

– Allows modular deployment, early operation
– contains up to eight 57-crystal modules

(M180 populates 3 of the 8 modules)
– four independent, sliding units
– 40 cm bulk Pb, 10 cm ultra-low background shield
– active 4π veto detector

The Majorana Shield - Conceptual Design

Top view

57 Detector Module

Veto Shield

Sliding Monolith

LN Dewar

Inner Shield
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The Majorana Reference Plan
• Enrichment: Ge ~200 kg of intrinsic Ge metal, enriched to 86% in 

76Ge, from the ECP in Russia
• Transport: surface ship this Ge to a detector manufacturing 

company in North America to produce Ge crystals, suitable for 
detector fabrication

• Crystals: produce approximately 180 1.1-kg, n-type, segmented Ge
detectors with each segmentation geometry consisting of 2 
segments 

• Module Assembly: install detectors into Cu cryostats that have 
been electroformed underground

• Module Installation: install modules into an ultra-pure graded shield
• Shielding: incorporate an active, neutron and cosmic ray anti-

coincidence detector (a veto system) into the Pb shield, deep 
underground

• Front End Signals: electronically read out the Ge detector signals 
with one high-bandwidth electronic channel per crystal and one 
low-bandwidth electronic channel per segment

• Acquisition: use commercial electronics technology for the data 
acquisition electronics
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Majorana Sensitivity vs. Background
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Reducing Backgrounds - Two Basic Strategies

• Directly reduce intrinsic, extrinsic, & cosmogenic
activities
– Select and use ultra-pure materials
– Minimize all non “source” materials
– Clean passive shield
– Go deep — reduced μ’s & related induced activities

• Utilize background rejection techniques
– Energy resolution

• 0νββ is a single site phenomenon
• Many backgrounds have multiple site interactions

– Granularity [multiple detectors]
– Single Site Time Correlated

events (SSTC)

– Pulse shape discrimination (PSD)
– Segmentation

Demonstrating backgrounds requires:
• Sensitive assay capabilities
• Reliable and verified simulations

– Active veto detector
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Cuts vs. Background Estimates
2039 keV peak plus cuts discriminates 0νββ-decay from backgrounds
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0νββ signal Backgrounds

Only known activities that occur at 2039 keV are very weak branches,
with corresponding strong peaks that will appear elsewhere in the spectrum
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Estimated backgrounds in the 0νββ-decay ROI

• "Gross" indicates level of activity before any analysis cuts are applied. 
• "Net" indicates level of activity after cuts have been applied. 

Gross and Net Rates for 
Important Isotopes 

Total Est. 
Background 

(per t-y) 
 

Background 
Source  

Counts in ROI per t-y Counts in ROI 
  68Ge 60Co   
Germanium Gross 2.54 1.22   
(100 day exp) Net 0.01 0.02  0.03 

  208Tl 214Bi 60Co  
Gross 0.12 0.03 0.26  Inner Mount  Net 0.01 0.00 0.00 0.01 
Gross 0.77 0.16 0.58  Cryostat 

Net 0.22 0.04 0.00 0.26 
Gross 2.28 0.30 0.02  Copper 

Shield Net 0.64 0.06 0.00 0.70 
Gross 0.18 0.04 0.34  Small Parts 

Net 0.02 0.01 0.00 0.03 

  
muons 

cosmic 
activity 

 
( ,n)   

Gross 0.03 1.33 0.003  

External  
Sources 
(6000 mwe) 

Net 0.003 0.18 0.003 0.18 

2 -decay  < 0.01 

 TOTAL SUM 1.21 
 

Dominated by 
232Th in Cu

Crystals are
clean

Must go
deep
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Maybe we’ll go to SNOLab
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Backgrounds for Majorana vs. Depth

At Sudbury depth, 6000 mwe, calculate that about 15-20% of the 
expected background in ROI will be from μ induced activities in Ge
and the nearby cryostat materials (dominated by fast neutrons).

Mei and Hime
2005
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Readiness - Backgrounds 
• Simulations

– MaGe — GEANT4 based development package
• being developed in cooperation with GERDA

– Verified against a variety of Majorana low-background counting 
systems as well as others, e.g. MSU Segmented Ge, GERDA.

– Fluka for μ-induced calculations, tested against UG lab data.
• Assay

– Radiometric (Current sensitivity ~8 μBq/kg (2 pg/g) for 232Th)
• Counting facilities at PNNL, Oroville (LBNL), WIPP, Soudan, Sudbury.

– Mass Spect. (Current sensitivity 2-4 μBq/kg (0.5-1 pg/g) for 232Th)
• Using Inductively Coupled Plasma Mass Spectrometry, have made recent 

progress on using 229Th tracer.
• ICPMS has the requisite sensitivity (fg/g).
• Present limitations on reagents being addressed by sub-boiling distillation.
• ICPMS expected to reach needed 1 μBq/kg sensitivity.

• Key specifications
–Cu at 1 μBq/kg (current ≤ 8 μBq/kg)
–cleanliness on a large scale (100 kg)
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Readiness - Ultra-Pure Cu

• Constructed electroformed Cu 
cryostat
– 30 cm dia x 30 cm high
– Vacuum tested

• Th chain purity in Cu is key
– Ra and Th must be eliminated
– Remove Ra, Th by ion exchange 

during electroforming
– Starting stock <9 μBq/kg 232Th

• Using 229Th tracer, demonstrated 
a factor of > 8000 Th rejection via 
electroforming

Electroforming copper

A B
C

A B
CWe expect to achieve the 1 μBq/kg 232Th 

specification
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WIPP

• DOE Facility
• Impressive

infrastructure
• Modest depth

(1600 mwe)
• Science as

add-on to
primary mission

• Low background
counting lab
being built
MEGA-SEGA
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WIPP Construction
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Assembling MEGA at WIPP



July 11, 2005 Steve Elliott

Readiness - Crystal Segmentation

• Segmentation
– Multiple conductive contacts
– Additional electronics and small 

parts
– Rejection greater for more segments

• Background discrimination
– Multi-site energy deposition

• Simple two-segment rejection
• Sophisticated multi-segment signal 

processing can provide 2 mm 
reconstruction of events

• Demonstrated
(Note: reference plan has 2 segments)
– MSU experiment (4x8 segments)
– LANL Clover detector (2 segments)
– LLNL+LBNL detector (8x5 segments)

60Co

γ

γ

0νββ

γ (“Low” Energy)

γ (“High” Energy)
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Segmentation test & simulation comparison

Experiment with MSU/NSCL Segmented Ge Array
• N-type,  8 cm  long,  7 cm  diameter
• 4x8 segmentation scheme: 4 angular 90 degrees each, 8 longitudinal, 1 

cm each
• 60Co source
• Segmentation successfully rejects backgrounds.
• In good agreement with the simulations

Experiment

GEANT

Crystal

1x8

4x8
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06
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Readiness - Pulse Shape Discrimination (PSD)

• Excellent rejection for 
internal 68Ge and 60Co 
(x4)

• Moderate rejection of 
external 2615 keV (x0.8)

• Shown to work well with 
segmentation

• Demonstrated capability
– central contact
– outer contacts

Central contact (radial) PSD

PSD uses off-the-shelf 
waveform digitizers
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Demonstration of Segmentation & PSD

We have data that demonstrates the hypothesis that the 
PSD and segmentation cuts are independent.

Clover detector
Th source

228Ac γ
208Tl
double
escape
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Array Granularity detector-to-detector rejection

• Simultaneous signals in two 
detectors cannot be 0νββ

• Requires tightly packed Ge
• Successful against:

– 208Tl and 214Bi
• Supports/small parts (~5x)
• Cryostat/shield (~2x)

– Some neutrons
– Muons (~10x)

• Simulation and validation with 
Clover

~ 40 cm

Granularity is basically free and a 
powerful background suppressor.
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Readiness - Time Correlations
• 68Ge is worst initial raw 

background
– 68Ge -> 10.367 keV x-ray, 95% eff
– 68Ga -> 2.9 MeV beta

• Cut for 3-5 half-lives after signals 
in the 11 keV X-ray window 
reduces 68Ga β spectrum 
substantially

• Independent of other cuts

No cut 

3 , 5 t1/2 cut

QEC = 2921.1

SSTC is powerful against our largest 
raw background, 68Ge.
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Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Year 11

Proposal/CD-0 Package

CD-0/Approve Mission Need

R&D module

Conceptual Design

Site Selection

CD-1/Approve Preliminary Baseline Range

Preliminary Design (PED)

CD-2/3a/Approve Baseline/Long-Lead Procurement

3a: Prepare and Ship Ge

Site Preparation

CD-3 Start Construction

Receive Ge

Fabricate Detectors

Electroforming Production Cryostats

Assemble Experimental Apparatus/Shielding

Assemble Detectors into Cryostat/Shield

Pre-Operational Testing

CD-4/Start of Operations

Full Detector Operations

Decommissioning

R&D Module

Enriched
Ge

1st 60 kg
running

2nd 60 kg
running

3rd 60 kg
running

M180 Operating Phase

Construction

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Schedule
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Majorana Sensitivity: Realistic runtime 

<mν> 
of

100 meV
[Rod05]
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To deduce mββ from τ, one needs Matrix Elements

• If ββ is observed, the qualitative physics 
conclusions are profound regardless of |M|.

• There are many calculations of |M|. Which should 
be used to deduce mββ?

• How do we interpret the uncertainty associated 
with the nuclear physics?

1
τ0ν

= G0 ν M0ν
2 mββ

2
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Progress in Understanding the Matrix 
Element Uncertainty

• Previous spread is mostly due to the various 
implementations of QRPA.

• Rodin et al. show that QRPA results tighten up 
(typically to ~20% uncertainty in half life):
– When implementation differences are accounted for
– One uses ββ(2ν) to set the free parameter

• Recent shell model numbers are comparable 
(differ < factor of 2). But these calculations are 
still evolving.
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RQRPA* and Shell Model Predictions
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δmββ ≈ 1
2

δΓ

*renormalized 
quasiparticle
random phase 
approximation

Factor 2
in τ or Γ
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Progress in testing the matrix elements

• Rodin et al. used ββ(2ν) to set free parameter in 
QRPA. They found that this removed most of the 
spread in the ββ(0ν) QRPA values. (nucl-th/0503063)

• Suhonen showed that this technique for setting gpp
predicted poor β and β+ rates. He advocates using 
those measurements to set the parameter. (nucl-
th/0412064)

• We’ll be watching this productive debate closely.
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Summary
• Science:

– Neutrino mass interest     
– Potential for discovery
– Even null results will be interesting

• Infrastructure:
– Enrichment availability/Underground facility development

• Moderate-sized apparatus: 
– Modest footprint
– No need for large underground cavity

• Low Risk:
– Proven technology/ Modular instrument / Re-configurable

• Experienced and Substantial Collaboration
– Long neutrino science track record, many technical resources
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