
The Pivot framework: Design and
Implementation

B. Stroustrup G. Dos Reis

Department of Computer Science

Texas A&M University

Argone, 2004-08-18 – p. 1



The Problem

• The original problem (inspiration)

– Poor support for CORBA and for high-level parallel and distributed programming

techniques

• No widely-available and general static analysis and
transformation for C++

• There are many incomplete tools

• The community is fractured

– Few dare to rely on other groups tools

• None of the existing tools deal with the higher levels of C++
(templates, specialization, concepts)

– Those are the aspects of C++ that are crucial for advanced optimization,

validation of safety, enforcement of dialects, support of advanced libraries.
Argone, 2004-08-18 – p. 2



The Pivot

A framework for static analysis and transformation of C++

C++ source

IPR

XPR

C++ compilerC++ compilerC++ compiler Object code

Analysis
and

transformation

Analysis
and

transformation

Analysis
and

transformation

Analysis
and

transformation

IDL
XML

Information

Argone, 2004-08-18 – p. 3



The Pivot parts

• IPR (Internal Program Representation)
– a fully general typed abstract syntax tree representation of all C++ (with the

exception of macros)

– has unified type system

– is prepared for C++0x facilities, notably concepts

– Potentially standard

• XPR (eXternal Program Representation)

– Compact, persistent, user-readable, portable representation of IPR

• IPR⇐⇒ XPR parsers

• Traversal and transformation tools

• Specific tools

– E.g. IPR⇐⇒ XPR, IPR⇐⇒ IDL, style checker, ...

Argone, 2004-08-18 – p. 4



IPR: Design rules

IPR should:

• be complete — represent all Standard C++ constructs

• be general — not targeted to a very small area of applications;
must be useful to the wide C++ community

• be regular — must contain C++ but not mimic its irregularities;
prefer general rule to long list of special cases

• put emphasis on types — those are verifiable comments; IPR
nodes may be thought of as fully typed abstract syntax tree

• be compiler neutral — NOT tied to any particular compiler
details or implementations.

• be efficient and elegant

Argone, 2004-08-18 – p. 5



IPR interfaces
• The modeled language is expression-based
• E.g. statements, declarations are expressions too

• Simple, can represent incomplete or erroneous programs

• Two interfaces: Properly encapsulate implementation details
from users:
1. Purely “functional”, abstract classes, for most users

– No mutation operation on abstract classes
– Users don’t get pointers directly

2. Mutating (operates on “concrete” classes)
– Users get to use pointers for in-place transformation

• Library (not users) deals with memory management

• Traversal or “climbing” is based on the Visitor Design Pattern

Argone, 2004-08-18 – p. 6



IPR implementation

Earlier attempts (including XTI):

Every interface class Xyz should have a corresponding
implementation class Xyz_impl.

Node

Expr

Stmt

Decl

Var

Node_impl

Expr_impl

Stmt_impl

Decl_impl

Var_impl

Too Complicated
Too slow

Argone, 2004-08-18 – p. 7



IPR implementation

Earlier attempts (including XTI):

Every interface class Xyz should have a corresponding
implementation class Xyz_impl.

Node

Expr

Stmt

Decl

Var

Node_impl

Expr_impl

Stmt_impl

Decl_impl

Var_impl
Too Complicated
Too slow

Argone, 2004-08-18 – p. 7



IPR implementation cont’d

Linearization:

Parameterize implementations by interfaces

Node

Expr

Stmt

Decl

Var

Expr_impl<T>

Stmt_impl<T>

Decl_impl<T>

Var_impl
T=Var

Simpler
Faster

Argone, 2004-08-18 – p. 8



IPR implementation cont’d

Linearization:

Parameterize implementations by interfaces

Node

Expr

Stmt

Decl

Var

Expr_impl<T>

Stmt_impl<T>

Decl_impl<T>

Var_impl
T=Var

Simpler
Faster

Argone, 2004-08-18 – p. 8



XPR: Persistent IPR

• be simple to process
• XPR parsers should not duplicate work already done in C++ compilers;

• be fast to process

– Ideally, close to Unix cat efficiency

• be compact, human readable

• reflect the inner syntax of Standard C++

• have parsers easy to implement with traditional tools

– generated parsers (bottom-up, top-down), hand-written recursive-descent

Argone, 2004-08-18 – p. 9



Vec (C++)

template<class T>
struct Vec {
Vec(int);
T& operator[](int);
const T& operator[](int) const;
int size() const;
// ...

private:
T* data;
int length;

};

template<class T>
Vec<T> operator+(const Vec<T>& u, const Vec<T>& v)
{
Vec<T> w(u.size());
for (int i = 0; i < u.size(); ++i)

w[i] = u[i] + v[i];
return w;

}
Argone, 2004-08-18 – p. 10



Vec (XPR)

Vec :<T :class> :class {
#ctor :(this :*Vec<T>, n :int) throw(...) Vec<T> public;
operator[] :(this :*Vec<T>, n :int) throw(...) &T public;
operator[] :(this :*const Vec<T>, n :int) throw(...) &const T public;
size :(this :*const Vec<T>) throw(...) int public;

data :*T private;
length :int private;

};

operator+ :<T :class> (u :&const Vec<T>, v :&const Vec<T>) throw(...) Vec<T>
{

w :Vec<T> = { u.size() };
for (i :int = 0; i < u.size(); ++i)

w[i] = u[i] + v[i];

return w;
}

Argone, 2004-08-18 – p. 11



Connection with compilers

Currently, IPR generators are being developped with two compilers

• EDG front-end : aim full integration
(+) complete C++, well-documented, relatively easy to modify, can be compiled with a

C++ compiler, high-level IR;

(-) clever “optimizations” built into the high-level IR⇒ missing some information

contained in the input source

• GCC (debug info): initial proof of concept
(+) freely available;

(-) incomplete C++, undocumented (changing) formats, too much compiler low-level

details, too incomplete (high-level) information contained in input source.

Argone, 2004-08-18 – p. 12



Vec through EDG

[P. Pirkelbauer, operator+ member]

Vec :<T :class> class {
#ctor :(this :*Vec<T>, :int) Vec<T>;
operator[] :(this :*Vec<T>, :int) throw(...) &T;
operator[] :(this :*const Vec<T>, :int) throw(...) &const volatile T;
size : (this :*Vec<T>) throw(...) int;
operator+ : (this :*Vec<T>, v :&const volatile Vec<T>) throw(...) Vec<T>
{

w :public Vec<T> = size(this);
for (i :public int = 0; i < size(this); ++i)

w[i] = (*this)[i] + v[i];
return w;

};
data :private *T;
count :private int;

};

Argone, 2004-08-18 – p. 13



Vec through GCC debug info

operator+ :<T :class> (u :&const Vec<T>, v :&const Vec<T>) Vec<T> throw(...)
{

{
w :Vec<T> = { u.size() };
for (i :int = 0; i < u.size(); ++i)

{
w[i] = u[i] + v[i];

}
return w;

}
}
Vec :<T :class> :class {

#ctor :(this :*Vec<T>, n :int) throw(...) Vec<T> public;
operator[] :(this :*Vec<T>, n :int) throw(...) &T public;
operator[] :(this :*const Vec<T>, n :int) throw(...) &const T& public;
size :(this :*const Vec<T>) throw(...) int public;
data :*T private;
length :int private;

};

Argone, 2004-08-18 – p. 14



Future work

• Complete infrastructure

– Represent header files directly in IPR/XPR

• Integrate “concepts”

• Style analysis

– including type safety and security

• Analysis and transformation of STAPL programs

• Build alliances

Argone, 2004-08-18 – p. 15


	The Problem
	ThePivot {}
	ThePivot {} parts
	IPR: Design rules
	IPR interfaces
	IPR implementation
	IPR implementation

	IPR implementation cont'd
	IPR implementation cont'd

	XPR: Persistent IPR
		exttt {Vec} (C++)
		exttt {Vec} (XPR)
	Connection with compilers
		exttt {Vec} through EDG
		exttt {Vec} through GCC debug info
	Future work

