
Forecasting Final Corn Grain Yield
per Plant With a Constrained

Logistic Growth Model

Greg A. Larsen

Statistical Research Division

Economics, Statistics, and Cooperatives Service

U.S. Department of Agriculture

January 1980



FORECASTING FINAL CORN GRAIN YIELD PER PLANT WITH A CONSTRAINED LOGISTIC
GROWTH MODEL. By Greg A. Larsen; Statistical Research Division; Economics,
Statistics and Cooperatives Service; U.S. Department of Agriculture;
Washington, D.C. 20250; January 1980.

ABSTRACT

The report describes the use of a constrained logistic growth model for
forecasting mean dry grain weight per plant for corn at the state level.
The constraining procedure uses historic information to restrict the early-
season parameter estimates to correspond more closely to values that would
have a greater probability of occurring at maturity. The use of prior
information leads to large improvements in forecasting performance. State-
level forecasts on August 1 were within 9% of the final direct estimates.
The September 1 forecasts are within 3% of the final direct estimate for
the data sets examined.
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FORECASTING FINAL CORN GRAIN YIELD PER PLANT
WITH A CONSTRAINED LOGISTIC GROWTH MODEL

Gfte.g A. LaM e.n

INTRODUCTION

The purpose of this paper is to describe the performance of a constrained
logistic growth model in forecasting mean dry grain weight per plant at
harvest for corn. The constraining procedure used information from pre-
vious years to restrict the early-season parameter estimates to conform
more closely to those that would be obtained at the end of the season.
State-level forecasts and estimates of mean grain weight per plant were
made using 1977 Illinois and Iowa data sets. In this year, the constrained
model produced August 1 forecasts with 9% of the final and September 1
forecasts within 3% of the final direct estimates for both states.

DATA COLLECTION

The data were collected from a subsample of the fields used in the USDA-
ESCS corn objective yield forecasting and estimating program. The sample
consisted of 80 fields in each state selected with probability proportional
to acreage. Two randomly and independently located units were laid out in
each field the week of June 30. Each unit contained 100 consecutive
tagged and numbered plants in a single row.

Observation of silking began when the units were located and continued at
weekly intervals until the week of August 12 when virtually all plants had
silked. Some "mid-week" silking visits were made during the periods of
heaviest silking. Each tagged plant was classified as silked on the visit
when one or more silked ear shoots were observed. A silked plant was given
another tag of a different color to readily distinguish it from plants
which had not yet silked.

Weekly ear sampling began no earlier than July 15. Sampling was initiated
when 50% or more of the tagged plants in a field had silked or on July 29,
whichever came first. In most fields, ear sampling began on July 15. A
random set of eight plants per unit was designated for ear sampling on
each visit until harvest. All ears and silked ear shoots from the first
four silked plants in the designated random set were husked, bagged, and tagged
to identify the plant and sent to a laboratory for processing.

In the lab, kernel rows were counted and a random row was extracted from
each ear. The kernels were dried for 72 hours at approximately 150°F to

1



remove all but an estimated 1.8% of the moisture. TI1e dried kernels were
weighed and the mean grain weight per plant was estimated based on weight of
kernels per row and rows per ear for the plant(s) .

An estimated date of silk emergence was calculated for each silked plant by
averaging the date of the last visit prior to silk observance with the date
of the visit on which silking was first observed. The mean time since silk
emergence and the mean grain weight per plant were calculated for all plants
that were sampled from the same field on the same visit. The data were
aggregated to the field level by ear sampling visit.

A more complete description of the data collection can be found in a report
on the original study by Rockwell, 1978.

THEORY

Logistic Growth Model

The logistic growth model has been used in previous research to describe the
time-growth relationship during grain filling for corn and wheat. Several
reports which make use of this model are listed in the reference section.
In the case of corn, the logistic growth model has been used to describe
the relationship between mean grain weight per plant and time since silk
emergence. The basic form of growth model is as follows:

(1) Yi = a + E. (where t is the value of time associated with the ith
1 + spt 1 observation)

a >0, S> 0, O<p<l,

y. dependent growth variable,
1

t independent time variable,
E. error term.
1

Least squares theory was used to estimate the parameters a, S, and p. This
requires the following assumptions about the nature of the model:

(2)

(3)

(4)

E(E.) = ° for all i,
1

Var (E.) = E(E.2) = a2for all i,
1 1

COV(E.,E.) = E(E.E.) = ° for all i I j.
1 J 1 J
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The parameter which we are most interested in estimating is the asymptote,
a. The asymptote is the mean grain weight per plant when the time variable
is very large. For corn, it is usually not necessary to truncate the model
and obtain an estimate of mean grain weight at harvest. This is because
most of the grain is made several weeks prior to harvest and the model is
usually close to convergence at the time of harvest.

Because the parameters a, S, and p are correlated, an understanding of
their roles in the model is necessary to obtain reasonable forecasts of
the final &. If a and S are held constant, increasing p causes the curve to
expand horizontally without changing the y-intercept. This implies that
the higher the value of p, the longer it takes for convergence and, hence,
the flatter the curve. To get the characteristic shape of the growth curve
in Figure 1, p is constrained to be some value between zero and one. For
values of p equal to zero and one, the growth model produces horizontal
lines at y=a and y = a/(l+S), respectively.

If a and p are held constant, increasing values of S produce a horizontal
shift to the right. The asymptote stays the same while the y-intercept
approaches zero as S goes to infinity. This implies that the rate of growth
as evidenced by the slope of the tangent at the point of inflection is inde-
pendent of the value of S. At S = 1, the point of inflection coincides with
the y-intercept. S is constrained to be a positive value so that the curve
is in the first quadrant. When S = 0, a horizontal line is produced at
y = a.

If Sand p are held constant, increasing values of a produce a vertical
shift up. However, unlike S, the slope of the inflectional tangent
increases while the inflection point itself remains at the same value of t.
This can be seen since as a increases, the y-intercept (a/(l+S » increases
more slowly than does the asymptote which is a itself. This is true for any
values of Sand p within the previously mentioned constraints. a is con-
strained to be a positive value.

The field-level mean values used as input into the growth model were
weighted by the estimated plant population per acre in each field. This
weighting was to account for any relationship between plant density and
grain weight per plant.

Adjusted Logistic Growth Model

In practice, the variance of the mean grain weight per plant is not constant
over time. This can be clearly seen in Appendix Figures 3 and 6 where the
variance is much smaller for small values of time since silk emergence than
for large values. This situation is a violation of the assumption in (3)
and may cause unreliable parameter estimates in some cases. An adjustment
may be used so the assumption is not violated.
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The assumption in (3) and (4) imply that the variance-covariance matrix of
the dependent variable y is

110

o 1

l o 1 nxn

~len the variance of y is not constant over time but the errors are still
uncorrelated, the variance-covariance matrix becomes

kl 0 0

0 k2
V 02 _---..;2
n

o . 0 k nxn

The assumption in (3) can then be stated as:

(5) E(t:.2) = k. 02 = 0 2 (where t is the val ue of time associated with the
1 1 t

ith observation) .
The basic model in (1) is divi ded by £, the adjusted model becomes

1

(6) y. Ie •
1 ex +-2:.

£ £ (1 + Bpt) £
1 1

1

and it can be seen that the error term has constant variance over time.
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The problem of adjusting for unequal variance then becomes one of using
appropriate values for k .. If 0 2 is as defined in (5), a value of k.

~ t ~
equal to 0 2/02 would produce a constant variance of 02 while a value of

t
ki equal to 0t2 would produce a constant variance of one. In either case,
the variance would be constant over time and the absolute value of the
residuals would appear to have a random relationship with time. The use
of the first alternative is discussed in some detail in an earlier report
(Larsen, 1978). The second alternative has been labeled the standard
error adjustment and used in several previous reports (House, 1978, 1979;
Rockwell, 1978). While the methods used to estimate the alternative
values of k. have differed somewhat, the parameter estimates would be
identical wIth either if 02 and 0 2 were known. The standard error
adjustment was used here for comp~rability with the earlier corn research.

A step function can be used to estimate the unknown continuous relation-
ship between the variance of the grain weight per plant, 0 2, and time.
The variance was estimated in each two-day interval of tim£ using a
weighted sum of squared residuals from an unadjusted fit of the model
in (1). The weights used were plants per acre. For this adjustment to
produce residuals that are uncorrelated with time, the Mean Square Error
(MSE) in the adjusted model needs to be near one. If the adjusted regres-
sion accounts for a different amount of the total variability than the
unadjusted regression, the MSE will differ from one. This is particularly
a problem with the constrained logistic model because it generally does
not fit the data as well and the MSE is correspondingly higher. Therefore,
applying the standard error adjustment may cause a large change in the
variability associated with the regression and the adjustment may not pro-
duce residuals which are uncorrelated over time.

In addition to the standard error adjustment, a so-called double standard
error adjustment was used. The 0 2 values were re-estimated using the
residuals from the first adjustedtfit and the adjusted model in (6) was
run a second time.

Constrained Logistic Growth Model

A constrained growth model was used in previous research to improve early-
season forecasts of winter wheat yields (Larsen, 1979). The procedure
takes advantage of information from prior years to restrict parameter
estimates so that early-season forecast accuracy may be improved by giving
a higher probability to values of the parameter near the historic mean
value. The constrained model makes use of an inflection point relation-
ship. This is the point at which the slope of the tangent to the curve
is at a maximum. For values of time before the inflection point, the
growth rate is accelerating while the growth rate slows down after the
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inflection point. The point of inflection is found by setting the second
derivative with respect to t equal to zero and solving for t. When this
is done, t is found to be - (InS) /(lnp). So, the inflec tion point is
determined by the values of 3 and p.

The reason for using the inflection point to constrain the parameter esti-
mates is that it was observed in several data sets over years that the
departure of the forecasted inflection point from the final infl~ction
point £orresponded closely with the direction of the forecasted a from the
final a. It was also observed that the final inflection point is quite
consistent over years and states. Therefore, a historic inflection point
is used to force the inflection point during early-season forecasts to be
£lose to the final end of season inflectio~ point. This generally produces
a forecasts which are closer to the final a. The historic inflection
point is a random variable with an associated variance; however, thisApaper
treats it as a constant. One way to reflect this variability in the a
forecasts would be to construct a confidence interval and calculate a fore-
cast for the upper and lower bounds.

From the second derivative of the logistic model in (1), the inflection
point is

(7) IP =
-(InS)
(lnp)

Solving for S, gives

(8) -IPB = p

Substituting (8) in (1) gives the constrained logistic growth model.

(9) y.
l

a
1 + P (t-IP) + E.

l

both
with

The
Iowa

Now, only two parameters are estimated by least squares since B is completely
determined by the value of p and the historic inflection point. A further
constraint used in (9) is that p is restricted by a range of values obtained
in prior years.

RESULTS

The logis tic growth model in (1) and the cons trained model in (9) were
applied to the 1977 Illinois and Iowa corn data. Both models were fit
and without an adjustment for unequal variance over the range of time.
prior information to use the constrained model came from 1975 and 1976
data sets and is shown in Table 1. The mean inflection point from the
unadjusted models is 31.6 and the standard error adjusted models is 31.5.
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Table 1: Historic Inflection Points (IP) and Values of Ap

Data Set Unadjusted S.E. Adjusted
IP p ·. IP P

· .
1975 Iowa 31.3 .893 ·. 32.1 .895
1976 Iowa 31.9 .892 ·. 30.8 .873

· .
Table 2 shows how the various growth model forecasts compared to the direct
estimate of mean dry grain weight per plant at harvest. The direct esti-
mate is a weighted mean of the dry grain weights obtained on the final
preharvest visit. This estimate is based on the weight of kernels in each
sampled row times the number of rows per ear for each ear on the plant.
The unconstrained sections of the table correspond to the basic model in
(1) with and without adjustment for unequal variance. The constrained
sections correspond to the model in (9). Adjustments are indicated by U
(unadjusted), SE (standard error adjustment) and DSE (double standard
error adjustment). The stalk population weights were applied consistently
throughout all the growth models. The standard error adjustments were
based on weighted residuals. A check mark (~ follows the forecast which
was closest to the final direct estimate within each state.

For the August 1 forecast, the unadjusted constrained forecast was closest
to the direct estimate in both states. The improvement from the con-
straining procedure was large in Iowa. For September 1, the double stan-
dard error adjusted constrained forecast was closest to the final estimate
in Illinois. In Iowa, the unadjusted unconstrained model produced the
best estimate. In general, the constraining procedure produces the
largest improvement in forecasting accuracy early in the season because
the number of data points are relatively few. As more data becomes
available, the constrained model with the historic inflection point should
be replaced by the unconstrained model. The constrained model is pre-
ferred through the September 1 forecast.

Another result from Table 2 is that the unadjusted models generally pro-
duce better forecasts of the direct estimate than the adjusted models.
It was stated earlier that the unequal variance of mean dry grain weight
over time could cause unreliable parameter estimates. In this case, it
apparently did not. This suggests that great care should be taken in
assuming that the adjusted model is preferred.
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__________ I_L_L_I__N_O_I_S ••
Unconstrained Constrained

ex % of ex: % of
___________ g_r_a_m_s D_ir.Est.: grams :Dir.Est. ..

Lab
Week

Table 2: Growth ~~de1 Forecasts of Dry Grain Weight Per Plant

~de1
Form a

grams

Constrained
% of
Di r .Es t .

co 3
(Aug. 1)

U
SE

DSE

133.3
111. 2
108.6

85.4
71. 2
69.6

168 . 5(/)
185.9
180.0

107.9
119.1
115. J

97.5
96.1
96.2

69.7
68.7
68.8

151. 3(/)
169.2
161.1

108.2
121.0
115.2

U
7 SE

(Sept. 1) DSE
Final Direct
Estimate (grams):

150.0
141.2
136.4

96.1
90.5
87.4

158.5 101.5 .. 139.3(/)
157.3 100.8 .. 128.9

_~~_(lL_J20 .5 114.9

156.1 .'

99.6 143.3
92.2 144.3
89.3 144.8

139.8

102.5
103.2
103.6



Tables 3 and 4 summarize additional information on how the constrained
model compares to the basic growth model. R is the Pearson product-
moment correlation between the absolute valu~ of residuals and time since
silk emergence. The significance probability of this correlation is an
indicator of the degree of unequal variance over the range of time. The
nonparametric Spearman correlation was also calculated but is not presented
because, in most cases, it did not differ enough from the Pearson correla-
tion to change the statistical significance level. In these tables, the
a forecasts are compared with the final a's. While this is not as mean-
ingful in a forecasting sense as a comparison to the final direct estimate,
it does give insight into model behavior. With all the data available,
the basic growth model should be used since it does not force the equation
through what may be an incorrect inflection point. With this in mind, the
"% of final a" column values are calculated relative to the unconstrained
unadjusted and double standard error adjusted a's with all the data.

From Tables 3 and 4, it can be seen that the constrained model improves
the forecasts of the final a in all cases. The unadjusted forecasts
from the constrained model are closer to the corresponding final a than
are the adjusted forecasts. The forecasts in Iowa are generally closer
to the final a than those in Illinois.

All these observations are at least partly related to the historic inflec-
tion point that was supplied to the constrained model. The historic
unadjusted inflection point of 31.6 compared favorably with the final of
31.2 in Illinois and 32.2 in Iowa. However, the historic adjusted inflec-
tion points of 29.7 in Illinois and 30.2 in Iowa. The adjusted forecasts
would have been closer to the final adjusted a if the historic inflection
point had been closer to the 1977 point of inflection.

It is possible that the historic information should have been better. The
adjusted inflection point came from a single standard error adjustment.
In the 1976 Iowa data set, the residuals were significantly correlated
with time after the adjustment. Documentation as to the success of the
adjustment in the 1975 data could not be located. In Tables 3 and 4, it
can be seen that the single standard error adjustment still left corre-
lations which were significant at the .01 level with 7 and 12 weeks of
data. The final inflection points decreased when the double standard
error adjustment was used and are quite close for the two states. If
the standard error adjustment had been completely successful in the 1975
and 1976 data sets, the prior inflection point may have been closer to
the 1977 final. It can be seen in Tables 5 and 6 in the Appendix that
the historic information on p was very close to the final p values.

Had the historic inflection points been exactly equal to the final
inflection points, the forecasts would have still been higher than the
final a's. The reason for this is that some of the plants silked after
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Table 3: Illinois Forecas ts of the Final a

Lab Unconstrained · . Constrained
Week Model A % of

~ IP · . % of
~ IPa Final · . ex FinalForm :grams a ·.grams a

· .
U 1000+ 1000+ .63** 86.5 · . 170.4 108.6 .421<* 31. 6

2 SE 130.6 87.6 .12 24.2 · . 192.3 129.0 .33** 31. 5
DSE 114.7 76.9 .03 23.1 · . 174.5 117.0 .20* 31. 5

U 133.3 85.0 .57*''< 26.5 · . 168.5 107.4 .36** 31.63 SE 111. 2 74.6 .12 24.3 · . 185.9 124.7 .27''<''< 31. 5
f-' (Aug 1) DSE 108.6 72.8 .04 24.0 · . 180.0 120.7 .00 31. 5a · .

5 U 136.0 86.7 .54** 27.9 · . 164.1 104.6 .45"0'< 31. 6
SE 123.6 82.9 .16** 26.4 · . 165.7 111.1 .24"0'< 31. 5

DSE 118.6 79.5 .05 25.8 ·. 167.6 112.4 .111< 31. 5
U 150.0 95.6 .491<* 30.1 ·. 158.5 101. 0 .45"0'< 31. 67 SE 141.2 94.7 .20** 28.8 · . 157.3 105.5 .1]1<>'< 31. 5(Sept 1) DSE 136.4 91.5 .09 28.0 · . 156.9 105.2 .05 31. 5· .

12 U 156.9 100.0 .48** 31. 2 · . 158.2 100.8 .48"0'< 31. 6
(All Data) SE 151. 4 101. 5 .14*'< 30.1 · . 157.3 105.5 .11>" 31. 5

DSE 149.1 100.0 .07 29.7 · . 156.9 105.2 .05 31. 5
· .

** significant at .01 level.
* significant at .05 level.



Table 4: Iowa Forecasts of the Final CJ.

Uncons trained · . Constrained
Lab Model ex % of · . ex % of
Week 1), IP

A

~Form :grams Final · . Final IP
a ·.grams a

· .
U 614.0 414.3 .57~o~ 38.7 · . 136.4 92.0 .44M, 31.6

2 SE 94.7 67.1 .06 23.4 · . 160.1 113.4 .32'~'~ 31. 5
DSE 83.1 58.9 .04 22.3 · . 150.6 106.7 .08 31.5

U 97.5 65.8 .60** 24.1 · . 151. 3 102.1 .52",,', 31.6
3 SE 96.1 68.1 .02 23.9 · . 169.2 119.8 .31",* 31. 5

(Aug. 1) DSE 96.2 68.1 .02 23.9 · . 161.1 114.1 .06 31. 5
· .

f-' U 137.6 92.8 .57'~~' 29.9 149.6 100.9 .54~d, 31.6
f-' · .

5 SE U5.5 81. 8 .15*'~ 26.8 · . 152.2 107.8 .20""" 31.5
DSE 109.4 77.5 .04 25.9 · . 153.8 108.9 .02 31.5

· .
U 139.3 94.0 .55'<* 30.8 · . 143.3 96.7 .54~'* 31.6

7 128.9 91. 3 .16*", 28.7 · . 144.3 102.2 .12*~' 31.5
(Sept. 1) SE

DSE 124.9 88.5 .04 27.9 · . 144.8 102.5 .01 31. 5· .
12 U 148.2 100.0 .47'~* 32.2 · . 146.3 98.7 .47~'~' 31.6

(AU Da ta) SE 144.0 102.0 .12'<* 30.9 · . 146.0 103.4 .10* 31.5
DSE 141. 2 100.0 .03 30.2 · . 146.1 103.5 .01 31. 5

· .
** significant at .01 level.
* significant at .05 level.



July 15 and were not sampled as heavily. The later silking plants had
somewhat less weight per ear and were from units with fewer plants per
acre. As a result, the forecasts with two and three weeks of data are
high because they are based on the earlier and, in 1977, higher yielding
fields.

From Tables 2-4, it can be observed that the constrained model produced
consistently better forecasts of the final a value, but this did not
necessarily mean that the constrained model was always better in terms
of forecasting the final direct estimate. If the final growth model
estimate is different from the final direct estimate, the constrained
model may be inferior to the unconstrained model for some forecasts.
Also, the fact that the historic adjusted inflection point was not
particularly close to the final point of inflection may have been the
reason the unadjusted forecasts were generally preferred in Table 2.

It should be pointed out that the 1977 corn crop was much earlier than
normal in Iowa and Illinois. The degree of success in using the logis-
tic growth model would be diminished in normal or late years. In a
normal year, there is typically five weeks of data available for a
September 1 forecast. With five weeks of data, the best constrained
forecasts were 5% and 7% above the final direct estimate in Illinois
and Iowa, respectively. The unconstrained model produced corresponding
forecasts which were 13% low in Illinois and 2% low in Iowa.

CONCLUSION

The constrained logistic growth model generally produced better forecasts
of the direct estimate of mean dry grain weight per plant at harvest than
the corresponding unconstrained model. Improvements were large at the
early forecast dates.

Adjustments were made to the model to correct for the affect of unequal
variance of dry grain weight over time. However, for 1977, the unadjusted
models generally produced the better forecasts of mean dry grain weight
per plant at harvest.

Using the unadjusted constrained model, the August 1 forecast was 7.9%
higher than the final direct estimate in Illinois and 8.2% high in
Iowa. The September 1 forecast was 1.5% high in Illinois and 2.5% high
in Iowa.

The 1977 season was earlier than normal so the results were better than
would be expected in a typical year. Generally, there is almost no data
available for an August 1 forecast and five weeks of data are available
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for September 1. With five weeks of data, the unadjusted constrained
model produced forecasts which were 5.1% high in Illinois and 7.0% high
in Iowa.

Although overshadowed somewhat by the forecasting performance of the
unadjusted models in this particular year, it should be noted that a
double standard error adjustment was successfully used to produce resi-
duals whose absolute values appeared to be uncorrelated with time. The
single standard error adjustment which has been used in the past some-
times failed to completely adjust for the unequal variance. The single
adjustment was particularly ineffective when the constrained model was
used.
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APPENDIX
Tables 5 and 6 summarize the parameter and variance estimates at different
forecast dates for the two states. Some of the columns which have not
appeared in previous tables need explanation. The "MSE" column gives the
mean square error from the nonlinear regression error sum of squares. In
the unadjusted models, the MSE is an estimate of the true population
variance, 02• In the adjusted models, the MSE is an estimate of 02/02

t
where 02 is the true variance at t days since silking. The adjusted MSE's

t
should be near one if they are good estimates. The "unadjusted HSE" column
gives the estimate of the population variance for each model. In addition
to the parameter estimates for a,S and p, the relative standard error (RSE)
expressed in a percent is given. The RSE is calculated by dividing the
standard error of the estimate by the parameter e~timate itself. A RSE is
not given for § in the constrained model because S is calculated directly
from p.

Figures 1-6 show plots of the aggregated data and the estimated growth
curves at different dates. The figures show how the unconstrained and con-
strained models fit the data for each state. The unconstrained model is
graphed as a solid line with dots and the constrained as a solid line.
On all figures, A indicates one observation, B two observations, C three
observations, etc.
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Table 5 : Illinois Parameter and Variance Estimates

Unconstrained Logistic Growth Mode 1

Lab Model
R2 Unadj. RSE RSE RSE

Week Form Obs. MSE MSE (i (%) e. (:~) p O~)

U ll5 1000+
2 SE ll5 .928 .940 44.6 130.6 25.5 121. 5 18.8 .820 1.2

DSE 115 .925 1.02 46.0 114.7 20.8 113.5 15.4 .815 1.2

U 176 .942 69.3 69.3 133.3 11.8 81. 8 14.5 .847 1.3
3 SE 176 .948 .937 70.3 111.2 7.4 92.7 7.2 .830 .7

DSE 176 .945 1.02 70.7 108.6 7.0 94.9 6.9 .827 .7

U 300 .962 154.8 154.8 136.0 3.9 57.5 14.6 .865 .8
5 SE 300 .952 .899 158.5 123.6 3.6 80.2 7.1 .847 .5

DSE 300 .948 .999 162.4 118.6 3.6 87.0 6.0 .841 .4

U 426 .962 300.2 300.2 150.0 2.4 41.2 14.2 .884 .6
7 SE 426 .961 .893 307.4 141.2 1.9 65.3 7.5 .865 .4

DSE 426 .956 .977 315.4 136.1, 1.9 78.8 6.1 .856 .3
i-' U 581 .960 507.4 507.4 151i.9 1.3 36.3 14.8 .891 .50'>

12 SE 581 .962 .919 519.0 151 .I, 1.3 57.5 7.4 .874 .3
DSE 581 .959 .980 531.0 149.1 1.2 71 .1 6.1 .8li6 .3

Constrained Logistic Grow th Model

U 115 .857 86.4 86.4 170.4 8.4 37.0 .892 .7
2 SE 115 .912 .518 64.8 192.3 7.2 72 .1 .873 .5

DSE 115 .887 .941 78.9 174.5 8.8 72 .1 .873 .5

U 176 .922 91. 9 91.9 168.5 3.4 37.0 .892 .4
3 SE 176 .942 .593 72.3 185.9 3.0 72 .1 .873 .3

DSE 176 .938 .995 75.5 180.0 2.9 72 .1 .873 .2

U 300 .959 163.8 1li3.8 lli4.1 1.2 37.0 .892 .3
5 SE 300 .953 .834 167.7 165.7 1.4 58.8 .879 .2

DSE 300 .946 .960 177.9 167.6 1.6 72.1 .873 .2

U 426 .962 302.7 302.7 158.5 1.1 35.7 .893 .1,
7 SE 426 .960 .911 309.2 157.3 1.0 51. 3 .883 .2

DSE 426 .956 .977 316.5 156.9 1.1 60.9 .878 .2

U 581 .960 507.2 507.2 158.2 .9 35.7 .893 .5
12 SE 581 .961 .935 512.5 157.3 .8 51. 4 .882 .2

DSE 581 .959 .983 518.3 156.9 .9 61.2 .878 . :~



Table 6 : Iowa Parameter and Variance Estimates

Unconstrained Logistic Growth Mode 1
Lab Model

R2 Unadj. RSE RSE RSE
Week Form Obs. MSE MSE a (%) (l (%) r (%)

U 130 614.0 410.1 373.6 385.4 .858 2.7
2 SE 130 .919 1.00 33.4 94.7 50.4 75.2 42.9 .831 1.6

DSE 130 .919 1.02 33.9 83.1 44.0 69.1 36.9 .827 1.6

U 196 .914 77 .6 77 .6 97.5 16.2 73.9 19.3 .837 1.9
3 SE 196 .923 1.02 77.6 96.1 15.1 74.2 11. 1 .835 .9

DSE 196 .923 1.02 77 .6 96.2 15.1 74.4 11.1 .835 .9

U 328 .916 284.6 284.6 137.6 8.0 50.5 18.7 .877 1.1
5 SE 328 .909 .896 291. 0 115.5 5.5 68.8 7.2 .854 .6

DSE 328 .913 .999 296.7 109.4 5.1 73.4 6.0 .847 .5

U 460 .914 576.4 576.4 139.3 3.8 39.1 20.8 .888 .9
7 SE 460 .912 .889 586.2 128.9 3.0 63.5 7.7 .865 .5

DSE 460 .914 .990 594.1 124.9 2.9 72.5 5.7 .858 .4

U 600 .918 859.0 859.0 148.2 2.0 35.9 20.2 .895 .7
I-' 12 SE 600 .926 .915 871.5 144.0 1.7 58.1 7.4 .877 .4-..J

DSE 600 .923 .986 882.6 141. 2 1.8 68.8 5.7 .869 .3

Constrained Logistic Growth Model

U 130 .858 44.9 44.9 136.4 10.5 37.0 .892 .8
2 SE 130 .892 .617 39.4 160.1 12.3 72.1 .873 .7

DSE 130 .901 .980 43.5 150.6 D.3 72.1 .873 .7

U 196 .899 90.6 90.6 151. 3 4.2 37.0 .892 .5
3 SE 196 .912 .635 80.6 169.2 4.5 72.1 .873 .4

DSE 196 .908 .986 84.8 161.1 5.2 72 .1 .873 .3

U 328 .915 286.9 286.9 149.6 1.7 37.0 .892 .4
5 SE 328 .905 .820 287.2 152.2 2.1 61.8 .877 .2

DSE 328 .906 .976 293.1 153.8 2.3 72.1 .873 .2

U 460 .914 575.8 575.8 143.3 1.6 36.4 .892 .6
7 SE 460 .910 .896 586.5 144.3 1.6 55.7 .880 .2

DSE 460 .911 .984 594.4 144.8 1.6 64.2 .876 .2

U 600 .918 858.6 858.6 146.3 1.4 36.5 .892 .7
12 SE 600 .924 .916 866.4 146.0 1.2 56.2 .880 .2

DSE 600 .923 .987 871. 7 146.1 1.3 64.9 .876 .2



Fi gure 1
Illinois -- 3 Weeks of Data
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ri gu re 2
Illinois -- 7 Weeks of Data
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Fi gure :3
I II ino i s -- 12 Week S 0 f Ila t a
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Figure 4
Iowa -- 3 Weeks of Data
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Fi gure 5
Iowa -- 7 Weeks of Data
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Figure 6
Iowa -- 12 Weeks of Data
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